1
|
Banerji A, Brinkman NE, Davis B, Franklin A, Jahne M, Keely SP. Food Webs and Feedbacks: The Untold Ecological Relevance of Antimicrobial Resistance as Seen in Harmful Algal Blooms. Microorganisms 2024; 12:2121. [PMID: 39597512 PMCID: PMC11596618 DOI: 10.3390/microorganisms12112121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 11/29/2024] Open
Abstract
Antimicrobial resistance (AMR) has long been framed as an epidemiological and public health concern. Its impacts on the environment are unclear. Yet, the basis for AMR is altered cell physiology. Just as this affects how microbes interact with antimicrobials, it can also affect how they interact with their own species, other species, and their non-living environment. Moreover, if the microbes are globally notorious for causing landscape-level environmental issues, then these effects could alter biodiversity and ecosystem function on a grand scale. To investigate these possibilities, we compiled peer-reviewed literature from the past 20 years regarding AMR in toxic freshwater cyanobacterial harmful algal blooms (HABs). We examined it for evidence of AMR affecting HAB frequency, severity, or persistence. Although no study within our scope was explicitly designed to address the question, multiple studies reported AMR-associated changes in HAB-forming cyanobacteria (and co-occurring microbes) that pertained directly to HAB timing, toxicity, and phase, as well as to the dynamics of HAB-afflicted aquatic food webs. These findings highlight the potential for AMR to have far-reaching environmental impacts (including the loss of biodiversity and ecosystem function) and bring into focus the importance of confronting complex interrelated issues such as AMR and HABs in concert, with interdisciplinary tools and perspectives.
Collapse
Affiliation(s)
- Aabir Banerji
- US Environmental Protection Agency, Office of Research and Development, Duluth, MN 55804, USA
| | - Nichole E. Brinkman
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA; (N.E.B.); (B.D.); (M.J.)
| | - Benjamin Davis
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA; (N.E.B.); (B.D.); (M.J.)
| | - Alison Franklin
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA; (N.E.B.); (B.D.); (M.J.)
| | - Michael Jahne
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA; (N.E.B.); (B.D.); (M.J.)
| | - Scott P. Keely
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA; (N.E.B.); (B.D.); (M.J.)
| |
Collapse
|
2
|
Wang J, Wang Y, Lai J, Li J, Yu K. Improvement and application of qPCR assay revealed new insight on early warning of Phaeocystis globosa bloom. WATER RESEARCH 2023; 229:119439. [PMID: 36473412 DOI: 10.1016/j.watres.2022.119439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/21/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Phaeocystis globosa bloom develops from its early solitary cells, providing clues for early warning of its bloom and timely responding to possible consequences. However, the early prediction requires quantification of the solitary cells for a thorough understanding of bloom formation. Therefore, we developed an accurate, sensitive, and specific qPCR assay for this need. Results show that the accuracy of qPCR was significantly enhanced by ameliorating DNA barcode design, improving genomic DNA extraction, and introducing a strategy of internal amplification control (IAC). This approach reached a quantification limit of 1 cell/reaction, making low-abundance cells (101-103 cells/L) detection possible, and we also observed a plunge in the abundance of the solitary cells before the bloom outbreak in two winters in 2019 and 2020 for the first time, which is quite unique from laboratory results showing an increase instead. The plunge in solitary-cell abundance might be associated with the attachment of solitary cells to solid matrices to form non-solitary attached aggregate, the precursor of colonies, which gains supports from other studies and needs more investigations in the future. Therefore, as the plunge in solitary-cell abundance is a sign of colony formation, it can be used as an early warning indicator to P. globosa bloom.
Collapse
Affiliation(s)
- Jiale Wang
- School of Marine Science, Guangxi Laboratory on the Study of Coral Reef in the South China Sea and Coral Reef Research Center of China, Guangxi University, Nanning 530004, China
| | - Yinghui Wang
- School of Marine Science, Guangxi Laboratory on the Study of Coral Reef in the South China Sea and Coral Reef Research Center of China, Guangxi University, Nanning 530004, China.
| | - Junxiang Lai
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Beibu Gulf Marine Research Center and Guangxi Academy of Sciences, Nanning 530007, China.
| | - Jie Li
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Beibu Gulf Marine Research Center and Guangxi Academy of Sciences, Nanning 530007, China
| | - Kefu Yu
- School of Marine Science, Guangxi Laboratory on the Study of Coral Reef in the South China Sea and Coral Reef Research Center of China, Guangxi University, Nanning 530004, China
| |
Collapse
|
3
|
Ren X, Yu Z, Song X, Zhu J, Wang W, Cao X. Effects of modified clay on the formation of Phaeocystis globosa colony revealed by physiological and transcriptomic analyses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155985. [PMID: 35597349 DOI: 10.1016/j.scitotenv.2022.155985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
The harmful algal bloom (HAB) species Phaeocystis globosa is commonly observed in global temperate and tropical oceans, and colonies of P. globosa exhibit a dominant morphotype during blooms. The use of polyaluminium chloride modified clay (PAC-MC) is an effective mitigation strategy for P. globosa blooms. Although previous studies have found that PAC-MC can stimulate P. globosa colony formation at low concentrations and inhibit it at higher concentrations, the underlying mechanisms of these effects are poorly understood. Here, we comprehensively compared the physiochemical indices and transcriptomic response of residual P. globosa cells after treatment with two concentrations of PAC-MC. The results showed that PAC-MC induced oxidative stress, photosynthetic inhibition, and DNA damage in residual cells. Moreover, it could activate antioxidant responses and enhance the repair of photosynthetic structure and DNA damage in cells. The biosynthesis of polysaccharides was enhanced and genes associated with cell motility were down-regulated after treatment with PAC-MC, resulting in the accumulation of colonial matrixes. After treatment with a low concentration of PAC-MC (0.1 g/L), the residual cells were slightly stressed, including physical damage, oxidative stress and other damage, and polysaccharide synthesis was enhanced to promote colony formation to alleviate environmental stress. Moreover, the damage to residual cells was slight; thus, normal cell function provided abundant energy and matter for colony formation. After treatment with a high concentration of PAC-MC (0.5 g/L), the residual cells suffered severe damage, which disrupted normal physiological processes and inhibited cell proliferation and colony formation. The present study elucidated the concentration-dependent mechanism of PAC-MC affecting the formation of P. globosa colonies and provided a reference for the application of PAC-MC to control P. globosa blooms.
Collapse
Affiliation(s)
- Xiangzheng Ren
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhiming Yu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Xiuxian Song
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Jianan Zhu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Wentao Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xihua Cao
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
4
|
Zhu J, Yu Z, He L, Cao X, Ji H, Song X. Mechanism by Which MC Controls Harmful Algal Blooms Revealed by Cell Morphology of Aureococcus anophagefferens. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111191. [PMID: 34769710 PMCID: PMC8583585 DOI: 10.3390/ijerph182111191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 11/16/2022]
Abstract
On the basis of field experience, a bloom does not continue after treatment with modified clay (MC), even though the residual harmful algal bloom (HAB) biomass accounts for 20–30% of the initial cells. This interesting phenomenon indicates that, in addition to causing flocculation, MC can inhibit the growth of residual cells. Here, from a cell morphology perspective, Aureococcus anophagefferens was used as a model organism to explore this scientific issue and clarify the mechanism by which MC mitigates harmful algal blooms (HABs). The results showed that, at an ~70% removal efficiency, neutral clay (NC) could not effectively inhibit the growth of residual cells, although it caused various forms of damage to residual cells, such as cell deformation, cell breakage, decreased extracellular polysaccharides (EPS), increased cell membrane permeability, and increased cytoplasmic granularity, due to physical collisions. After modification, some physical and chemical properties of the clay particle surface were changed; for example, the surface electrical properties changed from negative to positive, lamellar spacing increased, hardness decreased, adhesion chains increased, adhesion improved, and the number of absorption sites increased, enhancing the occurrence of chemical and electrochemical effects and physical collisions with residual cells, leading to severe cell deformation and chemical cell breakage. Thus, MC effectively inhibited the growth of residual cells and controlled HABs.
Collapse
Affiliation(s)
- Jianan Zhu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.Z.); (L.H.); (X.C.); (H.J.); (X.S.)
- Functional Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhiming Yu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.Z.); (L.H.); (X.C.); (H.J.); (X.S.)
- Functional Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: ; Tel.: +86-0532-82898581
| | - Liyan He
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.Z.); (L.H.); (X.C.); (H.J.); (X.S.)
- Functional Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xihua Cao
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.Z.); (L.H.); (X.C.); (H.J.); (X.S.)
- Functional Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Hena Ji
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.Z.); (L.H.); (X.C.); (H.J.); (X.S.)
- Functional Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiuxian Song
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.Z.); (L.H.); (X.C.); (H.J.); (X.S.)
- Functional Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|