1
|
Dicianno BE, Salh A, Morris L, Xiang Y, Ding D. Rehabilitation clinicians' use of mainstream wireless technologies in practice: a scoping review. Disabil Rehabil Assist Technol 2024:1-19. [PMID: 38349177 PMCID: PMC11323212 DOI: 10.1080/17483107.2024.2316891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/06/2024] [Indexed: 08/16/2024]
Abstract
PURPOSE This scoping review was conducted to understand the barriers, facilitators, and education and training needs of rehabilitation clinicians in their use of mainstream wireless technologies (MWT) to support people with disabilities and older adults. It was also conducted to understand the functional skills of clients that were targeted with MWT use. MATERIALS AND METHODS This scoping review was reported using PRISMA-ScR (Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews) and the Population (or Participants)/Concept/Context) framework. We searched PubMed; ProQuest to access APA PsycINFO; Web of Science Core Collection; and EBSCOhost to access Cumulated Index to Nursing and Allied Health Literature (CINAHL), Ovid MEDLINE ALL, and Education Resources Information Center (ERIC). Articles published between 2015-2022 were retrieved. RESULTS A total of 90 articles were included. Most interventions were apps, smartphones, and tablets; were geared toward adults; and targeted motor, cognitive and speech skills. An infographic on barriers and facilitators was generated as a decision support tool for clinicians when implementing MWT. The topic, format, timing, and source of information clinicians need are also delineated. CONCLUSION MWT such as apps, smartphones and tablets are being used by rehabilitation clinicians to address motor, cognitive, and speech skills, most commonly in adults. Clinicians voice a need for more education and training. Barriers and facilitators exist at the clinician-, technology-, client-, institution-, and policy levels.Implications For RehabilitationA total of 90 articles from 2015-2022 were included in this scoping reviewMost interventions were apps, smartphones, and tablets; were geared toward adults; and targeted motor, cognitive and speech skills.An infographic was generated as a decision support tool for clinicians when implementing mainstream wireless technologies in clinical practice.Clinicians' education and training needs with regard to mainstream wireless technologies are broad. Materials on a variety of topics, in different formats, from multiple sources are needed.This review also discusses implications of findings on policy, technology development, and future research.
Collapse
Affiliation(s)
- Brad E. Dicianno
- Department of Physical Medicine and Rehabilitation, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Human Engineering Research Laboratories, VA Pittsburgh Healthcare System, Pittsburgh, PA, USA
- Department of Rehabilitation Science and Technology, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Angad Salh
- College of Osteopathic Medicine, KS City University, Kansas City, MO, USA
| | - Lindsey Morris
- Human Engineering Research Laboratories, VA Pittsburgh Healthcare System, Pittsburgh, PA, USA
- Department of Rehabilitation Science and Technology, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yifan Xiang
- Department of Rehabilitation Science and Technology, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dan Ding
- Human Engineering Research Laboratories, VA Pittsburgh Healthcare System, Pittsburgh, PA, USA
- Department of Rehabilitation Science and Technology, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Seo NJ, Coupland K, Finetto C, Scronce G. Wearable Sensor to Monitor Quality of Upper Limb Task Practice for Stroke Survivors at Home. SENSORS (BASEL, SWITZERLAND) 2024; 24:554. [PMID: 38257646 PMCID: PMC10821060 DOI: 10.3390/s24020554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024]
Abstract
Many stroke survivors experience persistent upper extremity impairment that limits performance in activities of daily living. Upper limb recovery requires high repetitions of task-specific practice. Stroke survivors are often prescribed task practices at home to supplement rehabilitation therapy. A poor quality of task practices, such as the use of compensatory movement patterns, results in maladaptive neuroplasticity and suboptimal motor recovery. There currently lacks a tool for the remote monitoring of movement quality of stroke survivors' task practices at home. The objective of this study was to evaluate the feasibility of classifying movement quality at home using a wearable IMU. Nineteen stroke survivors wore an IMU sensor on the paretic wrist and performed four functional upper limb tasks in the lab and later at home while videorecording themselves. The lab data served as reference data to classify home movement quality using dynamic time warping. Incorrect and correct movement quality was labeled by a therapist. The home task practice movement quality was classified with an accuracy of 92% and F1 score of 0.95 for all tasks combined. Movement types contributing to misclassification were further investigated. The results support the feasibility of a home movement quality monitoring system to assist with upper limb rehabilitation post stroke.
Collapse
Affiliation(s)
- Na Jin Seo
- Department of Rehabilitation Sciences, College of Health Professions, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC 29425, USA; (K.C.); (C.F.); (G.S.)
- Ralph H. Johnson VA Health Care System, Charleston, SC 29401, USA
| | - Kristen Coupland
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC 29425, USA; (K.C.); (C.F.); (G.S.)
- Ralph H. Johnson VA Health Care System, Charleston, SC 29401, USA
| | - Christian Finetto
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC 29425, USA; (K.C.); (C.F.); (G.S.)
- Ralph H. Johnson VA Health Care System, Charleston, SC 29401, USA
| | - Gabrielle Scronce
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC 29425, USA; (K.C.); (C.F.); (G.S.)
- Ralph H. Johnson VA Health Care System, Charleston, SC 29401, USA
| |
Collapse
|
3
|
Willingham TB, Stowell J, Collier G, Backus D. Leveraging Emerging Technologies to Expand Accessibility and Improve Precision in Rehabilitation and Exercise for People with Disabilities. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:79. [PMID: 38248542 PMCID: PMC10815484 DOI: 10.3390/ijerph21010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024]
Abstract
Physical rehabilitation and exercise training have emerged as promising solutions for improving health, restoring function, and preserving quality of life in populations that face disparate health challenges related to disability. Despite the immense potential for rehabilitation and exercise to help people with disabilities live longer, healthier, and more independent lives, people with disabilities can experience physical, psychosocial, environmental, and economic barriers that limit their ability to participate in rehabilitation, exercise, and other physical activities. Together, these barriers contribute to health inequities in people with disabilities, by disproportionately limiting their ability to participate in health-promoting physical activities, relative to people without disabilities. Therefore, there is great need for research and innovation focusing on the development of strategies to expand accessibility and promote participation in rehabilitation and exercise programs for people with disabilities. Here, we discuss how cutting-edge technologies related to telecommunications, wearables, virtual and augmented reality, artificial intelligence, and cloud computing are providing new opportunities to improve accessibility in rehabilitation and exercise for people with disabilities. In addition, we highlight new frontiers in digital health technology and emerging lines of scientific research that will shape the future of precision care strategies for people with disabilities.
Collapse
Affiliation(s)
- T. Bradley Willingham
- Shepherd Center, Virginia C. Crawford Research Institute, Atlanta, GA 30309, USA (D.B.)
- Department of Physical Therapy, Georgia State University, Atlanta, GA 30302, USA
| | - Julie Stowell
- Shepherd Center, Virginia C. Crawford Research Institute, Atlanta, GA 30309, USA (D.B.)
- Department of Physical Therapy, Georgia State University, Atlanta, GA 30302, USA
| | - George Collier
- Shepherd Center, Virginia C. Crawford Research Institute, Atlanta, GA 30309, USA (D.B.)
| | - Deborah Backus
- Shepherd Center, Virginia C. Crawford Research Institute, Atlanta, GA 30309, USA (D.B.)
| |
Collapse
|
4
|
Fowler King B, MacDonald J, Stoff L, Nettnin E, Jayaraman A, Goldman JG, Rafferty M. Activity Monitoring in Parkinson Disease: A Qualitative Study of Implementation Determinants. J Neurol Phys Ther 2023; 47:189-199. [PMID: 37306418 DOI: 10.1097/npt.0000000000000451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
BACKGROUND AND PURPOSE There is interest in incorporating digital health technology in routine practice. We integrate multiple stakeholder perspectives to describe implementation determinants (barriers and facilitators) regarding digital health technology use to facilitate exercise behavior change for people with Parkinson disease in outpatient physical therapy. METHODS The purposeful sample included people with Parkinson disease (n = 13), outpatient physical therapists (n = 12), and advanced technology stakeholders including researchers and reimbursement specialists (n = 13). Semistructured interviews were used to elicit implementation determinants related to using digital health technology for activity monitoring and exercise behavior change. Deductive codes based on the Consolidated Framework for Implementation Research were used to describe implementation determinants. RESULTS Key implementation determinants were similar across stakeholder groups. Essential characteristics of digital health technology included design quality and packaging, adaptability, complexity, and cost. Implementation of digital health technology by physical therapists and people with Parkinson disease was influenced by their knowledge, attitudes, and varied confidence levels in using digital health technology. Inner setting organizational determinants included available resources and access to knowledge/information. Process determinants included device interoperability with medical record systems and workflow integration. Outer setting barriers included lack of external policies, regulations, and collaboration with device companies. DISCUSSION AND CONCLUSIONS Future implementation interventions should address key determinants, including required processes for how and when physical therapists instruct people with Parkinson disease on digital health technology, organizational readiness, workflow integration, and characteristics of physical therapists and people with Parkinson disease who may have ingrained beliefs regarding their ability and willingness to use digital health technology. Although site-specific barriers should be addressed, digital health technology knowledge translation tools tailored to individuals with varied confidence levels may be generalizable across clinics.Video Abstract available for more insights from the authors (see the Video, Supplemental Digital Content available at: http://links.lww.com/JNPT/A436 ).
Collapse
Affiliation(s)
- Bridget Fowler King
- Shirley Ryan AbilityLab, Chicago, Illinois (B.F.K., J.M., L.S., E.N., A.J., J.G.G., M.R.); and Departments of Physical Medicine and Rehabilitation (A.J., J.G.G., M.R.), Physical Therapy & Human Movement Sciences (A.J.), Medical Social Sciences (A.J.), Neurology (J.G.G), and Psychiatry and Behavioral Science (M.R.), Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | | | | | | | | | | |
Collapse
|
5
|
Swanson VA, Johnson C, Zondervan DK, Bayus N, McCoy P, Ng YFJ, Schindele, BS J, Reinkensmeyer DJ, Shaw S. Optimized Home Rehabilitation Technology Reduces Upper Extremity Impairment Compared to a Conventional Home Exercise Program: A Randomized, Controlled, Single-Blind Trial in Subacute Stroke. Neurorehabil Neural Repair 2023; 37:53-65. [PMID: 36636751 PMCID: PMC9896541 DOI: 10.1177/15459683221146995] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Upper extremity (UE) stroke rehabilitation requires patients to perform exercises at home, yet patients show limited benefit from paper-based home exercise programs. OBJECTIVE To compare the effectiveness of 2 home exercise programs for reducing UE impairment: a paper-based approach and a sensorized exercise system that incorporates recommended design features for home rehabilitation technology. METHODS In this single-blind, randomized controlled trial, 27 participants in the subacute phase of stroke were assigned to the sensorized exercise (n = 14) or conventional therapy group (n = 13), though 2 participants in the conventional therapy group were lost to follow-up. Participants were instructed to perform self-guided movement training at home for at least 3 hours/week for 3 consecutive weeks. The sensorized exercise group used FitMi, a computer game with 2 puck-like sensors that encourages movement intensity and auto-progresses users through 40 exercises. The conventional group used a paper book of exercises. The primary outcome measure was the change in Upper Extremity Fugl-Meyer (UEFM) score from baseline to follow-up. Secondary measures included the Modified Ashworth Scale for spasticity (MAS) and the Visual Analog Pain (VAP) scale. RESULTS Participants who used FitMi improved by an average of 8.0 ± 4.6 points on the UEFM scale compared to 3.0 ± 6.1 points for the conventional participants, a significant difference (t-test, P = .029). FitMi participants exhibited no significant changes in UE MAS or VAP scores. CONCLUSIONS A sensor-based exercise system incorporating a suite of recommended design features significantly and safely reduced UE impairment compared to a paper-based, home exercise program. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT03503617.
Collapse
Affiliation(s)
- Veronica A. Swanson
- Department of Mechanical and Aerospace
Engineering, Henry Samueli School of Engineering, University of California, Irvine,
Irvine, CA, USA,Veronica A. Swanson, University of
California, Irvine, 3225 Engineering Gateway, Irvine, CA 92697-3975, USA.
| | - Christopher Johnson
- Department of Biomedical Engineering,
Henry Samueli School of Engineering, University of California, Irvine, Irvine, CA,
USA
| | | | - Nicole Bayus
- Rancho Research Institute, Rancho Los
Amigos National Rehabilitation Hospital, Downey, USA
| | - Phylicia McCoy
- Arthur J. Bond Department of Mechanical
Engineering, Alabama A&M University, Huntsville, AL, USA
| | - Yat Fung Joshua Ng
- School of Social Sciences, University
of California, Irvine, Irvine, CA, USA
| | - Jenna Schindele, BS
- Mathematics and Statistics, University
of California, Los Angeles, Los Angeles, CA, USA
| | - David J. Reinkensmeyer
- Department of Mechanical and Aerospace
Engineering, Henry Samueli School of Engineering, University of California, Irvine,
Irvine, CA, USA,Department of Anatomy and Neurobiology,
UC Irvine School of Medicine, University of California, Irvine, Irvine, CA,
USA
| | - Susan Shaw
- Department of Neurology, Rancho Los
Amigos National Rehabilitation Center, Downey, CA, USA
| |
Collapse
|
6
|
Ramos Muñoz EDJ, Swanson VA, Johnson C, Anderson RK, Rabinowitz AR, Zondervan DK, Collier GH, Reinkensmeyer DJ. Using Large-Scale Sensor Data to Test Factors Predictive of Perseverance in Home Movement Rehabilitation: Optimal Challenge and Steady Engagement. Front Neurol 2022; 13:896298. [PMID: 35795800 PMCID: PMC9252527 DOI: 10.3389/fneur.2022.896298] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/27/2022] [Indexed: 11/15/2022] Open
Abstract
Persevering with home rehabilitation exercise is a struggle for millions of people in the US each year. A key factor that may influence motivation to engage with rehabilitation exercise is the challenge level of the assigned exercises, but this hypothesis is currently supported only by subjective, self-report. Here, we studied the relationship between challenge level and perseverance using long-term, self-determined exercise patterns of a large number of individuals (N = 2,581) engaging in home rehabilitation with a sensor-based exercise system without formal supervision. FitMi is comprised of two puck-like sensors and a library of 40 gamified exercises for the hands, arms, trunk, and legs that are designed for people recovering from a stroke. We found that individuals showed the greatest perseverance with the system over a 2-month period if they had (1) a moderate level of motor impairment and (2) high but not perfect success during the 1st week at completing the exercise game. Further, a steady usage pattern (vs. accelerating or decelerating use) was associated with more overall exercise, and declines in exercise amount over time were associated with exponentially declining session initiation probability rather than decreasing amounts of exercise once a session was initiated. These findings confirm that an optimized challenge level and regular initiation of exercise sessions predict achievement of a greater amount of overall rehabilitation exercise in a group of users of commercial home rehabilitation technology and suggest how home rehabilitation programs and exercise technologies can be optimized to promote perseverance.
Collapse
Affiliation(s)
- Edgar De Jesus Ramos Muñoz
- Department of Mechanical and Aerospace Engineering, Henry Samueli School of Engineering, University of California, Irvine, Irvine, CA, United States
| | - Veronica Ann Swanson
- Department of Mechanical and Aerospace Engineering, Henry Samueli School of Engineering, University of California, Irvine, Irvine, CA, United States
- *Correspondence: Veronica Ann Swanson
| | - Christopher Johnson
- Department of Biomedical Engineering, Henry Samueli School of Engineering, University of California, Irvine, Irvine, CA, United States
| | - Raeda K. Anderson
- Shepherd Center, Virginia C. Crawford Research Institute, Atlanta, GA, United States
- Department of Sociology, Georgia State University, Atlanta, GA, United States
| | | | | | - George H. Collier
- Shepherd Center, Virginia C. Crawford Research Institute, Atlanta, GA, United States
| | - David J. Reinkensmeyer
- Department of Mechanical and Aerospace Engineering, Henry Samueli School of Engineering, University of California, Irvine, Irvine, CA, United States
- Department of Anatomy and Neurobiology, UC Irvine School of Medicine, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|