1
|
Zhu J, Yu Z, Cao X, Jiang W, He L, Zang X, Song X. Double effects of mitigating cyanobacterial blooms using modified clay technology: regulation and optimization of the microbial community structure. Front Microbiol 2024; 15:1480069. [PMID: 39564487 PMCID: PMC11573764 DOI: 10.3389/fmicb.2024.1480069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/22/2024] [Indexed: 11/21/2024] Open
Abstract
Harmful algal blooms (HABs) are global hazards under global climate change and eutrophication conditions. Modified clay (MC) method is widely used to control HABs in Asian and American coastal waters. However, little research has been conducted on the underlying mechanisms by which MC controls blooms in freshwater environments. Herein, experiments and bioinformatics analyses were conducted for MC-based control of freshwater blooms in a closed water body with an area of approximately 240 m2 in the Fuchun River, China. Results revealed that the dominant bloom species were Microcystis, and an 87.68-97.01% removal efficiency of whole algal biomass was achieved after 3 h of MC treatment. The weaker zeta potentials of Microcystis species and hydrophilic groups such as O-H and P-O-P in the extracellular polymeric substances (EPS) surrounding Microcystis cells made them easier to be flocculated and removed by MC particles, and the relative abundance of Microcystis decreased to 29.12% and that of Cyanobium increased to 40.97%. Therefore, MC changes the cyanobacterial community structure, which is accompanied by the elimination of Microcystis sp. apical dominance and enhanced competition between Cyanobium and Microcystis in the phytoplankton community, increasing cyanobacterial community diversity. Under MC treatment, residual microorganisms, including cyanobacteria, had a high potential for DNA damage repair and were more likely to survive after being subjected to oxidative stress. In the meanwhile, the abundance of genes involved in genetic information processing, signal transduction, and photosynthesis was decreased indicating that the residual microbiome was week in proliferation and light energy harvesting. Therefore, accompanied with the destruction of Microcystis colonies, MC changes the function of cyanobacteria and phycosphere microbiome, further hindering bloom development. These findings illustrate that MC can regulate and optimize the microbial community structure through which MC controls cyanobacterial blooms in ecosystems.
Collapse
Affiliation(s)
- Jianan Zhu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Zhiming Yu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xihua Cao
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenbin Jiang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Liyan He
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Xiaomiao Zang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Xiuxian Song
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Meng S, Xu H, Qin L, Chen X, Qiu L, Li D, Song C, Fan L, Hu G, Xu P. The Gill-Associated Bacterial Community Is More Affected by Exogenous Chlorella pyrenoidosa Addition than the Bacterial Communities of Water and Fish Gut in GIFT Tilapia ( Oreochromis niloticus) Aquaculture System. BIOLOGY 2023; 12:1209. [PMID: 37759608 PMCID: PMC10525419 DOI: 10.3390/biology12091209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/17/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023]
Abstract
Microalgae has been widely used in aquaculture to improve both the water environment and fish growth; however, the current understanding of the effects of microalgae addition on the key players involved in regulating the water environment and fish health, such as microorganisms, remains limited. Here, a 50-day mesocosm experiment was set up to simulate the culture of Genetic Improvement of Farmed Tilapia (GIFT, Oreochromis niloticus) with an average weight of 14.18 ± 0.93 g and an average length of 82.77 ± 2.80 mm. Different amounts of Chlorella pyrenoidosa were added into these artificial systems to investigate dynamics of bacterial communities in aquaculture water, fish gill, and gut using amplicon-based high-throughput sequencing technology. Our results showed that Chlorella pyrenoidosa addition increased diversity and network complexity of gill-associated bacterial communities rather than those of the water and gut. Furthermore, more biomarkers in the gill-associated bacterial communities were detected in response to Chlorella pyrenoidosa addition than the water and fish gut samples. These findings highlighted the high sensitivity of gill-associated bacterial communities in response to the Chlorella pyrenoidosa addition, implying Chlorella pyrenoidosa addition could play important roles in regulating the fish mucosal immunity by altering the gill-associated microbiota.
Collapse
Affiliation(s)
- Shunlong Meng
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Yangtze River, Wuxi 214081, China; (S.M.); (H.X.); (X.C.); (L.Q.); (D.L.); (C.S.); (L.F.); (G.H.)
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, China;
| | - Huimin Xu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Yangtze River, Wuxi 214081, China; (S.M.); (H.X.); (X.C.); (L.Q.); (D.L.); (C.S.); (L.F.); (G.H.)
| | - Lu Qin
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, China;
| | - Xi Chen
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Yangtze River, Wuxi 214081, China; (S.M.); (H.X.); (X.C.); (L.Q.); (D.L.); (C.S.); (L.F.); (G.H.)
| | - Liping Qiu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Yangtze River, Wuxi 214081, China; (S.M.); (H.X.); (X.C.); (L.Q.); (D.L.); (C.S.); (L.F.); (G.H.)
| | - Dandan Li
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Yangtze River, Wuxi 214081, China; (S.M.); (H.X.); (X.C.); (L.Q.); (D.L.); (C.S.); (L.F.); (G.H.)
| | - Chao Song
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Yangtze River, Wuxi 214081, China; (S.M.); (H.X.); (X.C.); (L.Q.); (D.L.); (C.S.); (L.F.); (G.H.)
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, China;
| | - Limin Fan
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Yangtze River, Wuxi 214081, China; (S.M.); (H.X.); (X.C.); (L.Q.); (D.L.); (C.S.); (L.F.); (G.H.)
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, China;
| | - Gengdong Hu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Yangtze River, Wuxi 214081, China; (S.M.); (H.X.); (X.C.); (L.Q.); (D.L.); (C.S.); (L.F.); (G.H.)
| | - Pao Xu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Yangtze River, Wuxi 214081, China; (S.M.); (H.X.); (X.C.); (L.Q.); (D.L.); (C.S.); (L.F.); (G.H.)
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, China;
| |
Collapse
|
3
|
Nie Z, Zheng Z, Zhu H, Sun Y, Gao J, Gao J, Xu P, Xu G. Effects of submerged macrophytes ( Elodea nuttallii) on water quality and microbial communities of largemouth bass ( Micropterus salmoides) ponds. Front Microbiol 2023; 13:1050699. [PMID: 36713211 PMCID: PMC9880226 DOI: 10.3389/fmicb.2022.1050699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Traditional aquaculture ponds are one of the most vulnerable ecosystems; thus, ecological aquaculture is increasingly valued for its beneficial ecological properties and ecosystem services. However, little is known about ecological aquaculture of largemouth bass with submerged vegetation. Here, we designed three ecological ponds of cultured largemouth bass with submerged macrophytes (the EM group) and three ponds with traditional aquaculture (the M group) to reveal the response of water quality, and phytoplankton and bacterial communities, to submerged macrophyte bioremediation during a 90-day culture period. We observed that Cyanobacterial outbreak occurred in the M group ponds from day 7 to the end of the experiment; however, there were no Cyanobacterial blooms in the EM group ponds throughout the culture period. Compared with the M group ponds, the EM group ponds, which had submerged hydrophytes, had significantly decreased concentrations of TP, TN, and CODMn, but significantly increased DO concentrations throughout the experimental period. Moreover, ecological aquaculture with submerged macrophytes showed strong effects on the phytoplankton and bacterial community compositions. In particular, the M group ponds had higher phytoplankton density and mainly included Cyanobacteria, whereas the EM group had lower phytoplankton density and mainly included Chlorophyta. Moreover, higher alpha diversity, as determined by Ace and Simpson index values, was detected for bacterial communities in the EM group ponds. Furthermore, PCoA clearly grouped the bacterial communities according to the two culture modes throughout the culture period. These results indicate that ecological aquaculture with submerged macrophytes can improve water quality, control Cyanobacterial blooms, and affect the diversity and composition of bacterial communities. These valuable effects seem to be beneficial and consistent to maintaining aquaculture ecosystem stability.
Collapse
Affiliation(s)
- Zhijuan Nie
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, China
| | - Zhaowei Zheng
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Haojun Zhu
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, China
| | - Yi Sun
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, China
| | - Jun Gao
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, China
| | - Jiancao Gao
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, China
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Gangchuan Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China,*Correspondence: Gangchuan Xu, ✉
| |
Collapse
|
4
|
Transcriptome profiles of genes related to growth and virulence potential in Vibrio alginolyticus treated with modified clay. Microbiol Res 2022; 262:127095. [PMID: 35728394 DOI: 10.1016/j.micres.2022.127095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 01/18/2023]
Abstract
Vibrio alginolyticus is a globally distributed opportunistic pathogen that causes different degrees of disease in various marine organisms, such as fish, shrimp and shellfish. At present, vibriosis caused by V. alginolyticus has a wide epidemic range and causes frequent outbreaks, resulting in substantial losses in aquaculture. According to previous studies, modified clay (MC) could effectively flocculate and reduce the density of Vibrio in water, but it is still unknown whether MC inhibits growth and how it affects virulence in bottom flocs. Here, we studied the response mechanism of V. alginolyticus in flocs treated with MC at the transcriptome level and verified the transcriptomic data combined with relevant physiological experiments and reverse transcription quantitative real-time PCR (RT-qPCR) for the first time. It was found that the morphology of Vibrio in the MC flocs changed, the membrane function was damaged, the antioxidant system was activated, and the material and energy metabolism also changed. In addition, MC could inhibit the expression of virulence factors of V. alginolyticus; for example, flagella, pilus, siderophores, quorum sensing, and other related genes were significantly downregulated. In general, MC effectively inhibited the growth of Vibrio and reduced its virulence potential in flocs, which could provide theoretical support for a new model of healthy aquaculture.
Collapse
|