1
|
Ahmad MZ, Saeed AM, Elnoubi OAE, Alasiri AS, Abdel-Wahab BA, Alqahtani AA, Pathak K, Saikia R, Kakoti BB, Das A. Chitosan-based topical formulation integrated with green-synthesized silver nanoparticles utilizing Camellia sinensis leaf extracts: A promising approach for managing infected wounds. Int J Biol Macromol 2024; 257:128573. [PMID: 38052290 DOI: 10.1016/j.ijbiomac.2023.128573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/17/2023] [Accepted: 11/30/2023] [Indexed: 12/07/2023]
Abstract
This study explores the eco-friendly biosynthesis of silver nanoparticles (AgNPs) utilizing Camellia sinensis leaf extract. We assess their antioxidant and antibacterial properties. Furthermore, we impregnated AgNPs into 2 % chitosan (CHS) gel and assessed their wound-healing potential in Escherichia coli and Staphylococcus aureus infected wounds. Optimized AgNPs demonstrated a mean particle size of 36.90 ± 1.22 nm and a PDI of 0.049 ± 0.001. Green-synthesized AgNPs exhibited enhanced free radical inhibition (IC50: 31.45 μg/mL, 34.01 μg/mL, 27.40 μg/mL) compared to leaf extract (IC50: 52.67 μg/mL, 59.64 μg/mL, 97.50 μg/mL) in DPPH, hydrogen peroxide, and nitric oxide free radical scavenging assays, respectively. The MIC/MBC values of AgNPs against E. coli and S. aureus were 5 ppm/ 7.5 ppm and 10 ppm/ 15 ppm, respectively. Furthermore, our study showed that green-synthesized AgNPs at MIC significantly reduced the biofilm production of E. coli (70.37 %) and S. aureus (67.40 %). The CHS/AgNPs gel exhibited potent wound healing activities, comparable to a commercial cream with the re-epithelialization period of 8.16 ± 0.75. Histological analysis demonstrated enhanced skin regeneration with a thicker epidermal layer, well-defined papillary dermal structure, and organized collagen fibers. In summary, these findings hold promise for addressing bacterial infections, particularly those associated with biofilms-related wound infections.
Collapse
Affiliation(s)
- Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, P.O. Box 1988, Najran 11001, Saudi Arabia.
| | | | - Osman A E Elnoubi
- Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, P.O. Box 1988, Najran 11001, Saudi Arabia
| | - Ali S Alasiri
- Department of Pharmaceutics, College of Pharmacy, Najran University, P.O. Box 1988, Najran 11001, Saudi Arabia
| | - Basel A Abdel-Wahab
- Department of Pharmacology, College of Pharmacy, Najran University, P.O. Box 1988, Najran 11001, Saudi Arabia
| | - Abdulsalam A Alqahtani
- Department of Pharmaceutics, College of Pharmacy, Najran University, P.O. Box 1988, Najran 11001, Saudi Arabia
| | - Kalyani Pathak
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004, India
| | - Riya Saikia
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004, India
| | - Bibhuti Bhusan Kakoti
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004, India
| | - Aparoop Das
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004, India
| |
Collapse
|
2
|
Lou Q, Meng XE, Wei C, Tong J, Chen Y, Li M, Wang Q, Guo S, Duan JA, Shang EX, Zhu Y. Jian-Yan-Ling capsules ameliorate cognitive impairment in mice with D-galactose-induced senescence and inhibit the oxidation-induced apoptosis of HT22 hippocampal cells by regulating the Nrf2-HO1 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 310:116356. [PMID: 36924864 DOI: 10.1016/j.jep.2023.116356] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/18/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Jian-Yan-Ling (JYL) capsule is a famous anti-aging Chinese patent medicine. It is applied mainly to delay senescence to improve cognition in aging individuals. However, the action mechanisms of JYL for improving cognition have not been determined. AIM OF THE STUDY We will evaluate the effect of the JYL capsule at improving the cognition of aging mice by improving oxidative stress in the hippocampus and exploring its action mechanism. MATERIALS AND METHODS A senescence mouse model was developed via intraperitoneal injection of D-galactose. The effect of the JYL capsule at improving the learning and memory abilities of mice was evaluated using the Morris water maze and novel object recognition tests. The apotosis of model mice hippocampus' were determined by TUNEL analysis. The antioxidant capacity of the JYL capsule was evaluated by determining the activities of antioxidant enzymes and expressions of oxidative products. The regulation of the Nrf2/HO-1 signaling pathway of the JYL capsule was evaluated by determining the expressions of related proteins via western blotting analysis. In vitro, H2O2-treated mouse hippocampal HT22 cells were used to evaluate the antioxidant capacity of JYL-containing rat serum by determining the cell viability, apoptotic level and expressions of related proteins. RESULTS JYL capsules enhanced the learning and memory abilities of model mice according to behavioral tests. The results of TUNEL analysis showed that the JYL capsule ameliorated hippocampal apoptosis in model mice. JYL capsules also exerted significant antioxidant capacity by increasing the activities of antioxidant enzymes while decreasing the levels of oxidative products both in the hippocampus and serum. The regulation of Nrf2/HO-1 pathway might contribute to the antioxidant function. In vitro, JYL-containing rat serum protected HT22 cells from H2O2 induced oxidative stress. The apoptosis of HT22 cells was also attenuated by regulating the caspase and Nrf2/HO-1 signaling pathways. CONCLUSIONS The amelioration of neuronal oxidative stress of hippocampus might contribute to the D-galactose-induced cognition impairment of senescence mice. These findings provide evidence for the application of JYL capsules to enhance cognition in aging individuals.
Collapse
Affiliation(s)
- Qianyin Lou
- Nanjing University of Chinese Medicine, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing, 210023, China.
| | - Xue-Er Meng
- Nanjing University of Chinese Medicine, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing, 210023, China.
| | - Chongqi Wei
- Nanjing University of Chinese Medicine, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing, 210023, China.
| | - Jiaxiang Tong
- Nanjing University of Chinese Medicine, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing, 210023, China.
| | - Yang Chen
- Nanjing University of Chinese Medicine, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing, 210023, China.
| | - Mengting Li
- Nanjing University of Chinese Medicine, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing, 210023, China.
| | - Qingqing Wang
- Nanjing University of Chinese Medicine, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing, 210023, China.
| | - Sheng Guo
- Nanjing University of Chinese Medicine, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing, 210023, China.
| | - Jin-Ao Duan
- Nanjing University of Chinese Medicine, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing, 210023, China.
| | - Er-Xin Shang
- Nanjing University of Chinese Medicine, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing, 210023, China.
| | - Yue Zhu
- Nanjing University of Chinese Medicine, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing, 210023, China.
| |
Collapse
|
3
|
Jian S, Yang K, Zhang L, Zhang L, Xin Z, Wen C, He S, Deng J, Deng B. The modulation effects of plant‐derived bioactive ingredients on chronic kidney disease: Focus on the gut–kidney axis. FOOD FRONTIERS 2023. [DOI: 10.1002/fft2.209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Shiyan Jian
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Kang Yang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Lingna Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Limeng Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Zhongquan Xin
- Faculty of Food Science and Engineering Kunming University of Science and Technology Kunming China
| | - Chaoyu Wen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Shansong He
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Jinping Deng
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Baichuan Deng
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| |
Collapse
|
4
|
Phenolic profile, safety, antioxidant and anti-inflammatory activities of wasted Bunium ferulaceum Sm. aerial parts. Food Res Int 2022; 160:111714. [DOI: 10.1016/j.foodres.2022.111714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/09/2022] [Accepted: 07/19/2022] [Indexed: 11/21/2022]
|
5
|
Varesi A, Chirumbolo S, Campagnoli LIM, Pierella E, Piccini GB, Carrara A, Ricevuti G, Scassellati C, Bonvicini C, Pascale A. The Role of Antioxidants in the Interplay between Oxidative Stress and Senescence. Antioxidants (Basel) 2022; 11:1224. [PMID: 35883714 PMCID: PMC9311946 DOI: 10.3390/antiox11071224] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 02/01/2023] Open
Abstract
Cellular senescence is an irreversible state of cell cycle arrest occurring in response to stressful stimuli, such as telomere attrition, DNA damage, reactive oxygen species, and oncogenic proteins. Although beneficial and protective in several physiological processes, an excessive senescent cell burden has been involved in various pathological conditions including aging, tissue dysfunction and chronic diseases. Oxidative stress (OS) can drive senescence due to a loss of balance between pro-oxidant stimuli and antioxidant defences. Therefore, the identification and characterization of antioxidant compounds capable of preventing or counteracting the senescent phenotype is of major interest. However, despite the considerable number of studies, a comprehensive overview of the main antioxidant molecules capable of counteracting OS-induced senescence is still lacking. Here, besides a brief description of the molecular mechanisms implicated in OS-mediated aging, we review and discuss the role of enzymes, mitochondria-targeting compounds, vitamins, carotenoids, organosulfur compounds, nitrogen non-protein molecules, minerals, flavonoids, and non-flavonoids as antioxidant compounds with an anti-aging potential, therefore offering insights into innovative lifespan-extending approaches.
Collapse
Affiliation(s)
- Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
- Almo Collegio Borromeo, 27100 Pavia, Italy
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37129 Verona, Italy;
| | | | - Elisa Pierella
- School of Medicine, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK;
| | | | - Adelaide Carrara
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy;
| | - Giovanni Ricevuti
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Catia Scassellati
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25123 Brescia, Italy;
| | - Cristian Bonvicini
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25123 Brescia, Italy;
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy;
| |
Collapse
|
6
|
Yi H, Liu C, Shi J, Wang S, Zhang H, He Y, Tao J, Li S, Zhang R. EGCG Alleviates Obesity-Induced Myocardial Fibrosis in Rats by Enhancing Expression of SCN5A. Front Cardiovasc Med 2022; 9:869279. [PMID: 35571212 PMCID: PMC9098820 DOI: 10.3389/fcvm.2022.869279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/07/2022] [Indexed: 11/18/2022] Open
Abstract
Object Obesity is an increase in body weight beyond the limitation of skeletal and physical requirement, as the result of an excessive accumulation of fat in the body. Obesity could increase the risk of myocardial fibrosis. (-)-Epigallocatechin-3-gallate (EGCG) is the most abundant substance in green tea and has been reported to have multiple pharmacological activities. However, there is not enough evidence to show that EGCG has a therapeutic effect on obesity-induced myocardial fibrosis. This study aims to investigate whether EGCG is a potential drug for obesity-induced myocardial fibrosis. Methods Obesity-induced myocardial fibrosis rat model was established by HFD feeding for 36 weeks. EGCG was intragastrically administered at 160 mg/kg/d for the last 4 weeks. The pathological changes of myocardial fibrosis were evaluated by tissue pathological staining and collagen quantification. Furthermore, total RNA was extracted from the heart for RNA-seq to identify the changes in the transcript profile, and the relevant hub genes were verified by quantitative real-time PCR and western blot. Results EGCG significantly relieved HFD diet-induced obesity and alleviated the pathology of myocardial fibrosis. Biochemical analysis showed that EGCG could relieve the burden of lipid metabolism and injury to the myocardium and transcript profile analysis showed that EGCG could alleviate obesity-induced myocardial fibrosis by increasing the level of Scn5a in the heart. Furthermore, quantitative real-time PCR and western blot analysis for SCN5A also confirmed this finding. Conclusion Taken together, these results suggest that EGCG could protect against the obesity-induced myocardial fibrosis. EGCG plays an anti-myocardial fibrosis role by regulating the expression of SCN5A in the heart.
Collapse
Affiliation(s)
- Haoan Yi
- Department of Cell Biology and Medical Genetics, School of Basic Medicine, Kunming Medical University, Kunming, China
| | - Cong Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Department of Orthopedics, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jing Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Kunming Medical University, Kunming, China
| | - Shuo Wang
- Department of Pharmacology, School of Basic Medicine, Kunming Medical University, Kunming, China
| | - Haoxin Zhang
- Department of Orthopaedics, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yongshu He
- Department of Cell Biology and Medical Genetics, School of Basic Medicine, Kunming Medical University, Kunming, China
| | - Jianping Tao
- Department of Anesthesiology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Shude Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Kunming Medical University, Kunming, China
- Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
- *Correspondence: Shude Li
| | - Renfa Zhang
- Department of Physical Education, Kunming Medical University, Kunming, China
- Renfa Zhang
| |
Collapse
|