Wan H, Wang R, Wang B, Zhang K, Shi H, Wang H. A Case Study of Swine Wastewater Treatment via Electrochemical Oxidation by Ti
4O
7 Anode.
INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022;
19:13840. [PMID:
36360720 PMCID:
PMC9654369 DOI:
10.3390/ijerph192113840]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
With the rapid development of breeding industry, the efficient treatment of dramatically increasing swine wastewater is gradually becoming urgent. In particular, the development of application technologies suitable for the relatively small piggeries is critical due to the time cost and space requirements of conventional biological methods. In this study, Electrochemical oxidation (EO) was selected to systematically explore the treatment performance of three different swine wastewaters by Ti4O7 anode. It was observed that the colors changed from dark brown to light yellow after 60 min treatment at 50 mA/cm2, and the removal rates of turbidity and suspended solids ranged from 89.36% to 93.65% and 81.31% to 92.55%, respectively. The chemical oxygen demand (COD), ammonia nitrogen (NH3-N) and total phosphorus (TP) of all the three swine wastewaters were simultaneously removed to a very low concentration in 120 min, especially for sample III, 61 ± 9 mg/L of COD, 6.6 ± 0.4 mg/L of NH3-N and 5.7 ± 1.1 mg/L of TP, which met the Discharge Standard of Pollutants for Livestock and Poultry Breeding (GB 18596-2001). Moreover, 70.93%-85.37% mineralization rates were also achieved in 120 min, confirming that EO treatment by Ti4O7 could efficiently remove the organic matters in wastewater. Excitation-emission matrix (EEM) and UV-vis spectrum characterization results further proved that aromatic compounds and macromolecules in wastewater were rapidly removed, which played important roles in the mineralization processes. The findings here provided an efficient and environment-friendly technology for swine wastewater treatment.
Collapse