1
|
Jia T, Gu J, Ma M. La (NO 3) 3 substantially fortified Glycyrrhiza uralensis's resilience against salt stress by interconnected pathways. BMC PLANT BIOLOGY 2024; 24:926. [PMID: 39367329 PMCID: PMC11452937 DOI: 10.1186/s12870-024-05644-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/27/2024] [Indexed: 10/06/2024]
Abstract
The taproot of Glycyrrhiza uralensis is globally appreciated for its medicinal and commercial value and is one of the most popular medicinal plants. With the decline of wild G. uralensis resources, cultivated G. uralensis has become a key method to ensure supply. However, soil salinization poses challenges to G. uralensis cultivation and affects the yield and quality of it. In this study, the inhibitory effects of NaCl and Na2SO4 on yield and quality of G. uralensis were comprehensively evaluated in a three-year large-scale pot experiment, and the alleviating effects of supplementation with lanthanum nitrate (La (NO3)3) on G. uralensis were further evaluated under salt stress. The findings indicate that La (NO3)3 significantly strengthened the plant's salt tolerance by enhancing photosynthetic capacity, osmolyte accumulation, antioxidant defenses, and cellular balance of ions, which led to a substantial increase in root biomass and accumulation of major medicinal components. In comparison to the NaCl-stress treatment, the 0.75 M La (NO3)3 + NaCl treatment resulted in a 20% and 34% increase in taproot length and biomass, respectively, alongside a 52% and 43% rise in glycyrrhizic acid and glycyrrhizin content, respectively. Similar improvements were observed with 0.75 M La (NO3)3 + Na2SO4 treatment, which increased root length and biomass by 14% and 26%, respectively, and glycyrrhizic acid and glycyrrhizin content by 40% and 38%, respectively. The combined showed that application of La (NO3)3 not only significantly improved the salt resilience of G. uralensis, but also had a more pronounced alleviation of growth inhibition induced by NaCl compared to Na2SO4 stress except in the gas exchange parameters and root growth. This study provides a scientific basis for high-yield and high-quality cultivation of G. uralensis in saline soils and a new approach for other medicinal plants to improve their salt tolerance.
Collapse
Affiliation(s)
- Tingting Jia
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, The People's Republic of China
| | - Junjun Gu
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, The People's Republic of China
| | - Miao Ma
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, The People's Republic of China.
| |
Collapse
|
2
|
Afzali SF, Sadeghi H, Taban A. A comprehensive model for predicting the development of defense system of Capparis spinosa L.: a novel approach to assess the physiological indices. Sci Rep 2023; 13:12413. [PMID: 37524793 PMCID: PMC10390471 DOI: 10.1038/s41598-023-39683-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023] Open
Abstract
Capparis spinosa L. (caper) is a halophytic plant that grows in semi-arid or arid environments. The current study used an integrated experimental and computational approach to investigate the network of inter-correlated effective variables on the activity of antioxidant enzymes, proline, and photosynthetic pigments in stressed caper. To investigate the possible relationships among intercorrelated variables and understand the possible mechanisms, predictive regression modelling, principal component analysis (PCA), Pearson's correlation, and path analysis were implemented. PCA successfully discerned different salt ratio- and drought-specific effects in data in the current study, and treatments with higher growth indices are easily recognizable. Different salt ratios did not have a significant effect on the activity of four antioxidant enzymes, proline and photosynthesis pigments content of caper. While at the mean level, the activity of four antioxidant enzymes of SOD, POD, CAT, and APX significantly increased under drought stress by 54.0%, 71.2%, 79.4%, and 117.6%, respectively, compared to 100% FC. The drought stress also significantly increased the content of carotemoid (29.3%) and proline (by 117.7%). Predictive equation models with highly significant R2 were developed for the estimation of antioxidant enzyme activity and proline content (> 0.94) as well as pigments (> 0.58) were developed. Path analysis studies revealed that proline is the most important regressor in four antioxidant enzyme activities, while leaf tissue density was the most effective variable in the case of chlorophylls. Furthermore, the network of intercorrelated variables demonstrated a close relationship between caper's antioxidant defence system, pigments, and morphological parameters under stress conditions. The findings of this study will be a useful guide to caper producers as well as plant ecophysiological researchers.
Collapse
Affiliation(s)
- Sayed Fakhreddin Afzali
- Department of Natural Resources and Environmental Engineering, School of Agriculture, Shiraz University, Shiraz, 71441-65186, Iran
| | - Hossein Sadeghi
- Department of Natural Resources and Environmental Engineering, School of Agriculture, Shiraz University, Shiraz, 71441-65186, Iran.
| | - Azin Taban
- Department of Horticultural Sciences, School of Agriculture, Shiraz University, Shiraz, Iran
| |
Collapse
|
3
|
Saeed S, Ullah A, Ullah S, Elshikh MS, Noor J, Eldin SM, Zeng F, Amin F, Ali MA, Ali I. Salicylic Acid and α-Tocopherol Ameliorate Salinity Impact on Wheat. ACS OMEGA 2023; 8:26122-26135. [PMID: 37521660 PMCID: PMC10373184 DOI: 10.1021/acsomega.3c02166] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/23/2023] [Indexed: 08/01/2023]
Abstract
Background: Soil salinity negatively impacts agricultural productivity. Consequently, strategies should be developed to inculcate a salinity tolerance in crops for sustainable food production. Growth regulators play a vital role in regulating salinity stress tolerance. Methods: Thus, we examined the effect of exogenous salicylic acid (SA) and alpha-tocopherol (TP) (100 mg/L) on the morphophysio-biochemical responses of two wheat cultivars (Pirsabak-15 and Shankar) to salinity stress (0 and 40 mM). Results: Both Pirsabak-15 and Shankar cultivars were negatively affected by salinity stress. For instance, salinity reduced growth attributes (i.e., leaf fresh and dry weight, leaf moisture content, leaf area ratio, shoot and root dry weight, shoot and root length, as well as root-shoot ratio), pigments (chlorophyll a, chlorophyll a, and carotenoids) but increased hydrogen peroxide (H2O2), malondialdehyde (MDA), and endogenous TP in both cultivars. Among the antioxidant enzymes, salinity enhanced the activity of peroxidase (POD) and polyphenol oxidase (PPO) in Pirsabak-15; glutathione reductase (GR) and PPO in Shankar, while ascorbate peroxidase (APOX) was present in both cultivars. SA and TP could improve the salinity tolerance by improving growth and photosynthetic pigments and reducing MDA and H2O2. In general, the exogenous application did not have a positive effect on antioxidant enzymes; however, it increased PPO in Pirsabak-15 and SOD in the Shankar cultivar. Conclusions: Consequently, we suggest that SA and TP could have enhanced the salinity tolerance of our selected wheat cultivars by modulating their physiological mechanisms in a manner that resulted in improved growth. Future molecular studies can contribute to a better understanding of the mechanisms by which SA and TP regulate the selected wheat cultivars underlying salinity tolerance mechanisms.
Collapse
Affiliation(s)
- Saleha Saeed
- Department
of Botany, University of Peshawar, Peshawar 25120, Pakistan
| | - Abd Ullah
- Xinjiang
Key Laboratory of Desert Plant Root Ecology and Vegetation Restoration,
Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Cele
National Station of Observation and Research for Desert-Grassland
Ecosystems, Cele 848300, China
| | - Sami Ullah
- Department
of Botany, University of Peshawar, Peshawar 25120, Pakistan
| | - Mohamed S Elshikh
- Department
of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Javaria Noor
- Department
of Botany, Islamia College Peshawar, Peshawar, KP 19650, Pakistan
| | - Sayed M. Eldin
- Center
of
Research, Faculty of Engineering, Future
University in Egypt, New Cairo 18939, Egypt
| | - Fanjiang Zeng
- Xinjiang
Key Laboratory of Desert Plant Root Ecology and Vegetation Restoration,
Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Cele
National Station of Observation and Research for Desert-Grassland
Ecosystems, Cele 848300, China
| | - Fazal Amin
- Department
of Botany, University of Peshawar, Peshawar 25120, Pakistan
| | - Mohammad Ajmal Ali
- Department
of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Iftikhar Ali
- Center
for Plant Sciences and Biodiversity, University
of Swat, Charbagh 19120, Pakistan
- Department
of Genetics and Development, Columbia University
Irving Medical Center, New York,New York 10032, United States
- School
of Life Sciences & Center of Novel Biomaterials, The Chinese University of Hong Kong, Hong Kong, SAR, China
| |
Collapse
|
4
|
Dostalíková L, Hlásná Čepková P, Janovská D, Svoboda P, Jágr M, Dvořáček V, Viehmannová I. Nutritional Evaluation of Quinoa Genetic Resources Growing in the Climatic Conditions of Central Europe. Foods 2023; 12:foods12071440. [PMID: 37048261 PMCID: PMC10093933 DOI: 10.3390/foods12071440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
Quinoa displays huge genetic variability and adaptability to distinct climatic conditions. Quinoa seeds are a good source of nutrients; however, the overall nutritional composition and nutrient content is influenced by numerous factors. This study focused on the nutritional and morphologic evaluation of various quinoa genotypes grown in the Czech Republic. Significant differences between years were observed for morphological traits (plant height, inflorescence length, weight of thousand seeds). The weather conditions in the year 2018 were favorable for all the morphological traits. The protein content of quinoa accessions ranged between 13.44 and 20.01% and it was positively correlated to mauritianin. Total phenolic content varied greatly from year to year, while the antioxidant activity remained relatively stable. The most abundant phenolic compounds were the flavonoids miquelianin, rutin, and isoquercetin. Isoquercetin, quercetin, and N-feruoloyl octopamine showed the highest stability under variable weather conditions in the analyzed years. A total of six compounds were detected and quantified in quinoa for the first time. Most varieties performed well under Central European conditions and can be considered a good source of nutrients and bioactive compounds. These data can be used as a source of information for plant breeders aiming to improve the quality traits of quinoa.
Collapse
Affiliation(s)
- Lucie Dostalíková
- Department of Crop Sciences and Agroforestry, Faculty of Tropical Agrisciences, Kamýcká 129, 16 500 Prague, Czech Republic
| | - Petra Hlásná Čepková
- Gene Bank, Crop Research Institute, Drnovská 507/73, 16 106 Prague, Czech Republic
- Correspondence:
| | - Dagmar Janovská
- Gene Bank, Crop Research Institute, Drnovská 507/73, 16 106 Prague, Czech Republic
| | - Pavel Svoboda
- Molecular Genetics, Crop Research Institute, Drnovská 507/73, 16 106 Prague, Czech Republic
| | - Michal Jágr
- Quality and Plant Products, Crop Research Institute, Drnovská 507/73, 16 106 Prague, Czech Republic
| | - Václav Dvořáček
- Quality and Plant Products, Crop Research Institute, Drnovská 507/73, 16 106 Prague, Czech Republic
| | - Iva Viehmannová
- Department of Crop Sciences and Agroforestry, Faculty of Tropical Agrisciences, Kamýcká 129, 16 500 Prague, Czech Republic
| |
Collapse
|
5
|
Yan H, Hao L, Chen H, Zhou X, Ji H, Zhou H. Salicylic acid functionalized zein for improving plant stress resistance and as a nanopesticide carrier with enhanced anti-photolysis ability. J Nanobiotechnology 2023; 21:23. [PMID: 36670406 PMCID: PMC9862550 DOI: 10.1186/s12951-023-01777-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/11/2023] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND There is a serious global problem of salinization of arable land, causing large reduction in world food production. Use of plant hormones is an effective way to reduce damage caused to crops and salt stress. RESULTS In this study, PEI-EDA was modified with AM-zein and grafted with plant hormone SA (AM-zein-SA) and used as a nano-pesticide carrier to load emamectin benzoate (EB). The use of AM-zein-SA as a nano-pesticide carrier could reduce the damage caused by salt stress to crops. The structure of AM-zein-SA was characterized by FTIR, UV, fluorescence, Raman, and 1H NMR spectroscopic techniques. AM-zein-SA could effectively improve the resistance of EB to ultraviolet radiations, resistance of cucumber to salt stress, and the absorption of EB by plants. The experimental results showed that AM-zein-SA could effectively improve the anti-UV property of EB by 0.88 fold. When treated with 120 mmol NaCl, the germination rate of cucumber seeds under salt stress increased by 0.93 fold in presence of 6.25 mg/L carrier concentration. The POD and SOD activities increased by 0.50 and 1.21 fold, whereas the content of MDA decreased by 0.23 fold. In conclusion, AM-zein-SA nano-pesticide carrier could be used to improve the salt resistance of crops and the adhesion of pesticides to leaves. CONCLUSION AM-zein-SA, without undergoing any changes in its insecticidal activity, could simultaneously improve the salt stress resistance and salt stress germination rate of cucumber, reduce growth inhibition due to stress under high-concentration salt, and had a good effect on crops. In addition, EB@AM-zein-SA obviously improved the upward transmission rate of EB, as compared with EB. In this study, SA was grafted onto zein-based nano-pesticide carrier, which provided a green strategy to control plant diseases, insects, and pests while reducing salt stress on crops in saline-alkali soil.
Collapse
Affiliation(s)
- Haozhao Yan
- grid.449900.00000 0004 1790 4030Innovative Institute for Plant Health, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 Guangdong People’s Republic of China
| | - Li Hao
- grid.449900.00000 0004 1790 4030Innovative Institute for Plant Health, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 Guangdong People’s Republic of China ,grid.449900.00000 0004 1790 4030Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 Guangdong People’s Republic of China ,grid.418524.e0000 0004 0369 6250Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Chengdu, People’s Republic of China
| | - Huayao Chen
- grid.449900.00000 0004 1790 4030Innovative Institute for Plant Health, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 Guangdong People’s Republic of China ,grid.449900.00000 0004 1790 4030Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 Guangdong People’s Republic of China ,grid.418524.e0000 0004 0369 6250Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Chengdu, People’s Republic of China
| | - Xinhua Zhou
- grid.449900.00000 0004 1790 4030Innovative Institute for Plant Health, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 Guangdong People’s Republic of China ,grid.449900.00000 0004 1790 4030Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 Guangdong People’s Republic of China ,grid.418524.e0000 0004 0369 6250Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Chengdu, People’s Republic of China
| | - Hongbing Ji
- grid.12981.330000 0001 2360 039XFine Chemical Industry Research Institute, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong People’s Republic of China
| | - Hongjun Zhou
- grid.449900.00000 0004 1790 4030Innovative Institute for Plant Health, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 Guangdong People’s Republic of China ,grid.449900.00000 0004 1790 4030Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 Guangdong People’s Republic of China ,grid.418524.e0000 0004 0369 6250Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Chengdu, People’s Republic of China
| |
Collapse
|