1
|
Zhou Y, Lan W, Yang F, Zhou Q, Liu M, Li J, Yang H, Xiao Y. Invasive Amaranthus spp. for heavy metal phytoremediation: Investigations of cadmium and lead accumulation and soil microbial community in three zinc mining areas. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117040. [PMID: 39270476 DOI: 10.1016/j.ecoenv.2024.117040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Amaranthus spp. are a group of strongly invasive and vigorous plants, and heavy metal phytoremediation using alien invasive Amaranthus spp. has been a popular research topic. In this study, the bioconcentration factor (BCF) and translocation factor (TF) of Amaranthus spp. were evaluated, focusing on the accumulation potential of cadmium (Cd) and lead (Pb) by plants from three different zinc mining areas, namely Huayuan (HYX), Yueyang (LYX), and Liuyang (LYX). The HYX area has the most severe Cd contamination, while the LYX area has the most apparent Pb contamination. The results showed that Amaranthus spp. had a strong Cd and Pb enrichment capacity in low-polluted areas. To elucidate the underlying mechanisms, we used high-throughput sequencing of 16S rRNA and internal transcribed spacer (ITS) regions to analyze rhizosphere bacterial and fungal communities in three areas. The results showed significant differences in the structure, function, and composition of microbial communities and complex interactions between plants and their microbes. The correlation analysis revealed that some key microorganisms (e.g., Amycolatopsis, Bryobacterium, Sphingomonas, Flavobacterium, Agaricus, Nigrospora, Humicola) could regulate several soil factors such as soil pH, organic matter (OM), available nitrogen (AN), and available phosphorus (AP) to affect the heavy metal enrichment capacity of plants. Notably, some enzymes (e.g., P-type ATPases, Cysteine synthase, Catalase, Acid phosphatase) and genes (e.g., ZIP gene family, and ArsR, MerR, Fur, NikR transcription regulators) have been found to be involved in promoting Cd and Pb accumulation in Amaranthus spp. This study can provide new ideas for managing heavy metal-contaminated soils and new ways for the ecological resource utilization of invasive plants in phytoremediation.
Collapse
Affiliation(s)
- Yu Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Wendi Lan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Fan Yang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Qingfan Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; Analysis Technology Department, Xiangxi Ecological Environment Monitoring Center, Jishou 416000, China
| | - Mingxin Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Jian Li
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Hua Yang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; Yuelushan Laboratory, Changsha 410128, China.
| | - Yunhua Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; Yuelushan Laboratory, Changsha 410128, China.
| |
Collapse
|
2
|
Kaintura SS, Thakur S, Kaur S, Devi S, Tiwari K, Priyanka, Sharma A, Singh PP. Investigation of radioactivity and heavy metal levels in soil samples from neutral and vegetation land of Punjab, India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:940. [PMID: 39287839 DOI: 10.1007/s10661-024-13047-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024]
Abstract
In this work, radioactivity investigations of soil samples from neutral and agricultural sites in Punjab (India) have been carried out to study the impact of land use patterns. Analyzing soil samples radiological, mineralogical, and physicochemical attributes has employed state-of-the-art techniques. The mean activity concentration of 238U/226Ra, 232Th, 40K, 235U, and 137Cs, measured using a carbon fiber endcap p-type HPGe detector, in neutral land was observed as 58.03, 83.95, 445.18, 2.83, and 1.16 Bq kg-1, respectively. However, in vegetation land, it was found to be 40.07, 64.68, 596.74, 2.26, and 1.90 Bq kg-1, respectively. In the detailed activity analysis, radium equivalent (Raeq) radioactivity is in the safe prescribed limit of 370 Bq kg-1 for all investigated soil samples. However, the dosimetric investigations revealed that the outdoor absorbed gamma dose rate (96.08 nGy h-1) and consequent annual effective dose rate (0.12 mSv y-1) for neutral land and the gamma dose rate (82.46 nGy h-1) and subsequent annual effective dose rate (0.10 mSv y-1) for vegetation land marginally exceeded the global average. The soil's physicochemical parameters (pH, EC, and porosity) from both sites were measured, and their correlations with radionuclides were analyzed. Various heavy metals of health concern, namely, chromium (Cr), arsenic (As), copper (Cu), cobalt (Co), cadmium (Cd), lead (Pb), mercury (Hg), selenium (Se), and zinc (Zn), were also evaluated in soil samples using Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS). Pollution Load Index (PLI) and Ecological Risk Index (RI) revealed that vegetation land was more anthropogenically contaminated than neutral land, with maximum contamination from Hg and As.
Collapse
Affiliation(s)
- Sanjeet S Kaintura
- Department of Physics, Indian Institute of Technology Ropar, Rupnagar, 140001, Punjab, India.
| | - Swati Thakur
- Department of Physics, Indian Institute of Technology Ropar, Rupnagar, 140001, Punjab, India
| | - Sarabjot Kaur
- iHub-AWaDH, Indian Institute of Technology Ropar, Rupnagar, 140001, Punjab, India
| | - Soni Devi
- Department of Physics, Indian Institute of Technology Ropar, Rupnagar, 140001, Punjab, India
| | - Katyayni Tiwari
- Department of Physics, Indian Institute of Technology Ropar, Rupnagar, 140001, Punjab, India
| | - Priyanka
- Department of Physics, Indian Institute of Technology Ropar, Rupnagar, 140001, Punjab, India
| | - Arzoo Sharma
- Department of Physics, Indian Institute of Technology Ropar, Rupnagar, 140001, Punjab, India
| | - Pushpendra P Singh
- Department of Physics, Indian Institute of Technology Ropar, Rupnagar, 140001, Punjab, India
- iHub-AWaDH, Indian Institute of Technology Ropar, Rupnagar, 140001, Punjab, India
| |
Collapse
|
3
|
Biswas A, Choudhary A, Darbha GK. From ground to gut: Evaluating the human health risk of potentially toxic elements in soil, groundwater, and their uptake by Cocos nucifera in arsenic-contaminated environments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123342. [PMID: 38215870 DOI: 10.1016/j.envpol.2024.123342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 12/03/2023] [Accepted: 01/09/2024] [Indexed: 01/14/2024]
Abstract
This study aimed to gauge the toxicity of potentially toxic elements (PTEs) in coconut crops cultivated in arsenic-contaminated areas while offering a global perspective encompassing more than 100 impacted countries. The current investigation provides crucial insights into the assessment of PTEs pollution using the Bioaccumulation factor, Geo-accumulation index, Potential ecological risk index, Hazardous index, and Lifetime cancer risk (LCR) and highlights the potential human health risks posed by contaminated food, water, and soil. From 22 severely polluted sites in West Bengal, India, soil, groundwater (GW), and coconut water (CW) samples were collected, acidified, and digested using microwave digestion, for PTEs quantification using inductively coupled plasma-optical emission spectroscopy (ICP-OES). Results revealed that despite high concentrations of arsenic in soils (4.6 ± 3.4 mg kg-1), and GW (22.2 ± 150.9 μg L-1), CW (0.7 ± 3.1 μg L-1) levels were within permissible limits. Groups of PTEs with comparable sources and distributions were discovered through Principal Component Analysis (PCA). A speciation diagram was used to predict the prevalence of arsenic species in all three matrices. The Hazardous Index (HI < 1) indicated no probability of non-carcinogenic diseases for children and adults in all the compartments. However, exposure to GW and soil contaminated with Cr, As, and Cd by children (9.02 × 10-13 to 2.77 × 10-4) and adults (6.51 × 10-14 to 1.18 × 10-4) would increase their susceptibility to cancer (LCR >10-6). The study concluded that moderate lifetime consumption of CW is safe and has no significant impact on healthy individuals. Additionally, CW is a rich source of essential micronutrients such as Zn, Fe, Mn, and B. Overall, the findings of this study could help in developing appropriate strategies for reducing PTEs contamination and protecting human health.
Collapse
Affiliation(s)
- Abhishek Biswas
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India
| | - Aniket Choudhary
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India
| | - Gopala Krishna Darbha
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India; Centre for Climate and Environmental Studies, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India.
| |
Collapse
|
4
|
Liu J, Zheng Q, Pei S, Li J, Ma L, Zhang L, Niu J, Tian T. Ecological and health risk assessment of heavy metals in agricultural soils from northern China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 196:99. [PMID: 38157088 DOI: 10.1007/s10661-023-12255-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024]
Abstract
Soil pollution by heavy metals can cause continuing damage to ecosystems and the human body. In this study, we collected nine fresh topsoil samples and 18 maize samples (including nine leaf samples and nine corn samples) from agricultural soils in the Baiyin mining areas. The results showed that the order of heavy metal concentrations (mg/kg) in agricultural soils was as follows: Zn (377.40) > Pb (125.06) > Cu (75.06) > Ni (28.29) > Cd (5.46) > Hg (0.37). Cd, Cu, Zn, and Pb exceeded the Chinese risk limit for agricultural soil pollution. The average the pollution load index (4.39) was greater than 3, indicating a heavy contamination level. The element that contributed the most to contamination and high ecological risk in soil was Cd. Principal component analysis (PCA) and Pearson's correlation analysis indicated that the sources of Ni, Cd, Cu, and Zn in the soil were primarily mixed, involving both industrial and agricultural activities, whereas the sources of Hg and Pb included both industrial and transportation activities. Adults and children are not likely to experience non-carcinogenic impacts from the soil in this region. Nonetheless, it was important to be aware of the elevated cancer risk presented by Cd, Pb, and especially Ni. The exceedance rates of Cd and Pb in corn were 66.67% and 33.3%, respectively. The results of this research provide data to improve soil protection, human health monitoring, and crop management in the Baiyin district.
Collapse
Affiliation(s)
- Jiangyun Liu
- School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, The People's Republic of China
| | - Qiwen Zheng
- School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, The People's Republic of China
| | - Shuwei Pei
- School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, The People's Republic of China
| | - Jia Li
- School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, The People's Republic of China
| | - Li Ma
- School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, The People's Republic of China
| | - Li Zhang
- School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, The People's Republic of China
| | - Jingping Niu
- School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, The People's Republic of China.
| | - Tian Tian
- School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, The People's Republic of China.
| |
Collapse
|
5
|
Singh DV, Bhat JIA, Bhat RA, Tali JA. Vehicular emission and its impact on heavy metal accumulation and photosynthetic pigments on pine needles in Pahalgam forest ecosystem. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:23898-23907. [PMID: 36331740 DOI: 10.1007/s11356-022-23889-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Human interference is rising day by day which adds more problems to conserve valuable forest resources. Vehicular exhausts are the main source of heavy metals that have detrimental impacts on the vegetation. The research provides comprehension about the increase in vehicular traffic along the Pahalgam highway, which is disturbing the balance of the forest ecosystem. The concentration of heavy metals and leaf pigments were determined in the leaf tissues collected along with the roadside pine trees in the Pahalgam resort. A total of 25 samples at each sampling site were collected in 100 m diameter along main road. High vehicular movements in summer correlated with the high accumulation of heavy metals such as Pb2+ (0.563 mg/kg), Ni2+ (0.271 mg/kg), and Cu2+ (0.202 mg/kg) in pine needles. However, Zn2+ exhibited higher concentration (0.468 mg/kg) at Batakote and Cd2+ (0.05 mg/kg) at Pahalgam in autumn. Moreover, total chlorophyll content determined low (1.97 mg/g) at Pahalgam in autumn and high (3.81 mg/g) at Chandanwari in summer. In general, the chlorophyll content in the pine needles was certainly affected by the accumulation of heavy metals which indicating a negative correlation of chlorophyll content with heavy metals. Thus, the increase in traffic movement and tourist influx significantly affects the accumulation of heavy metals and decreases the pigment content in the pine needles. Rapid tourist influx in world-famous health resorts is dramatically influencing the forest ecosystem. Therefore, the need is to use green fuel or ban the old vehicles which can be helpful in maintaining the balance of the forest ecosystem.
Collapse
Affiliation(s)
- Dig Vijay Singh
- Division of Environmental Sciences, Sher-E-Kashmir University of Agricultural Sciences and Technology, Shalimar, Kashmir, 190025, India
| | - Javeed Iqbal Ahmad Bhat
- Division of Environmental Sciences, Sher-E-Kashmir University of Agricultural Sciences and Technology, Shalimar, Kashmir, 190025, India
| | - Rouf Ahmad Bhat
- Division of Environmental Sciences, Sher-E-Kashmir University of Agricultural Sciences and Technology, Shalimar, Kashmir, 190025, India.
| | - Javaid Ahmad Tali
- Department of Geography, Government Degree College Tral, Tral, Kashmir, India
| |
Collapse
|
6
|
Sharma P, Kaur J, Katnoria JK. Assessment of spatial variations in pollution load of agricultural soil samples of Ludhiana district, Punjab. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 195:222. [PMID: 36543983 DOI: 10.1007/s10661-022-10816-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Surveying, mapping, and characterizing soil properties are the critical steps in designating soil quality. Continuous use of inorganic fertilizers, pesticides, wastewater discharge, and leachates cause soil degradation and contamination of potable water and food ultimately leading to soil pollution and ill effects on human health. This study was undertaken to monitor the soil quality of agricultural soil samples collected from ten different agricultural fields in Ludhiana, Punjab (India), near Buddha Nullah, a Sutlej River tributary. Physico-chemical characteristics and heavy metal contents of soil samples were estimated during the study. The obtained results showed that all the agricultural soil samples were slightly alkaline in nature. Soil nutrients such as nitrates, phosphates, and potassium ranged from 0.06 to 0.11 mg/g, 0.03 to 0.08 mg/g, and 0.04 to 0.15 mg/g respectively. The contents (mg/kg) of heavy metals such as cadmium, chromium, cobalt, copper, and lead were observed to be above the permissible limits in most of the soil samples. Allium cepa root chromosomal aberration assay was used for genotoxicity studies which has shown that Hambran (HBN), a site approx. 12.9 km of the Buddha Nullah, induced maximum genotoxic effects, i.e., 46.7% aberrant cells in root tip cells of Allium cepa. The statistical analysis revealed the positive correlation of heavy metals like Cr, Cu, and Ni (at p ≤ 0.05 and p ≤ 0.01) with the total chromosomal aberrations induced in Allium cepa.
Collapse
Affiliation(s)
- Priyanka Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, (Punjab) 143005, India
| | - Jaskaran Kaur
- Sherpa Space Inc., Daejeon, 34028, Republic of Korea
| | - Jatinder Kaur Katnoria
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, (Punjab) 143005, India.
| |
Collapse
|
7
|
Assessment of Heavy Metals Accumulation in Soil and Native Plants in an Industrial Environment, Saudi Arabia. SUSTAINABILITY 2022. [DOI: 10.3390/su14105993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Industrial activities are associated with various heavy metals (HMs) being emitted into the environment, which may pose a threat to humans and animals. The rapid increase in an industrial activity in major cities in Saudi Arabia (SA) has raised concerns regarding the accumulation of HMs in the environment. The aim of this study is to assess the accumulation of HMs in soil and native plants in an industrial environment. We collected 36 surface soil samples and 12 plant species from 12 sites in an industrial city in central SA. The results showed that the HMs content in the soil followed a descending order of (Fe > Ni > Zn > Pb > Cu> Cr > Cd). The enrichment factor (EF) of HMs in the soil ranged from 0.20 to 7336. Up to 100%, 16.6%, and 6.2% of soil samples were extremely highly enriched with Cd, Ni, and Pb, respectively. Plant species Cyperus laevigatus accumulate Cd, Pb, and Ni. Citrullus colocynthis accumulate Cd and Pb in significantly (p < 0.001) higher amounts than other studied species. The Pollution Load Index (PLI) values for the 12 sites ranged from 0.52–1.33 with S5 and S2 PLI >1.0 indicating progressive deterioration of these sites. The Bioaccumulation Factor (BF) ranged from 0.04–2.76 and revealed that some plant species may be candidates for phytoextraction potential. The most promising plant species for phytoextraction and remediation were annuals or perennials such as Malva parviflora, Sisymbrium irio and Citrullus colocynthis, especially for Cr and Cu. This study suggests that these native plant species may be useful for phytoremediation in the area.
Collapse
|
8
|
Assessment of Potentially Toxic Elements in the Urban Soil and Plants of Kirkuk City in Iraq. SUSTAINABILITY 2022. [DOI: 10.3390/su14095655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Kirkuk city is known for its industrial activities, especially oil and cement production, as well as its road traffic. The aim of this study was to assess potentially toxic elements (PTEs) in the soil and plants from urban areas by measuring pollution indices and estimating the effect that this pollution has on the environment. Leaf and soil samples were taken from 10 different locations in Kirkuk. These samples were pre-treated using the acid digestion method and concentrations of 12 elements were determined using inductively coupled plasma mass spectrometry (ICP-MS). The results indicate a high content of aluminum and magnesium (mg/kg) in the soil samples from all study sites. For leaf samples, the results showed a moderate to low amount of magnesium and aluminum. Based on our results, the PTE concentrations were found in the following order—Mg > Al > Ni > Cu > Cr > Pb > Co > As > Se > Cd > Hg > Ti—in leaf samples from all 10 study sites. However, in the soil samples, PTE concentrations were in the following order—Mg > Al > Cr > Ni > Cu > Pb > Co > As > Se > Ti > Cd > Hg—from all study sites. Pollution indices showed a moderate level of contamination of Pb, Cd, and Ni, and a high level of contamination of As and Hg in plant and soil samples from all study sites in Kirkuk city.
Collapse
|