1
|
Moretti E, Signorini C, Liguori L, Corsaro R, Nerucci F, Fiorini M, Menchiari S, Collodel G. Evaluation of Known Markers of Ferroptosis in Semen of Patients with Different Reproductive Pathologies and Fertile Men. Cells 2024; 13:1490. [PMID: 39273059 PMCID: PMC11394366 DOI: 10.3390/cells13171490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
This study aims to investigate the role of ferroptosis, an iron-dependent form of regulated cell death, in male infertility. The motivation behind this research stems from the increasing recognition of oxidative stress and iron metabolism dysregulation as critical factors in male reproductive health. In this study, 28 infertile patients (grouped by the presence of urogenital infections or varicocele) and 19 fertile men were selected. Spermiograms were performed by light microscopy (WHO, 2021). Testosterone, ferritin, transferrin-bound iron, transferrin, and F2-isoprostanes (F2-IsoPs) were detected in seminal plasma. Glutathione peroxidase 4 (GPX4) and acyl coenzyme A synthetase long chain family member 4 (ACSL4) were also assessed in sperm cells using enzyme-linked immunosorbent assays (ELISA). All the variables were correlated (statistically significant Spearman's rank correlations) in the whole population, and then the comparison between variables of the different groups of men were carried out. Seminal ferritin and transferrin positively correlated with seminal F2-IsoPs, which had positive correlations with ACSL4 detected in sperm cells. Ferritin and ACSL4 negatively correlated with the seminal parameters. No correlation was detected for GPX4. Comparing the variables in the three examined groups, elevated levels of ACSL4 were observed in infertile patients with urogenital infections and varicocele; GPX4 levels were similar in the three groups. These results suggested a mechanism of ferroptosis, identified by increased ACSL4 levels and the occurrence of lipid peroxidation. Such events appear to be GPX4-independent in reproductive pathologies such as varicocele and urogenital infections.
Collapse
Affiliation(s)
- Elena Moretti
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Laura Liguori
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Roberta Corsaro
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Fabiola Nerucci
- Clinical Pathology Unit, Department of Cellular Therapy, Hematology and Laboratory Medicine, Azienda Ospedaliera-Senese, 53100 Siena, Italy
| | - Marcello Fiorini
- Clinical Pathology Unit, Department of Cellular Therapy, Hematology and Laboratory Medicine, Azienda Ospedaliera-Senese, 53100 Siena, Italy
| | - Silvia Menchiari
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Giulia Collodel
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| |
Collapse
|
2
|
Stabile AM, Pistilli A, Moretti E, Bartolini D, Ruggirello M, Rende M, Castellini C, Mattioli S, Ponchia R, Tripodi SA, Collodel G. A Possible Role for Nerve Growth Factor and Its Receptors in Human Sperm Pathology. Biomedicines 2023; 11:3345. [PMID: 38137566 PMCID: PMC10742157 DOI: 10.3390/biomedicines11123345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Nerve growth factor (NGF) signalling affects spermatogenesis and mature sperm traits. In this paper, we aimed to evaluate the distribution and the role of NGF and its receptors (p75NTR and TrKA) on the reproductive apparatus (testis and epididymis) and sperm of fertile men (F) and men with different pathologies, namely varicocele (V) and urogenital infections (UGIs). We collected semen samples from 21 individuals (31-40 years old) subdivided as follows: V (n = 7), UGIs (n = 7), and F (n = 7). We submitted the semen samples to bacteriological analysis, leucocyte identification, and analysis of sperm parameters (concentration, motility, morphology, and viability). We determined the seminal plasma levels of NGF, interleukin 1β (IL-1β), and F2-isoprostanes (F2-IsoPs), and the gene and protein expression of NGF receptors on sperm. We also used immunofluorescence to examine NGF receptors on ejaculated sperm, testis, and epididymis. As expected, fertile men showed better sperm parameters as well as lower levels of NGF, F2-IsoPs, and IL-1β compared with men with infertility. Notably, in normal sperm, p75NTR and TrKA were localised throughout the entire tail. TrKA was also found in the post-acrosomal sheath. This localisation appeared different in patients with infertility: in particular, there was a strong p75NTR signal in the midpiece and the cytoplasmic residue or coiled tails of altered ejaculated sperm. In line with these findings, NGF receptors were intensely expressed in the epididymis and interstitial tissue of the testis. These data suggest the distinctive involvement of NGF and its receptors in the physiology of sperm from fertile men and men with infertility, indicating a possible role for new targeted treatment strategies.
Collapse
Affiliation(s)
- Anna Maria Stabile
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, 06132 Perugia, Italy; (A.M.S.); (A.P.); (M.R.); (M.R.)
| | - Alessandra Pistilli
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, 06132 Perugia, Italy; (A.M.S.); (A.P.); (M.R.); (M.R.)
| | - Elena Moretti
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy;
| | - Desirée Bartolini
- Department of Pharmaceutical Sciences, Section of Biochemistry, University of Perugia, 06132 Perugia, Italy;
| | - Mariangela Ruggirello
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, 06132 Perugia, Italy; (A.M.S.); (A.P.); (M.R.); (M.R.)
| | - Mario Rende
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, 06132 Perugia, Italy; (A.M.S.); (A.P.); (M.R.); (M.R.)
| | - Cesare Castellini
- Department of Agricultural, Environmental and Food Science, University of Perugia, 06100 Perugia, Italy; (C.C.); (S.M.)
| | - Simona Mattioli
- Department of Agricultural, Environmental and Food Science, University of Perugia, 06100 Perugia, Italy; (C.C.); (S.M.)
| | - Rosetta Ponchia
- Unit of Medically Assisted Reproduction, Siena University Hospital, 53100 Siena, Italy;
| | - Sergio Antonio Tripodi
- Department of Pathology Unit, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy;
| | - Giulia Collodel
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy;
| |
Collapse
|
3
|
Chen X, Wu B, Shen X, Wang X, Ping P, Miao M, Liang N, Yin H, Shi H, Qian J, Zhang T. Relevance of PUFA-derived metabolites in seminal plasma to male infertility. Front Endocrinol (Lausanne) 2023; 14:1138984. [PMID: 37284213 PMCID: PMC10240070 DOI: 10.3389/fendo.2023.1138984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/02/2023] [Indexed: 06/08/2023] Open
Abstract
Aim This study aims to investigate the biological effects of polyunsaturated fatty acid (PUFA)-derived metabolites in seminal plasma on male fertility and to evaluate the potential of PUFA as a biomarker for normozoospermic male infertility. Methods From September 2011 to April 2012, We collected semen samples from 564 men aged 18 to 50 years old (mean=32.28 years old)ch., residing in the Sandu County, Guizhou Province, China. The donors included 376 men with normozoospermia (fertile: n=267; infertile: n=109) and 188 men with oligoasthenozoospermia (fertile: n=121; infertile: n=67). The samples thus obtained were then analyzed by liquid chromatography-mass spectrometry (LC-MS) to detect the levels of PUFA-derived metabolites in April 2013. Data were analyzed from December 1, 2020, to May 15, 2022. Results Our analysis of propensity score-matched cohorts revealed that the concentrations of 9/26 and 7/26 metabolites differed significantly between fertile and infertile men with normozoospermia and oligoasthenozoospermia, respectively (FDR < 0.05). In men with normozoospermia, higher levels of 7(R)-MaR1 (HR: 0.4 (95% CI [0.24, 0.64]) and 11,12-DHET (0.36 (95% CI [0.21, 0.58]) were significantly associated with a decreased risk of infertility, while higher levels of 17(S)-HDHA (HR: 2.32 (95% CI [1.44, 3.79]), LXA5 (HR: 8.38 (95% CI [4.81, 15.24]), 15d-PGJ2 (HR: 1.71 (95% CI [1.06, 2.76]), and PGJ2 (HR: 2.28 (95% CI [1.42, 3.7]) correlated with an increased risk of infertility. Our ROC model using the differentially expressed metabolites showed the value of the area under the curve to be 0.744. Conclusion The PUFA-derived metabolites 7(R)-MaR1, 11,12-DHET, 17(S)-HDHA, LXA5, and PGJ2 might be considered as potential diagnostic biomarkers of infertility in normozoospermic men.
Collapse
Affiliation(s)
- Xiangfeng Chen
- Shanghai Human Sperm Bank, Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bin Wu
- National Health Commission of the PRC (NHC), Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, China
| | - XiaoRong Shen
- National Health Commission of the PRC (NHC), Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, China
| | - Xin Wang
- National Health Commission of the PRC (NHC), Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, China
| | - Ping Ping
- Shanghai Human Sperm Bank, Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Maohua Miao
- National Health Commission of the PRC (NHC), Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, China
| | - Ningning Liang
- CAS Key Laboratory of Nutrition, Metabolism, and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences (CAS), Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Huiyong Yin
- CAS Key Laboratory of Nutrition, Metabolism, and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences (CAS), Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Huijuan Shi
- National Health Commission of the PRC (NHC), Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, China
| | - Jun Qian
- National Health Commission of the PRC (NHC), Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, China
| | - Tiancheng Zhang
- National Health Commission of the PRC (NHC), Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Moretti E, Signorini C, Corsaro R, Giamalidi M, Collodel G. Human Sperm as an In Vitro Model to Assess the Efficacy of Antioxidant Supplements during Sperm Handling: A Narrative Review. Antioxidants (Basel) 2023; 12:antiox12051098. [PMID: 37237965 DOI: 10.3390/antiox12051098] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/27/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Spermatozoa are highly differentiated cells that produce reactive oxygen species (ROS) due to aerobic metabolism. Below a certain threshold, ROS are important in signal transduction pathways and cellular physiological processes, whereas ROS overproduction damages spermatozoa. Sperm manipulation and preparation protocols during assisted reproductive procedures-for example, cryopreservation-can result in excessive ROS production, exposing these cells to oxidative damage. Thus, antioxidants are a relevant topic in sperm quality. This narrative review focuses on human spermatozoa as an in vitro model to study which antioxidants can be used to supplement media. The review comprises a brief presentation of the human sperm structure, a general overview of the main items of reduction-oxidation homeostasis and the ambivalent relationship between spermatozoa and ROS. The main body of the paper deals with studies in which human sperm have been used as an in vitro model to test antioxidant compounds, including natural extracts. The presence and the synergic effects of different antioxidant molecules could potentially lead to more effective products in vitro and, in the future, in vivo.
Collapse
Affiliation(s)
- Elena Moretti
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Roberta Corsaro
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Maria Giamalidi
- Department of Genetics and Biotechnology, Faculty of Biology, University of Athens, 15701 Athens, Greece
| | - Giulia Collodel
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| |
Collapse
|
5
|
Rodak K, Kratz EM. PUFAs and Their Derivatives as Emerging Players in Diagnostics and Treatment of Male Fertility Disorders. Pharmaceuticals (Basel) 2023; 16:ph16050723. [PMID: 37242506 DOI: 10.3390/ph16050723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
About 15% of couples worldwide are affected by infertility, with the male factor responsible for approximately 50% of reproductive failures. Male fertility can be influenced by various factors, including an unhealthy lifestyle and diet, often associated with oxidative stress. These changes are frequently the reason for spermatozoan dysfunction, malformations, and lowered count. However, sometimes even with proper semen parameters, fertilization does not occur, and this is referred to as idiopathic infertility. Of particular importance may be molecules contained in the spermatozoan membrane or seminal plasma, such as polyunsaturated fatty acids, including omega-3 (docosahexaenoic and eicosapentaenoic acids) and omega-6 (arachidonic acid) fatty acids and their derivatives (prostaglandins, leukotrienes, thromboxanes, endocannabinoids, isoprostanes), which are vulnerable to the effects of oxidative stress. In the present review, we discuss the influence of these molecules on human male reproductive health and its possible causes, including disrupted oxidative-antioxidative balance. The review also discusses the potential use of these molecules in the diagnostics and treatment of male infertility, with a particular focus on the innovative approach to isoprostanes as biomarkers for male infertility. Given the high occurrence of idiopathic male infertility, there is a need to explore new solutions for the diagnosis and treatment of this condition.
Collapse
Affiliation(s)
- Kamil Rodak
- Department of Laboratory Diagnostics, Division of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Borowska Street 211A, 50-556 Wroclaw, Poland
| | - Ewa Maria Kratz
- Department of Laboratory Diagnostics, Division of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Borowska Street 211A, 50-556 Wroclaw, Poland
| |
Collapse
|
6
|
Hoxha M, Barbonetti A, Zappacosta B. Arachidonic Acid Pathways and Male Fertility: A Systematic Review. Int J Mol Sci 2023; 24:ijms24098207. [PMID: 37175913 PMCID: PMC10178949 DOI: 10.3390/ijms24098207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/23/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Arachidonic acid (AA) is a polyunsaturated fatty acid that is involved in male fertility. Human seminal fluid contains different prostaglandins: PGE (PGE1 and PGE2), PGF2α, and their specific 19-hydroxy derivatives, 18,19-dehydro derivatives of PGE1 and PGE2. The objective of this study is to synthesize the available literature of in vivo animal studies and human clinical trials on the association between the AA pathway and male fertility. PGE is significantly decreased in the semen of infertile men, suggesting the potential for exploitation of PGE agonists to improve male fertility. Indeed, ibuprofen can affect male fertility by promoting alterations in sperm function and standard semen parameters. The results showed that targeting the AA pathways could be an attractive strategy for the treatment of male fertility.
Collapse
Affiliation(s)
- Malvina Hoxha
- Department for Chemical-Toxicological and Pharmacological Evaluation of Drugs, Faculty of Pharmacy, Catholic University Our Lady of Good Counsel, 1000 Tirana, Albania
| | - Arcangelo Barbonetti
- Andrology Unit, Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Bruno Zappacosta
- Department for Chemical-Toxicological and Pharmacological Evaluation of Drugs, Faculty of Pharmacy, Catholic University Our Lady of Good Counsel, 1000 Tirana, Albania
| |
Collapse
|
7
|
Collodel G, Moretti E, Noto D, Corsaro R, Signorini C. Oxidation of Polyunsaturated Fatty Acids as a Promising Area of Research in Infertility. Antioxidants (Basel) 2022; 11:antiox11051002. [PMID: 35624866 PMCID: PMC9137497 DOI: 10.3390/antiox11051002] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 02/01/2023] Open
Abstract
In this review, the role of fatty acids (FA) in human pathological conditions, infertility in particular, was considered. FA and FA-derived metabolites modulate cell membrane composition, membrane lipid microdomains and cell signaling. Moreover, such molecules are involved in cell death, immunological responses and inflammatory processes. Human health and several pathological conditions are specifically associated with both dietary and cell membrane lipid profiles. The role of FA metabolism in human sperm and spermatogenesis has recently been investigated. Cumulative findings indicate F2 isoprostanes (oxygenated products from arachidonic acid metabolism) and resolvins (lipid mediators of resolution of inflammation) as promising biomarkers for the evaluation of semen and follicular fluid quality. Advanced knowledge in this field could lead to new scenarios in the treatment of infertility.
Collapse
|