1
|
Chen W, Dhawan M, Liu J, Ing D, Mehta K, Tran D, Lawrence D, Ganhewa M, Cirillo N. Mapping the Use of Artificial Intelligence-Based Image Analysis for Clinical Decision-Making in Dentistry: A Scoping Review. Clin Exp Dent Res 2024; 10:e70035. [PMID: 39600121 PMCID: PMC11599430 DOI: 10.1002/cre2.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/19/2024] [Accepted: 10/20/2024] [Indexed: 11/29/2024] Open
Abstract
OBJECTIVES Artificial intelligence (AI) is an emerging field in dentistry. AI is gradually being integrated into dentistry to improve clinical dental practice. The aims of this scoping review were to investigate the application of AI in image analysis for decision-making in clinical dentistry and identify trends and research gaps in the current literature. MATERIAL AND METHODS This review followed the guidelines provided by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews (PRISMA-ScR). An electronic literature search was performed through PubMed and Scopus. After removing duplicates, a preliminary screening based on titles and abstracts was performed. A full-text review and analysis were performed according to predefined inclusion criteria, and data were extracted from eligible articles. RESULTS Of the 1334 articles returned, 276 met the inclusion criteria (consisting of 601,122 images in total) and were included in the qualitative synthesis. Most of the included studies utilized convolutional neural networks (CNNs) on dental radiographs such as orthopantomograms (OPGs) and intraoral radiographs (bitewings and periapicals). AI was applied across all fields of dentistry - particularly oral medicine, oral surgery, and orthodontics - for direct clinical inference and segmentation. AI-based image analysis was use in several components of the clinical decision-making process, including diagnosis, detection or classification, prediction, and management. CONCLUSIONS A variety of machine learning and deep learning techniques are being used for dental image analysis to assist clinicians in making accurate diagnoses and choosing appropriate interventions in a timely manner.
Collapse
Affiliation(s)
- Wei Chen
- Melbourne Dental SchoolThe University of MelbourneCarltonVictoriaAustralia
| | - Monisha Dhawan
- Melbourne Dental SchoolThe University of MelbourneCarltonVictoriaAustralia
| | - Jonathan Liu
- Melbourne Dental SchoolThe University of MelbourneCarltonVictoriaAustralia
| | - Damie Ing
- Melbourne Dental SchoolThe University of MelbourneCarltonVictoriaAustralia
| | - Kruti Mehta
- Melbourne Dental SchoolThe University of MelbourneCarltonVictoriaAustralia
| | - Daniel Tran
- Melbourne Dental SchoolThe University of MelbourneCarltonVictoriaAustralia
| | | | - Max Ganhewa
- CoTreatAI, CoTreat Pty Ltd.MelbourneVictoriaAustralia
| | - Nicola Cirillo
- Melbourne Dental SchoolThe University of MelbourneCarltonVictoriaAustralia
- CoTreatAI, CoTreat Pty Ltd.MelbourneVictoriaAustralia
| |
Collapse
|
2
|
Soheili F, Delfan N, Masoudifar N, Ebrahimni S, Moshiri B, Glogauer M, Ghafar-Zadeh E. Toward Digital Periodontal Health: Recent Advances and Future Perspectives. Bioengineering (Basel) 2024; 11:937. [PMID: 39329678 PMCID: PMC11428937 DOI: 10.3390/bioengineering11090937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/24/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024] Open
Abstract
Periodontal diseases, ranging from gingivitis to periodontitis, are prevalent oral diseases affecting over 50% of the global population. These diseases arise from infections and inflammation of the gums and supporting bones, significantly impacting oral health. The established link between periodontal diseases and systemic diseases, such as cardiovascular diseases, underscores their importance as a public health concern. Consequently, the early detection and prevention of periodontal diseases have become critical objectives in healthcare, particularly through the integration of advanced artificial intelligence (AI) technologies. This paper aims to bridge the gap between clinical practices and cutting-edge technologies by providing a comprehensive review of current research. We examine the identification of causative factors, disease progression, and the role of AI in enhancing early detection and treatment. Our goal is to underscore the importance of early intervention in improving patient outcomes and to stimulate further interest among researchers, bioengineers, and AI specialists in the ongoing exploration of AI applications in periodontal disease diagnosis.
Collapse
Affiliation(s)
- Fatemeh Soheili
- Biologically Inspired Sensors and Actuators Laboratory (BIOSA), Lassonde School of Engineering, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| | - Niloufar Delfan
- Biologically Inspired Sensors and Actuators Laboratory (BIOSA), Lassonde School of Engineering, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran P9FQ+M8X, Kargar, Iran
| | - Negin Masoudifar
- Department of Internal Medicine, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Shahin Ebrahimni
- Biologically Inspired Sensors and Actuators Laboratory (BIOSA), Lassonde School of Engineering, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| | - Behzad Moshiri
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran P9FQ+M8X, Kargar, Iran
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| | - Ebrahim Ghafar-Zadeh
- Biologically Inspired Sensors and Actuators Laboratory (BIOSA), Lassonde School of Engineering, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
- Department of Electrical Engineering and Computer Science, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
3
|
Qutieshat A, Al Rusheidi A, Al Ghammari S, Alarabi A, Salem A, Zelihic M. Comparative analysis of diagnostic accuracy in endodontic assessments: dental students vs. artificial intelligence. Diagnosis (Berl) 2024; 11:259-265. [PMID: 38696271 DOI: 10.1515/dx-2024-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/22/2024] [Indexed: 05/04/2024]
Abstract
OBJECTIVES This study evaluates the comparative diagnostic accuracy of dental students and artificial intelligence (AI), specifically a modified ChatGPT 4, in endodontic assessments related to pulpal and apical conditions. The findings are intended to offer insights into the potential role of AI in augmenting dental education. METHODS Involving 109 dental students divided into junior (54) and senior (55) groups, the study compared their diagnostic accuracy against ChatGPT's across seven clinical scenarios. Juniors had the American Association of Endodontists (AEE) terminology assistance, while seniors relied on prior knowledge. Accuracy was measured against a gold standard by experienced endodontists, using statistical analysis including Kruskal-Wallis and Dwass-Steel-Critchlow-Fligner tests. RESULTS ChatGPT achieved significantly higher accuracy (99.0 %) compared to seniors (79.7 %) and juniors (77.0 %). Median accuracy was 100.0 % for ChatGPT, 85.7 % for seniors, and 82.1 % for juniors. Statistical tests indicated significant differences between ChatGPT and both student groups (p<0.001), with no notable difference between the student cohorts. CONCLUSIONS The study reveals AI's capability to outperform dental students in diagnostic accuracy regarding endodontic assessments. This underscores AIs potential as a reference tool that students could utilize to enhance their understanding and diagnostic skills. Nevertheless, the potential for overreliance on AI, which may affect the development of critical analytical and decision-making abilities, necessitates a balanced integration of AI with human expertise and clinical judgement in dental education. Future research is essential to navigate the ethical and legal frameworks for incorporating AI tools such as ChatGPT into dental education and clinical practices effectively.
Collapse
Affiliation(s)
- Abubaker Qutieshat
- Adult Restorative Dentistry, 442177 Oman Dental College , Muscat, Oman
- Restorative Dentistry, Dundee Dental Hospital and School, University of Dundee, Dundee, UK
| | | | | | | | - Abdurahman Salem
- Dental Technology, 1796 School of Health & Society, University of Bolton , Greater Manchester, UK
| | - Maja Zelihic
- Forbes School of Business and Technology, 191123 University of Arizona Global Campus , Chandler, AZ, USA
| |
Collapse
|
4
|
Aljulayfi IS, Almatrafi AH, Althubaitiy RO, Alnafisah F, Alshehri K, Alzahrani B, Gufran K. The Potential of Artificial Intelligence in Prosthodontics: A Comprehensive Review. Med Sci Monit 2024; 30:e944310. [PMID: 38840416 PMCID: PMC11178143 DOI: 10.12659/msm.944310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/09/2024] [Indexed: 06/07/2024] Open
Abstract
Prosthodontics is a dental subspecialty that includes the preparation of dental prosthetics for missing or damaged teeth. It increasingly uses computer-assisted technologies for planning and preparing dental prosthetics. This study aims to present the findings from a systematic review of publications on artificial intelligence (AI) in prosthodontics to identify current trends and future opportunities. The review question was "What are the applications of AI in prosthodontics and how good is their performance in prosthodontics?" Electronic searching in the Web of Science, ScienceDirect, PubMed, and Cochrane Library was conducted. The search was limited to full text from January 2012 to January 2024. Quadas-2 was used for assessing quality and potential risk of bias for the selected studies. A total of 1925 studies were identified in the initial search. After removing the duplicates and applying exclusion criteria, a total of 30 studies were selected for this review. Results of the Quadas-2 assessment of included studies found that a total of 18.3% of studies were identified as low risk of bias studies, whereas 52.6% and 28.9% of included studies were identified as studies with high and unclear risk of bias, respectively. Although they are still developing, AI models have already shown promise in the areas of dental charting, tooth shade selection, automated restoration design, mapping the preparation finishing line, manufacturing casting optimization, predicting facial changes in patients wearing removable prostheses, and designing removable partial dentures.
Collapse
Affiliation(s)
- Ibrahim Saleh Aljulayfi
- Department of Prosthetic Dental Sciences, College of Dentistry, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | | | - Ramzi O. Althubaitiy
- Department of Prosthetic Dental Sciences, College of Dentistry, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Fahad Alnafisah
- Dental Intern, College of Dentistry, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Khalid Alshehri
- Dental Intern, College of Dentistry, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Bandar Alzahrani
- Dental Intern, College of Dentistry, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Khalid Gufran
- Department of Preventive Dental Sciences, College of Dentistry, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
5
|
Arjumand B. The Application of artificial intelligence in restorative Dentistry: A narrative review of current research. Saudi Dent J 2024; 36:835-840. [PMID: 38883908 PMCID: PMC11178959 DOI: 10.1016/j.sdentj.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 06/18/2024] Open
Abstract
This review explores the transformative impact of artificial intelligence (AI) on restorative dentistry. By discussing the diagnostic processes, treatment planning, image analysis, prosthodontics, and material/biomaterial research, this study highlights the role of AI in optimizing precision and efficiency. It emphasizes personalized material selection, accelerated biomaterial research, and AI-enabled clinical workflows for enhanced patient outcomes. The review concludes with insights into the challenges, ethical considerations, and future trends, emphasizing the collaborative efforts needed for continued innovation in AI-driven restorative dentistry.
Collapse
Affiliation(s)
- Bilal Arjumand
- Department of Conservative Dentistry, College of Dentistry, Qassim University, Saudi Arabia
| |
Collapse
|
6
|
Naeimi SM, Darvish S, Salman BN, Luchian I. Artificial Intelligence in Adult and Pediatric Dentistry: A Narrative Review. Bioengineering (Basel) 2024; 11:431. [PMID: 38790300 PMCID: PMC11118054 DOI: 10.3390/bioengineering11050431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Artificial intelligence (AI) has been recently introduced into clinical dentistry, and it has assisted professionals in analyzing medical data with unprecedented speed and an accuracy level comparable to humans. With the help of AI, meaningful information can be extracted from dental databases, especially dental radiographs, to devise machine learning (a subset of AI) models. This study focuses on models that can diagnose and assist with clinical conditions such as oral cancers, early childhood caries, deciduous teeth numbering, periodontal bone loss, cysts, peri-implantitis, osteoporosis, locating minor apical foramen, orthodontic landmark identification, temporomandibular joint disorders, and more. The aim of the authors was to outline by means of a review the state-of-the-art applications of AI technologies in several dental subfields and to discuss the efficacy of machine learning algorithms, especially convolutional neural networks (CNNs), among different types of patients, such as pediatric cases, that were neglected by previous reviews. They performed an electronic search in PubMed, Google Scholar, Scopus, and Medline to locate relevant articles. They concluded that even though clinicians encounter challenges in implementing AI technologies, such as data management, limited processing capabilities, and biased outcomes, they have observed positive results, such as decreased diagnosis costs and time, as well as early cancer detection. Thus, further research and development should be considered to address the existing complications.
Collapse
Affiliation(s)
| | - Shayan Darvish
- School of Dentistry, University of Michigan, Ann Arbor, MI 48104, USA;
| | - Bahareh Nazemi Salman
- Department of Pediatric Dentistry, School of Dentistry, Zanjan University of Medical Sciences, Zanjan 4513956184, Iran
| | - Ionut Luchian
- Department of Periodontology, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
7
|
Millones-Gómez PA, Minchón-Medina CA, Rodríguez-Salazar DY, Delgado-Caramutti JGA, Valencia-Arias A. Factors associated with scientific production citations in dentistry: Zero-inflated negative binomial regression and hurdle modelling. F1000Res 2023; 12:1321. [PMID: 38973941 PMCID: PMC11226947 DOI: 10.12688/f1000research.141422.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/03/2023] [Indexed: 07/09/2024] Open
Abstract
Background: The global scientific literature in dentistry has shown important advances in the field, with major contributions ranging from the analysis of the basic epidemiological aspects of prevention to specialised results in the field of dental treatments. The present investigation aimed to analyse the current state of the scientific literature on dentistry hosted in the Web of Science database. Methods: The methodology included two phases in the analysis of articles and indexed reviews in all thematic areas. During the first phase, the following variables were analysed: scientific production by the publisher, the evolution of scientific output published by publishers, the factors associated with the impact of scientific production, and the modelling of the impact of scientific production on dentistry. During the second phase, associations, evolutions, and trends in the use of keywords in the scientific literature in dentistry were analysed. Results: The first phase shows that scientific production in dentistry will increase between 2010 and 2021, reaching 12,126 articles in 2021. Publishers such as Wiley and Elsevier stand out, but Quintessence Publishing has the most citations. Factors such as pages, authors, and references influence the number of citations. Phase 2 analyzes trends in the dental literature using the WoS database. Topics such as "dental education", "pediatric dentistry", and "pandemic" stand out. The intersection of technology and dentistry and the importance of evidence-based education are highlighted. Conclusions: In conclusion, the study shows that the most studied topics include the association of dental education and the curriculum, the association of pediatric dentistry with oral health, and dental care. The findings show that more recently emphasised topics also stand out, such as evidence-based dentistry, the COVID-19 pandemic, infection control, and endodontics, as well as the need for future research to expand current knowledge based on emerging topics in the scientific literature on dentistry.
Collapse
|
8
|
Diba SF, Sari DCR, Supriatna Y, Ardiyanto I, Bintoro BS. Artificial intelligence in detecting dentomaxillofacial fractures in diagnostic imaging: a scoping review protocol. BMJ Open 2023; 13:e071324. [PMID: 37553193 PMCID: PMC10414106 DOI: 10.1136/bmjopen-2022-071324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 07/18/2023] [Indexed: 08/10/2023] Open
Abstract
INTRODUCTION The dentomaxillofacial (DMF) area, which includes the teeth, maxilla, mandible, zygomaticum, orbits and midface, plays a crucial role in the maintenance of the physiological functions despite its susceptibility to fractures, which are mostly caused by mechanical trauma. As a diagnostic tool, radiographic imaging helps clinicians establish a diagnosis and determine a treatment plan; however, the presence of human factors in image interpretation can result in missed detection of fractures. Therefore, an artificial intelligence (AI) computing system with the potential to help detect abnormalities on radiographic images is currently being developed. This scoping review summarises the literature and assesses the current status of AI in DMF fracture detection in diagnostic imaging. METHODS AND ANALYSIS This proposed scoping review will be conducted using the framework of Arksey and O'Malley, with each step incorporating the recommendations of Levac et al. By using relevant keywords based on the research questions. PubMed, Science Direct, Scopus, Cochrane Library, Springerlink, Institute of Electrical and Electronics Engineers, and ProQuest will be the databases used in this study. The included studies are published in English between 1 January 2000 and 30 June 2023. Two independent reviewers will screen titles and abstracts, followed by full-text screening and data extraction, which will comprise three components: research study characteristics, comparator and AI characteristics. ETHICS AND DISSEMINATION This study does not require ethical approval because it analyses primary research articles. The research findings will be distributed through international conferences and peer-reviewed publications.
Collapse
Affiliation(s)
- Silviana Farrah Diba
- Doctorate Program of Medical and Health Science, Gadjah Mada University Faculty of Medicine Public Health and Nursing, Yogyakarta, Indonesia
- Department of Dentomaxillofacial Radiology, Gadjah Mada University Faculty of Dentistry, Yogyakarta, Indonesia
| | - Dwi Cahyani Ratna Sari
- Department of Anatomy, Gadjah Mada University Faculty of Medicine Public Health and Nursing, Yogyakarta, Indonesia
| | - Yana Supriatna
- Department of Radiology, Gadjah Mada University Faculty of Medicine Public Health and Nursing, Yogyakarta, Indonesia
- Radiological Installation, Public Hospital Dr Sardjito, Yogyakarta, Indonesia
| | - Igi Ardiyanto
- Department of Electrical Engineering and Information Technology, Gadjah Mada University Faculty of Engineering, Yogyakarta, Indonesia
| | - Bagas Suryo Bintoro
- Department of Health Behaviour, Environment, and Social Medicine, Gadjah Mada University Faculty of Medicine Public Health and Nursing, Yogyakarta, Indonesia
- Center of Health Behavior and Promotion, Gadjah Mada University Faculty of Medicine Public Health and Nursing, Yogyakarta, Indonesia
| |
Collapse
|
9
|
Ayad N, Schwendicke F, Krois J, van den Bosch S, Bergé S, Bohner L, Hanisch M, Vinayahalingam S. Patients' perspectives on the use of artificial intelligence in dentistry: a regional survey. Head Face Med 2023; 19:23. [PMID: 37349791 PMCID: PMC10288769 DOI: 10.1186/s13005-023-00368-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023] Open
Abstract
The use of artificial intelligence (AI) in dentistry is rapidly evolving and could play a major role in a variety of dental fields. This study assessed patients' perceptions and expectations regarding AI use in dentistry. An 18-item questionnaire survey focused on demographics, expectancy, accountability, trust, interaction, advantages and disadvantages was responded to by 330 patients; 265 completed questionnaires were included in this study. Frequencies and differences between age groups were analysed using a two-sided chi-squared or Fisher's exact tests with Monte Carlo approximation. Patients' perceived top three disadvantages of AI use in dentistry were (1) the impact on workforce needs (37.7%), (2) new challenges on doctor-patient relationships (36.2%) and (3) increased dental care costs (31.7%). Major expected advantages were improved diagnostic confidence (60.8%), time reduction (48.3%) and more personalised and evidencebased disease management (43.0%). Most patients expected AI to be part of the dental workflow in 1-5 (42.3%) or 5-10 (46.8%) years. Older patients (> 35 years) expected higher AI performance standards than younger patients (18-35 years) (p < 0.05). Overall, patients showed a positive attitude towards AI in dentistry. Understanding patients' perceptions may allow professionals to shape AI-driven dentistry in the future.
Collapse
Affiliation(s)
- Nasim Ayad
- Department of Oral and Maxillofacial Surgery, Hospital University Münster, 48149 Münster, Germany
| | - Falk Schwendicke
- Department of Oral Diagnostics and Digital Health and Health Services Research, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Aßmannshauser Str. 4-6, 14197 Berlin, Germany
| | - Joachim Krois
- Department of Oral Diagnostics and Digital Health and Health Services Research, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Aßmannshauser Str. 4-6, 14197 Berlin, Germany
| | - Stefanie van den Bosch
- Department of Oral and Maxillofacial Surgery, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Stefaan Bergé
- Department of Oral and Maxillofacial Surgery, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Lauren Bohner
- Department of Oral and Maxillofacial Surgery, Hospital University Münster, 48149 Münster, Germany
| | - Marcel Hanisch
- Department of Oral and Maxillofacial Surgery, Hospital University Münster, 48149 Münster, Germany
| | - Shankeeth Vinayahalingam
- Department of Oral and Maxillofacial Surgery, Hospital University Münster, 48149 Münster, Germany
- Department of Oral and Maxillofacial Surgery, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, the Netherlands
| |
Collapse
|
10
|
Strunga M, Urban R, Surovková J, Thurzo A. Artificial Intelligence Systems Assisting in the Assessment of the Course and Retention of Orthodontic Treatment. Healthcare (Basel) 2023; 11:healthcare11050683. [PMID: 36900687 PMCID: PMC10000479 DOI: 10.3390/healthcare11050683] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
This scoping review examines the contemporary applications of advanced artificial intelligence (AI) software in orthodontics, focusing on its potential to improve daily working protocols, but also highlighting its limitations. The aim of the review was to evaluate the accuracy and efficiency of current AI-based systems compared to conventional methods in diagnosing, assessing the progress of patients' treatment and follow-up stability. The researchers used various online databases and identified diagnostic software and dental monitoring software as the most studied software in contemporary orthodontics. The former can accurately identify anatomical landmarks used for cephalometric analysis, while the latter enables orthodontists to thoroughly monitor each patient, determine specific desired outcomes, track progress, and warn of potential changes in pre-existing pathology. However, there is limited evidence to assess the stability of treatment outcomes and relapse detection. The study concludes that AI is an effective tool for managing orthodontic treatment from diagnosis to retention, benefiting both patients and clinicians. Patients find the software easy to use and feel better cared for, while clinicians can make diagnoses more easily and assess compliance and damage to braces or aligners more quickly and frequently.
Collapse
|
11
|
Hung KF, Yeung AWK, Bornstein MM, Schwendicke F. Personalized dental medicine, artificial intelligence, and their relevance for dentomaxillofacial imaging. Dentomaxillofac Radiol 2023; 52:20220335. [PMID: 36472627 PMCID: PMC9793453 DOI: 10.1259/dmfr.20220335] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
Personalized medicine refers to the tailoring of diagnostics and therapeutics to individuals based on one's biological, social, and behavioral characteristics. While personalized dental medicine is still far from being a reality, advanced artificial intelligence (AI) technologies with improved data analytic approaches are expected to integrate diverse data from the individual, setting, and system levels, which may facilitate a deeper understanding of the interaction of these multilevel data and therefore bring us closer to more personalized, predictive, preventive, and participatory dentistry, also known as P4 dentistry. In the field of dentomaxillofacial imaging, a wide range of AI applications, including several commercially available software options, have been proposed to assist dentists in the diagnosis and treatment planning of various dentomaxillofacial diseases, with performance similar or even superior to that of specialists. Notably, the impact of these dental AI applications on treatment decision, clinical and patient-reported outcomes, and cost-effectiveness has so far been assessed sparsely. Such information should be further investigated in future studies to provide patients, providers, and healthcare organizers a clearer picture of the true usefulness of AI in daily dental practice.
Collapse
Affiliation(s)
- Kuo Feng Hung
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Andy Wai Kan Yeung
- Division of Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Michael M. Bornstein
- Department of Oral Health & Medicine, University Center for Dental Medicine Basel UZB, University of Basel, Basel, Switzerland
| | - Falk Schwendicke
- Department of Oral Diagnostics, Digital Health and Health Services Research, Charité–Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
12
|
Cheng M, Li X, Xu J. Promoting Healthcare Workers' Adoption Intention of Artificial-Intelligence-Assisted Diagnosis and Treatment: The Chain Mediation of Social Influence and Human-Computer Trust. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192013311. [PMID: 36293889 PMCID: PMC9602845 DOI: 10.3390/ijerph192013311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 05/24/2023]
Abstract
Artificial intelligence (AI)-assisted diagnosis and treatment could expand the medical scenarios and augment work efficiency and accuracy. However, factors influencing healthcare workers' adoption intention of AI-assisted diagnosis and treatment are not well-understood. This study conducted a cross-sectional study of 343 dental healthcare workers from tertiary hospitals and secondary hospitals in Anhui Province. The obtained data were analyzed using structural equation modeling. The results showed that performance expectancy and effort expectancy were both positively related to healthcare workers' adoption intention of AI-assisted diagnosis and treatment. Social influence and human-computer trust, respectively, mediated the relationship between expectancy (performance expectancy and effort expectancy) and healthcare workers' adoption intention of AI-assisted diagnosis and treatment. Furthermore, social influence and human-computer trust played a chain mediation role between expectancy and healthcare workers' adoption intention of AI-assisted diagnosis and treatment. Our study provided novel insights into the path mechanism of healthcare workers' adoption intention of AI-assisted diagnosis and treatment.
Collapse
|
13
|
Where Is the Artificial Intelligence Applied in Dentistry? Systematic Review and Literature Analysis. Healthcare (Basel) 2022; 10:healthcare10071269. [PMID: 35885796 PMCID: PMC9320442 DOI: 10.3390/healthcare10071269] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/25/2022] [Accepted: 06/30/2022] [Indexed: 12/29/2022] Open
Abstract
This literature research had two main objectives. The first objective was to quantify how frequently artificial intelligence (AI) was utilized in dental literature from 2011 until 2021. The second objective was to distinguish the focus of such publications; in particular, dental field and topic. The main inclusion criterium was an original article or review in English focused on dental utilization of AI. All other types of publications or non-dental or non-AI-focused were excluded. The information sources were Web of Science, PubMed, Scopus, and Google Scholar, queried on 19 April 2022. The search string was “artificial intelligence” AND (dental OR dentistry OR tooth OR teeth OR dentofacial OR maxillofacial OR orofacial OR orthodontics OR endodontics OR periodontics OR prosthodontics). Following the removal of duplicates, all remaining publications were returned by searches and were screened by three independent operators to minimize the risk of bias. The analysis of 2011–2021 publications identified 4413 records, from which 1497 were finally selected and calculated according to the year of publication. The results confirmed a historically unprecedented boom in AI dental publications, with an average increase of 21.6% per year over the last decade and a 34.9% increase per year over the last 5 years. In the achievement of the second objective, qualitative assessment of dental AI publications since 2021 identified 1717 records, with 497 papers finally selected. The results of this assessment indicated the relative proportions of focal topics, as follows: radiology 26.36%, orthodontics 18.31%, general scope 17.10%, restorative 12.09%, surgery 11.87% and education 5.63%. The review confirms that the current use of artificial intelligence in dentistry is concentrated mainly around the evaluation of digital diagnostic methods, especially radiology; however, its implementation is expected to gradually penetrate all parts of the profession.
Collapse
|
14
|
A Comparative Study of Deep Learning Models for Dental Segmentation in Panoramic Radiograph. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12063103] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Introduction: Dental segmentation in panoramic radiograph has become very relevant in dentistry, since it allows health professionals to carry out their assessments more clearly and helps them to define the best possible treatment plan for their patients. Objectives: In this work, a comparative study is carried out with four segmentation algorithms (U-Net, DCU-Net, DoubleU-Net and Nano-Net) that are prominent in the medical literature on segmentation and we evaluate their results with the current state of the art of dental segmentation in panoramic radiograph. Methods: These algorithms were tested with a dataset consisting of 1500 images, considering experiment scenarios with and without augmentation data. Results: DoubleU-Net was the model that presented the best results among the analyzed models, reaching 96.591% accuracy and 92.886% Dice using the dataset with data augmentation. Another model that stood out was Nano-Net using the dataset without data augmentation; this model achieved results close to that of the literature with only 235 thousand trainable parameters, while the literature model (TSASNet) contains 78 million. Conclusions: The results obtained in this work are satisfactory and present paths for a better and more effective dental segmentation process.
Collapse
|