1
|
Ghodsian D, D'Jesús S, Sánchez-Labrador L, Cobo-Vázquez CM, Cortés-Bretón Brinkmann J, Martínez-González JM, Meniz-García C. Maxillary Sinus Augmentation with Autogenous Tooth Grafting Material: A Systematic Review. Biomimetics (Basel) 2024; 9:518. [PMID: 39329540 PMCID: PMC11430437 DOI: 10.3390/biomimetics9090518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
The aim of this systematic review was to determine whether autogenous tooth grafting material (ATGM) is as safe and effective as other bone substitutes used for maxillary sinus augmentation procedures, evaluating histomorphometric and/or histological data, implant primary stability, associated complications and radiographic bone height measurements. An automated electronic search was conducted using four databases (Medline/PubMed, Scopus, Web of Science and Cochrane Library), supplemented by a manual search, to identify clinical human studies using particulate ATGM for the aforementioned procedure. The included studies had a sample size of at least four patients and were published before 31st July 2024. The Newcastle-Ottawa scale (NOS) and Joanna Briggs Institute (JBI) Critical Appraisal Checklist were used to assess the risk of bias in cohort studies and case series, respectively. Seven studies were included in the descriptive analysis, obtaining 128 participants (46.8% only treated with ATGM) and 192 placed implants. Due to the heterogeneity of the studies, meta-analysis could not be performed. The authors concluded that ATGM appears to be a feasible and safe alternative for maxillary sinus augmentation procedures. These results should be interpreted with caution due to the limited amount of scientific evidence on this topic and the heterogeneity between the included studies.
Collapse
Affiliation(s)
- Diba Ghodsian
- Department of Dental Clinical Specialties, Faculty of Dentistry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Sofía D'Jesús
- Department of Dental Clinical Specialties, Faculty of Dentistry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Luis Sánchez-Labrador
- Department of Dental Clinical Specialties, Faculty of Dentistry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Carlos Manuel Cobo-Vázquez
- Department of Dental Clinical Specialties, Faculty of Dentistry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Jorge Cortés-Bretón Brinkmann
- Department of Dental Clinical Specialties, Faculty of Dentistry, Complutense University of Madrid, 28040 Madrid, Spain
| | - José María Martínez-González
- Department of Dental Clinical Specialties, Faculty of Dentistry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Cristina Meniz-García
- Department of Dental Clinical Specialties, Faculty of Dentistry, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
2
|
Bjelica R, Smojver I, Vuletić M, Gerbl D, Marković L, Gabrić D. Lateral Alveolar Ridge Augmentation with Autogenous Tooth Roots and Staged Implant Placement-5-Year Follow-Up Case Series. J Clin Med 2024; 13:5118. [PMID: 39274332 PMCID: PMC11396192 DOI: 10.3390/jcm13175118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/16/2024] Open
Abstract
Background/Objectives: Alveolar bone augmentation before implant placement is a safe and effective treatment option for the reconstruction of a deficient alveolar ridge. According to recent research, permanent teeth have been used as bone graft materials, with studies confirming their clinical and histological results. This study aimed to evaluate the efficacy of alveolar ridge augmentation with autogenous tooth roots and staged implant placement, and peri-implant tissue stability in augmented sites. Methods: A total of 20 augmentations with autogenous tooth roots on mandibular alveolar ridges in 15 patients were performed. After 6 months, the ridge width (RWa) and ridge width gain (RWg) were measured. Titanium dental implants were placed in grafted sites and loaded 10 weeks after placement. Clinical parameters (bleeding on probing-BOP; probing depth-PD; mucosal recession-MR; and clinical attachment level-CAL) were assessed 2 months (T1), 3 years (T2), and 5 years (T3) after implant loading. Results: The mean RWa was 6.71 ± 0.74 mm, and the RWg was 3.15 ± 0.54 mm, respectively. No statistically significant differences were observed for clinical parameters (BOP, PD, MR, and CAL) among different time points (p > 0.05). Conclusions: Autogenous tooth roots represent a viable solution for alveolar ridge augmentation and implant placement, providing a stable environment for peri implant tissues.
Collapse
Affiliation(s)
- Roko Bjelica
- Private Dental Practice Dr. Marija Stilinović-Bjelica, 10000 Zagreb, Croatia
| | - Igor Smojver
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia
| | - Marko Vuletić
- Department of Dental Medicine, Clinical Hospital Centre Zagreb, 10000 Zagreb, Croatia
- Department of Oral Surgery, School of Dental Medicine University of Zagreb, 10000 Zagreb, Croatia
| | - Dražena Gerbl
- Department of Anaesthesiology and Intensive Care Unit (ICU), University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | | | - Dragana Gabrić
- Department of Dental Medicine, Clinical Hospital Centre Zagreb, 10000 Zagreb, Croatia
- Department of Oral Surgery, School of Dental Medicine University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
3
|
Li YF, Luo QP, Yang YX, Li AQ, Zhang XC. A novel bi-layered asymmetric membrane incorporating demineralized dentin matrix accelerates tissue healing and bone regeneration in a rat skull defect model. Biomater Sci 2024; 12:4226-4241. [PMID: 38984522 DOI: 10.1039/d4bm00350k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Objectives: The technique of guided bone regeneration (GBR) has been widely used in the field of reconstructive dentistry to address hard tissue deficiency. The objective of this research was to manufacture a novel bi-layered asymmetric membrane that incorporates demineralized dentin matrix (DDM), a bioactive bone replacement derived from dentin, in order to achieve both soft tissue isolation and hard tissue regeneration simultaneously. Methods: DDM particles were harvested from healthy, caries-free permanent teeth. The electrospinning technique was utilized to synthesize bi-layered DDM-loaded PLGA/PLA (DPP) membranes. We analyzed the DPP bilayer membranes' surface topography, physicochemical properties and degradation ability. Rat skull critical size defects (CSDs) were constructed to investigate in vivo bone regeneration. Results: The synthesized DPP bilayer membranes possessed suitable surface characteristics, acceptable mechanical properties, good hydrophilicity, favorable apatite forming ability and suitable degradability. Micro-computed tomography (CT) showed significantly more new bone formation in the rat skull defects implanted with the DPP bilayer membranes. Histological evaluation further revealed that the bone was more mature with denser bone trabeculae. In addition, the DPP bilayer membrane significantly promoted the expression of the OCN matrix protein in vivo. Conclusions: The DPP bilayer membranes exhibited remarkable biological safety and osteogenic activity in vivo and showed potential as a prospective candidate for GBR applications in the future.
Collapse
Affiliation(s)
- Yan-Fei Li
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China.
- Department of Stomatology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518033, China
| | - Qi-Pei Luo
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China.
| | - Yu-Xin Yang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China.
| | - An-Qi Li
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China.
| | - Xin-Chun Zhang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China.
| |
Collapse
|
4
|
Jing H, Wu Y, Lin Y, Luo T, Liu H, Luo Z. A Zn 2+ cross-linked sodium alginate/epigallocatechin gallate hydrogel scaffold for promoting skull repair. Colloids Surf B Biointerfaces 2024; 239:113971. [PMID: 38759296 DOI: 10.1016/j.colsurfb.2024.113971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/22/2024] [Accepted: 05/12/2024] [Indexed: 05/19/2024]
Abstract
The optimal material for repairing skull defects should exhibit outstanding biocompatibility and mechanical properties. Specifically, hydrogel scaffolds that emulate the microenvironment of the native bone extracellular matrix play a vital role in promoting osteoblast adhesion, proliferation, and differentiation, thereby yielding superior outcomes in skull reconstruction. In this study, a composite network hydrogel comprising sodium alginate (SA), epigallocatechin gallate (EGCG), and zinc ions (Zn2+) was developed to establish an ideal osteogenic microenvironment for bone regeneration. Initially, physical entanglement and hydrogen bonding between SA and EGCG resulted in the formation of a primary network hydrogel known as SA-EGCG. Subsequently, the inclusion of Zn2+ facilitated the creation of a composite network hydrogels named SA-EGCG-Zn2+ via dynamic coordination bonds with SA and EGCG. The engineered SA-EGCG2 %-Zn2+ hydrogels offered an environment mimicking the native extracellular matrix (ECM). Moreover, the sustained release of Zn2+ from the hydrogel effectively enhanced cell adhesion, promoted proliferation, and stimulated osteoblast differentiation. In vitro experiments have shown that SA-EGCG2 %-Zn2+ hydrogels greatly enhance the attachment and growth of osteoblast precursor cells (MC3T3-E1), while also increasing the expression of genes related to osteogenesis in these cells. Additionally, in vivo studies have confirmed that SA-EGCG2 %-Zn2+ hydrogels promote new bone formation and accelerate the regeneration of bone in situ, indicating promising applications in the realm of bone tissue engineering.
Collapse
Affiliation(s)
- Huan Jing
- Department of Endodontics, Guangdong Provincial High-level Clinical Key Specialty, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, PR China.
| | - Yun Wu
- Guangdong Provincial High-level Clinical Key Specialty, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, PR China
| | - Yuntao Lin
- Guangdong Provincial High-level Clinical Key Specialty, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, PR China
| | - Tingting Luo
- Guangdong Provincial High-level Clinical Key Specialty, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, PR China
| | - Hongsheng Liu
- Guangdong Huayan Biomedical Science and Technology Center, Guangzhou, Guangdong 511441, PR China
| | - Zhen Luo
- Pingshan General Hospital, Southern Medical University, Shenzhen, Guangdong 518118, PR China; Pingshan District Peoples' Hospital of Shenzhen, Shenzhen, Guangdong 518118, PR China.
| |
Collapse
|
5
|
Adamičková A, Kyselovic J, Adamička M, Chomaničová N, Valášková S, Šalingová B, Molitorisová M, Červenák Z, Danišovič Ľ, Gažová A. Effects of Ibuprofen and Diclofenac Pre-Treatment on Viability and Apoptosis Processes in Human Dental Pulp Stem Cells. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:787. [PMID: 38792973 PMCID: PMC11123081 DOI: 10.3390/medicina60050787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024]
Abstract
Background and Objectives: Stem cell-based regeneration strategies have shown therapeutic efficacy in various fields of regenerative medicine. These include bone healing after bone augmentation, often complicated by pain, which is managed by using nonsteroidal anti-inflammatory drugs (NSAIDs). However, information is limited about how NSAIDs affect the therapeutic potential of stem cells. Materials and Methods: We investigated the effects of ibuprofen and diclofenac on the characteristics, morphology, and immunophenotype of human mesenchymal stromal cells isolated from the dental pulp (DPSCs) and cultured in vitro, as well as their effects on the expression of angiogenic growth factors (VEGFA and HGF) and selected genes in apoptosis signalling pathways (BAX, BAK, CASP3, CASP9, and BCL2). Results: Ibuprofen and diclofenac significantly reduced the viability of DPSCs, while the expression of mesenchymal stem cell surface markers was unaffected. Both ibuprofen and diclofenac treatment significantly upregulated the expression of HGF, while the expression of VEGFA remained unchanged. Ibuprofen significantly altered the expression of several apoptosis-related genes, including the upregulation of CASP9 and BCL2, with decreased CASP3 expression. BAK, CASP3, CASP9, and BCL2 expressions were significantly increased in the diclofenac-treated DPSCs, while no difference was demonstrated in BAX expression. Conclusions: Our results suggest that concomitant use of the NSAIDs ibuprofen or diclofenac with stem cell therapy may negatively impact cell viability and alter the expression of apoptosis-related genes, affecting the efficacy of stem cell therapy.
Collapse
Affiliation(s)
- Adriana Adamičková
- 5th Department of Internal Medicine, Faculty of Medicine, Comenius University Bratislava, Špitálska 24, 81372 Bratislava, Slovakia
| | - Jan Kyselovic
- 5th Department of Internal Medicine, Faculty of Medicine, Comenius University Bratislava, Špitálska 24, 81372 Bratislava, Slovakia
- Department of Pharmacology and Toxicology, University of Veterinary Medicine and Pharmacy, 04181 Košice, Slovakia
| | - Matúš Adamička
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University Bratislava, Špitálska 24, 81372 Bratislava, Slovakia; (M.A.)
| | - Nikola Chomaničová
- International Laser Centre, Slovak Centre of Scientific and Technical Information, Lamačská cesta 7315/8A, 84104 Bratislava, Slovakia
| | - Simona Valášková
- International Laser Centre, Slovak Centre of Scientific and Technical Information, Lamačská cesta 7315/8A, 84104 Bratislava, Slovakia
| | - Barbara Šalingová
- 5th Department of Internal Medicine, Faculty of Medicine, Comenius University Bratislava, Špitálska 24, 81372 Bratislava, Slovakia
| | - Miroslava Molitorisová
- International Laser Centre, Slovak Centre of Scientific and Technical Information, Lamačská cesta 7315/8A, 84104 Bratislava, Slovakia
| | - Zdenko Červenák
- 5th Department of Internal Medicine, Faculty of Medicine, Comenius University Bratislava, Špitálska 24, 81372 Bratislava, Slovakia
| | - Ľuboš Danišovič
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University Bratislava, Špitálska 24, 81372 Bratislava, Slovakia; (M.A.)
| | - Andrea Gažová
- Institute of Pharmacology and Clinical Pharmacology, Faculty of Medicine, Comenius University Bratislava, Špitálska 24, 81372 Bratislava, Slovakia
| |
Collapse
|
6
|
Refahi P, Shaikh S. Utilizing partially demineralized dentin plate for horizontal ridge augmentation: A case report. Clin Adv Periodontics 2024. [PMID: 38696543 DOI: 10.1002/cap.10291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 05/04/2024]
Abstract
BACKGROUND This article intends to showcase a case of guided bone regeneration (GBR) utilizing a partially demineralized dentin plate processed from an extracted second molar for horizontal augmentation of the posterior ridge for implant placement. METHODS AND RESULTS A 60-year-old patient presented with horizontal ridge deficiency at site #30 and an endodontically treated tooth #31 with recurrent decay. A treatment plan was proposed to extract tooth #31 and utilize a dentin graft from the tooth for ridge augmentation at site #30. Following the atraumatic extraction of tooth #31, it was sectioned into a 1 mm thick dentin plate, sterilized, and processed to obtain a demineralized dentin graft. Following a mid-crestal incision and full-thickness flap elevation, the dentin plate was adapted on the buccal defect of site #30 with 10 mm fixation screws, and the gap between the plate and the buccal bone was filled with 0.5 cc of 50/50 cortico-cancellous bone allograft hydrated with saline, covered with collagen membrane followed by primary closure. At 6 months, a postoperative cone-beam computed tomography (CBCT) was obtained to evaluate the ridge width revealing sufficient ridge width for optimal implant placement. The radio-opaque dentin plate was visible on the CBCT depicting integration with the alveolar ridge. Following surgical implant preparation protocol, a 4 mm diameter and 8.5 mm length implant was placed in a restoratively driven position. CONCLUSION This case reports favorable outcomes for GBR using a partially demineralized dentin plate as an alternative to an autogenous bone block graft for horizontal ridge augmentation for future implant placement. KEY POINTS This case introduces a novel method utilizing partially demineralized dentin plates derived from extracted teeth for guided bone regeneration, showcasing its potential efficacy in addressing ridge deficiencies. Success, in this case, relies on meticulous sectioning of the tooth and processing of the dentin graft, precise adaptation and fixation of the graft to the residual ridge, and achieving primary closure for undisturbed healing. Limitations to success include the availability of teeth for extraction coinciding with the need for ridge augmentation and unstable graft fixation.
Collapse
Affiliation(s)
- Pooyan Refahi
- Department of Periodontology, Tufts University School of Dental Medicine, Boston, Massachusetts, USA
- Private Practice, Boston, Massachusetts, USA
| | - Samar Shaikh
- Department of Periodontology, Tufts University School of Dental Medicine, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Narde J, Ganapathy D, Pandurangan KK. Evaluation of the Success of Autogenous Block Grafting in Atrophic Maxillary and Mandibular Ridges Prior to and After Implant Placement. Cureus 2024; 16:e53829. [PMID: 38465098 PMCID: PMC10924432 DOI: 10.7759/cureus.53829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/03/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND Dental implantology's success relies on adequate bone volume and quality, necessitating bone augmentation for implant placement. Primary lateral bone augmentation, utilizing autogenous block grafts, addresses horizontal bone loss. OBJECTIVE This study aims to evaluate the efficacy of autogenous block grafting, specifically ramus and fibula blocks, in addressing severe atrophic ridges before and after implant placement. METHODS Twenty-one patients underwent block grafting, predominantly using the ramus technique (80/20 ratio). CBCT measurements assessed horizontal grafting outcomes. Implant success and bone volume changes were analyzed. RESULTS Post-grafting, bone width increased from 1.8-3.1 mm to 4.5-6 mm, exceeding critical thresholds. Implant success reached 95%, indicating the grafting techniques' effectiveness. CONCLUSION Autogenous block grafting, especially with ramus and fibula blocks, transforms severe atrophic ridges, enabling successful implant integration. Long-term follow-up is essential for a comprehensive evaluation. CLINICAL RELEVANCE This study provides crucial insights into autogenous block grafting's transformative impact on challenging cases, guiding future applications in reconstructive dentistry.
Collapse
Affiliation(s)
- Joshua Narde
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Dhanraj Ganapathy
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Kiran Kumar Pandurangan
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
8
|
Han Z, Xiong J, Jin X, Dai Q, Han M, Wu H, Yang J, Tang H, He L. Advances in reparative materials for infectious bone defects and their applications in maxillofacial regions. J Mater Chem B 2024; 12:842-871. [PMID: 38173410 DOI: 10.1039/d3tb02069j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Infectious bone defects are characterized by the partial loss or destruction of bone tissue resulting from bacterial contaminations subsequent to diseases or external injuries. Traditional bone transplantation and clinical methods are insufficient in meeting the treatment demands for such diseases. As a result, researchers have increasingly focused on the development of more sophisticated biomaterials for improved therapeutic outcomes in recent years. This review endeavors to investigate specific reparative materials utilized for the treatment of infectious bone defects, particularly those present in the maxillofacial region, with a focus on biomaterials capable of releasing therapeutic substances, functional contact biomaterials, and novel physical therapy materials. These biomaterials operate via heightened antibacterial or osteogenic properties in order to eliminate bacteria and/or stimulate bone cells regeneration in the defect, ultimately fostering the reconstitution of maxillofacial bone tissue. Based upon some successful applications of new concept materials in bone repair of other parts, we also explore their future prospects and potential uses in maxillofacial bone repair later in this review. We highlight that the exploration of advanced biomaterials holds promise in establishing a solid foundation for the development of more biocompatible, effective, and personalized treatments for reconstructing infectious maxillofacial defects.
Collapse
Affiliation(s)
- Ziyi Han
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Jingdi Xiong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Xiaohan Jin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Qinyue Dai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Mingyue Han
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Hongkun Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Jiaojiao Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Haiqin Tang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Libang He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
9
|
Wushou A, Luo Y, Cheng QT, Yang ZC. Using autogenous tooth sticky bone graft repair mandibular third molar dentigerous cyst osseous defects. BMC Oral Health 2024; 24:39. [PMID: 38185621 PMCID: PMC10771700 DOI: 10.1186/s12903-023-03673-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/16/2023] [Indexed: 01/09/2024] Open
Abstract
BACKGROUND Dentigerous cyst are most common odontogenic cyst and they frequently occur at the mandibular third molar. Their asymptomatic long medical history always resulted in severe bone resorption at the distal aspect of the adjacent second molar. BonMaker® ATB demonstrate an excellent autogenous bone graft candidacy. The aim of this study is to share a single team's experience of dentigerous cyst osseous defect repairing by applying autogenous tooth sticky bone graft. METHOD In total, 18 patients with dentigerous cyst, which was arised from mandibular third molar unilaterally, were enrolled in this study. Enucleation of dentigerous cyst was performed extracting with involving teeth under general anesthesia. Autogenous tooth sticky bone graft was prepared using extracted tooth and autogenous fibrin glue. Subsequently, grafting was performed above covering with concentrate growth factors. Patients were followed up at sixth months. RESULTS They were eleven male and seven female patients. Their ages ranged from 20 to 40 years, with a mean of 31 years. Primary wound healing of all sites was achieved in all the patients. Sixth months postoperative radiographic assessment show that dentigerous cysts osseous defects of seventeen patients were good bone filling and ossification. One patient occurred slight bone resorption at the distal aspect of the adjacent second molar. CONCLUSION Within the limitation of sample size and retrospective nature of the present study, autogenous tooth sticky bone graft demonstrates one of the best alternative alveolar bones repairing graft.
Collapse
Affiliation(s)
- Alimujiang Wushou
- Department of Oral & Maxillofacial Surgery, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| | - Yuan Luo
- Department of Oral & Maxillofacial Surgery, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| | - Qing-Tao Cheng
- Department of Oral & Maxillofacial Surgery, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China.
| | - Zhi-Cheng Yang
- Department of Oral & Maxillofacial Surgery, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China.
| |
Collapse
|
10
|
Zhou WH, Li YF. A bi-layered asymmetric membrane loaded with demineralized dentin matrix for guided bone regeneration. J Mech Behav Biomed Mater 2024; 149:106230. [PMID: 37976993 DOI: 10.1016/j.jmbbm.2023.106230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
OBJECTIVES Guided bone regeneration (GBR) is a well-established method for repairing hard tissue deficiency in reconstructive dentistry. The aim of this study was to investigate the barrier function, osteogenic activity and immunomodulatory ability of a novel bi-layered asymmetric membrane loaded with demineralized dentin matrix (DDM). METHODS DDM particles were harvested from healthy, caries-free permanent teeth. Electrospinning technique was utilized to prepare bi-layered DDM-loaded poly(lactic-co-glycolic acid) (PLGA)/poly(lactic acid) (PLA) membranes (abbreviated as DPP bilayer membranes). We analyzed the membranes' surface properties, cytocompatibility and barrier function, and evaluated their osteogenic activity in vitro. In addition, its effects on the osteogenic immune microenvironment were also investigated. RESULTS Synthetic DPP bilayer membranes presented suitable surface characteristics and satisfactory cytocompatibility. Transwell assays showed significant fewer migrated cells by the DPP bilayer membranes compared with blank control, with or without in vitro degradation (all P < 0.001). In vitro experiments indicated that our product elevated messenger ribonucleic acid (mRNA) expression levels of osteogenic genes alkaline phosphatase (ALP), osteopontin (OPN), osteocalcin (OCN) and runt-related transcription factor 2 (Runx2). Among all groups, 20% DPP bilayer membrane displayed highest ALP activity (P < 0.001). Furthermore, DPP bilayer membranes enhanced the mRNA expression of M2 macrophage markers and increased the proportion of CD206+ M2 macrophages by 100% (20% DPP: P < 0.001; 30% DPP: P < 0.001; 40% DPP: P < 0.05), thus exerting an inflammation suppressive effect. CONCLUSIONS DPP bilayer membranes exhibited notable biological safety and osteogenic activity in vitro, and have potential as a prospective candidate for GBR approach in the future.
Collapse
Affiliation(s)
- Wan-Hang Zhou
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yan-Fei Li
- Department of Stomatology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China.
| |
Collapse
|
11
|
Alarcón-Sánchez MA, Becerra-Ruíz JS, Yessayan L, Mosaddad SA, Heboyan A. Implant-supported prosthetic rehabilitation after Ameloblastomas treatment: a systematic review. BMC Oral Health 2023; 23:1013. [PMID: 38110933 PMCID: PMC10729555 DOI: 10.1186/s12903-023-03765-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Ameloblastoma (AM), the benign counterpart of ameloblastic carcinoma, is a benign odontogenic tumor of epithelial origin, naturally aggressive, with unlimited growth potential and a high tendency to relapse if not adequately removed. Patients with AM treated surgically can benefit from dental implant therapy, promoting oral rehabilitation and improving their quality of life. The present study aimed to determine the survival rate of dental implants placed after surgical treatment of patients affected by AM. In addition, there were two secondary objectives: 1) To evaluate which dental implant loading protocols are most frequently used and 2) To determine the type of prosthetic restoration most commonly used in these patients. METHODS The Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines were followed during the study. Searches were performed in three databases (PubMed/MEDLINE, Scopus, and Google Scholar) until November 2023. Additionally, the electronic search was enriched by an iterative hand search of journals related to oral pathology and medicine, maxillofacial surgery, and oral prosthodontics and implantology. Only reports and case series in English from January 2003 to date were included. The Joanna Briggs Institute tool (JBI-Case Reports/Case Series) was used for the study quality assessment. RESULTS The total number of patients and implants studied were 64 and 271, respectively, all with surgically treated AM. The patient's ages ranged from 8 to 79 years, with a mean (SD) age of 37.3 ± 16.4. Fifty-three percent were male and 47% were female. The range of follow-up duration was 1 to 22 years. An implant survival/success rate of 98.1% was reported. In addition, most of them were conventionally loaded (38.3%). Hybrid implant-supported fixed dentures were the most commonly used by prosthodontists (53%). CONCLUSIONS Oral rehabilitation with dental implants inserted in free flaps for orofacial reconstruction in surgically treated patients with AM can be considered a safe and successful treatment modality.
Collapse
Affiliation(s)
- Mario Alberto Alarcón-Sánchez
- Biomedical Science, Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo de los Bravo, Guerrero, Mexico
| | - Julieta Sarai Becerra-Ruíz
- Institute of Research of Bioscience, University Center of Los Altos, University of Guadalajara, Tepatitlán de Morelos, Jalisco, Mexico
| | - Lazar Yessayan
- Department of Therapeutic Stomatology, Faculty of Stomatology, Yerevan State Medical University after Mkhitar Heratsi, Yerevan, Armenia
| | - Seyed Ali Mosaddad
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Qasr-e-Dasht Street, Shiraz, Iran.
| | - Artak Heboyan
- Department of Prosthodontics, Faculty of Stomatology, Yerevan State Medical University after Mkhitar Heratsi, Str. Koryun 2, 0025, Yerevan, Armenia.
| |
Collapse
|
12
|
Syahruddin MH, Anggraeni R, Ana ID. A microfluidic organ-on-a-chip: into the next decade of bone tissue engineering applied in dentistry. Future Sci OA 2023; 9:FSO902. [PMID: 37753360 PMCID: PMC10518836 DOI: 10.2144/fsoa-2023-0061] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/21/2023] [Indexed: 09/28/2023] Open
Abstract
A comprehensive understanding of the complex physiological and pathological processes associated with alveolar bones, their responses to different therapeutics strategies, and cell interactions with biomaterial becomes necessary in precisely treating patients with severe progressive periodontitis, as a bone-related issue in dentistry. However, existing monolayer cell culture or pre-clinical models have been unable to mimic the complex physiological, pathological and regeneration processes in the bone microenvironment in response to different therapeutic strategies. In this point, 'organ-on-a-chip' (OOAC) technology, specifically 'alveolar-bone-on-a-chip', is expected to resolve the problems by better imitating infection site microenvironment and microphysiology within the oral tissues. The OOAC technology is assessed in this study toward better approaches in disease modeling and better therapeutics strategy for bone tissue engineering applied in dentistry.
Collapse
Affiliation(s)
- Muhammad Hidayat Syahruddin
- Postgraduate Student, Dental Science Doctoral Study Program, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Rahmi Anggraeni
- Research Center for Preclinical & Clinical Medicine, National Research & Innovation Agency of the Republic of Indonesia, Cibinong Science Center, Bogor, 16915, Indonesia
- Research Collaboration Center for Biomedical Scaffolds, National Research & Innovation Agency (BRIN) – Universitas Gadjah Mada (UGM), Yogyakarta, 55281, Indonesia
| | - Ika Dewi Ana
- Department of Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
- Research Collaboration Center for Biomedical Scaffolds, National Research & Innovation Agency (BRIN) – Universitas Gadjah Mada (UGM), Yogyakarta, 55281, Indonesia
| |
Collapse
|
13
|
Gowda TM, Jayashri M, Venkatesh UG, Shah R, Kumar ABT, Deepthi M, Priya S. Autologous tooth bone graft block compared with advanced platelet-rich fibrin in alveolar ridge preservation: A clinico-radiographic study. J Indian Soc Periodontol 2023; 27:619-625. [PMID: 38434501 PMCID: PMC10906784 DOI: 10.4103/jisp.jisp_43_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 03/05/2024] Open
Abstract
Objectives To determine the clinico-radiographic efficiency of partially demineralized dentin matrix block (PDDM block), a mixture of PDDM with advanced-platelet-rich fibrin+ (A-PRF+) and injectable platelet-rich fibrin versus A-PRF+ alone in alveolar socket preservation. Materials and Methods Sixteen molar teeth indicated for extraction were randomly assigned into two groups. For the test group, sockets were packed with PDDM block and control group, with A-PRF+ plug alone. Clinical and radiographic cone-beam computed tomography methods were used to assess the horizontal and vertical ridge dimensional changes at baseline and 4 months. Results Clinically, the mid buccal and palatal crestal height (10.25 ± 0.86 and 9.75 ± 0.28 mm) and alveolar ridge width (11.37 ± 0.25 mm) were significantly higher in the test group as compared to the control group, 4 months after tooth extraction (P < 0.01). Radiographically, there was improved apposition and nonsignificant resorption for the test group in ridge height and width, whereas statistically significant higher resorption was seen in the control group at 4 months. Conclusion The application of the PDDM block demonstrated efficacy in maintaining the dimensions of the extraction socket when compared to A-PRF+ alone. This autologous and immune-free regenerative biomaterial is widely obtainable, offering a glimpse into the potential of next-generation biofuels for regeneration.
Collapse
Affiliation(s)
| | | | - Usha Govindaroy Venkatesh
- Department of Public Health Dentistry, Bapuji Dental College and Hospital, Davanagere, Karnataka, India
| | - Rucha Shah
- Department of Periodontics, Bapuji Dental College and Hospital, Davanagere, Karnataka, India
| | | | - Manjunath Deepthi
- Department of Periodontics, Bapuji Dental College and Hospital, Davanagere, Karnataka, India
| | - Saloni Priya
- Department of Periodontics, Bapuji Dental College and Hospital, Davanagere, Karnataka, India
| |
Collapse
|
14
|
Wu H, Chen X, Kong L, Liu P. Mechanical and Biological Properties of Titanium and Its Alloys for Oral Implant with Preparation Techniques: A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6860. [PMID: 37959457 PMCID: PMC10649385 DOI: 10.3390/ma16216860] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023]
Abstract
Dental implants have revolutionised restorative dentistry, offering patients a natural-looking and durable solution to replace missing or severely damaged teeth. Titanium and its alloys have emerged as the gold standard among the various materials available due to their exceptional properties. One of the critical advantages of titanium and its alloys is their remarkable biocompatibility which ensures minimal adverse reactions within the human body. Furthermore, they exhibit outstanding corrosion resistance ensuring the longevity of the implant. Their mechanical properties, including hardness, tensile strength, yield strength, and fatigue strength, align perfectly with the demanding requirements of dental implants, guaranteeing the restoration's functionality and durability. This narrative review aims to provide a comprehensive understanding of the manufacturing techniques employed for titanium and its alloy dental implants while shedding light on their intrinsic properties. It also presents crucial proof-of-concept examples, offering tangible evidence of these materials' effectiveness in clinical applications. However, despite their numerous advantages, certain limitations still exist necessitating ongoing research and development efforts. This review will briefly touch upon these restrictions and explore the evolving trends likely to shape the future of titanium and its alloy dental implants.
Collapse
Affiliation(s)
| | | | | | - Ping Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (H.W.); (X.C.); (L.K.)
| |
Collapse
|
15
|
Patel B, Joshi S, Nagrani T, Girdhar GA, Patel H, Sinha S, Haque M, Kumar S, Haq MA. Clinical and Radiographic Evaluation of Autologous Platelet-Rich Fibrin With or Without Demineralized Bone Matrix in the Treatment of Grade II Furcation Defects. Cureus 2023; 15:e44394. [PMID: 37654905 PMCID: PMC10468150 DOI: 10.7759/cureus.44394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2023] [Indexed: 09/02/2023] Open
Abstract
Introduction This study aims to differentiate the employment of demineralized bone matrix (DMBM; Osseograft, Advanced Biotech Products (P) Ltd, Chennai, India) and platelet-rich fibrin (PRF) alone to a composite graft consisting of both materials in the surgical actions toward the anomalies of the human periodontal furcation imperfection. Methods In a split-mouth study, 30 patients with mandibular molars affected by the furcation were allocated without conscious choice to test (PRF + DMBM, n = 30) or control (PRF, n = 30) categories. At the starting point, three months after surgery, and six months later, the following modifiable factors were evaluated: probing pocket depth (PPD), full-mouth plaque scores, full-mouth gingival scores, radiographic defect depth, relative vertical clinical attachment level (RVCAL), and relative horizontal clinical attachment level (RHCAL). Results Results at three and six months demonstrated substantial differences between baseline values for both treatment methods in clinical and X-ray imaging appraisal. Nonetheless, the PRF/DMBM group manifests statistically significantly soaring changes observed in comparison to the PRF group. Overall, the probing depth (PD) in the test site was significantly lower than that in the control site, showing a reduction of 68% (95% CI=41%, 95%, p<0.001). Conclusion Clinical indications significantly improved with PRF and DMBM combined instead of PRF alone. On radiographs, the test group also showed higher bone fill.
Collapse
Affiliation(s)
- Bhavin Patel
- Periodontology, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Surabhi Joshi
- Periodontology, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Tanya Nagrani
- Periodontology, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Gaurav A Girdhar
- Periodontology, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Heli Patel
- Periodontology, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Susmita Sinha
- Physiology, Khulna City Medical College Hospital, Khulna, BGD
| | - Mainul Haque
- Karnavati Scientific Research Center, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
- Pharmacology and Therapeutics, National Defence University of Malaysia, Kuala Lumpur, MYS
| | - Santosh Kumar
- Periodontology, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Md Ahsanul Haq
- Biostatistics, Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDRB), Dhaka, BGD
| |
Collapse
|
16
|
Wang W, Li X, Mei D, Zhao B. Autogenous solid dentin for horizontal ridge augmentation with simultaneous implantation in a severe bone defect: A 3.5-year follow-up clinical report. J Prosthet Dent 2023:S0022-3913(23)00412-2. [PMID: 37442750 DOI: 10.1016/j.prosdent.2023.05.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 07/15/2023]
Abstract
Autogenous dental root placement is an available approach for horizontal alveolar ridge augmentation in patients with severe bony defects. However, in previous reports, bone augmentation has been done before the implant placement. This clinical report describes the use of dentin grafting for alveolar ridge augmentation and simultaneous implant placement in the maxillary left central incisor region with a severe horizontal bone defect. Under strict adherence to the recommended indications, dentin grafting and simultaneous implantation could be clinically feasible protocols.
Collapse
Affiliation(s)
- Wenxue Wang
- Postgraduate student, Department of Oral Implantology, The Affiliated Hospital of Qingdao University, School of Stomatology of Qingdao University, Qingdao, Shandong, PR China
| | - Xin Li
- Attending, Department of Oral Implantology, The Affiliated Hospital of Qingdao University, School of Stomatology of Qingdao University, Qingdao, Shandong, PR China
| | - Dongmei Mei
- Attending, Department of Oral Implantology, The Affiliated Hospital of Qingdao University, School of Stomatology of Qingdao University, Qingdao, Shandong, PR China
| | - Baodong Zhao
- Professor, Department of Oral Implantology, The Affiliated Hospital of Qingdao University, School of Stomatology of Qingdao University, Qingdao, Shandong, PR China.
| |
Collapse
|
17
|
Wang J, Qi X, Zhou Y, Wang G, Yang Y, Jiang T, Yu L, Wang S, Zhang W. Stabilization of Bio-Oss ® particulates using photocurable hydrogel to enhance bone regeneration by regulating macrophage polarization. Front Bioeng Biotechnol 2023; 11:1183594. [PMID: 37351475 PMCID: PMC10282947 DOI: 10.3389/fbioe.2023.1183594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/23/2023] [Indexed: 06/24/2023] Open
Abstract
Bone substitutes are widely used in maxillofacial and oral surgeries. However, in clinical practice, bone substitutes with various forms, including separated particulates, powders, and blocks, have exhibited poor handling properties and space maintenance characteristics, resulting in long surgery procedures and unstable volume of the newly formed bone. Movable separated particulates with high stiffness have induced local inflammatory responses that hinder bone regeneration. The present study aimed to develop a new method to enhance the stability and operability of bone substitutes commonly used in dentistry by premixing with photocurable hydrogel GelMA. The GelMA-encapsulated particulate had a strong capacity to aggregate separated particulates and firmly attach to the host bone defect after photocuring compared to particulates alone. Additionally, macrophages at the surface of the GelMA-stabilized particulates tended to present a more M2-like phenotype than those at the surface of Bio-Oss®, leading to more MMR+ multinucleated giant cell formation and the induction of blood vessel invasion and new bone formation. In conclusion, this hydrogel-coated bone substitute strategy facilitates bone regeneration with increased operability, a stable volume of osteogenic space, and a favorable osteogenic microenvironment, indicating its potential value in the field of maxillofacial and oral surgeries when bone substitutes are needed.
Collapse
Affiliation(s)
- Jiajia Wang
- Shanghai Key Laboratory of Stomatology, Department of Oral Surgery, Shanghai Ninth People’s Hospital, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xuanyu Qi
- Shanghai Key Laboratory of Stomatology, Department of Prosthodontics, Shanghai Ninth People’s Hospital, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuqi Zhou
- School of Stomatology, Weifang Medical University, Weifang, China
| | - Guifang Wang
- Shanghai Key Laboratory of Stomatology, Department of Prosthodontics, Shanghai Ninth People’s Hospital, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuanmeng Yang
- Shanghai Key Laboratory of Stomatology, Department of Preventive Dentistry, Shanghai Ninth People’s Hospital, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ting Jiang
- Shanghai Key Laboratory of Stomatology, Department of Orthodontics, Shanghai Ninth People’s Hospital, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Yu
- School of Stomatology, Weifang Medical University, Weifang, China
| | - Shaoyi Wang
- Shanghai Key Laboratory of Stomatology, Department of Oral Surgery, Shanghai Ninth People’s Hospital, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenjie Zhang
- Shanghai Key Laboratory of Stomatology, Department of Prosthodontics, Shanghai Ninth People’s Hospital, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
18
|
Gao X, Xu Z, Li S, Cheng L, Xu D, Li L, Chen L, Xu Y, Liu Z, Liu Y, Sun J. Chitosan-vancomycin hydrogel incorporated bone repair scaffold based on staggered orthogonal structure: a viable dually controlled drug delivery system. RSC Adv 2023; 13:3759-3765. [PMID: 36756570 PMCID: PMC9890554 DOI: 10.1039/d2ra07828g] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/11/2023] [Indexed: 01/26/2023] Open
Abstract
In clinical practice, challenges remain in the treatment of large infected bone defects. Bone tissue engineering scaffolds with good mechanical properties and antibiotic-controlled release are powerful strategies for infection treatment. In this study, we prepared polylactic acid (PLA)/nano-hydroxyapatite (nHA) scaffolds with vertical orthogonal and staggered orthogonal structures by applying 3D printing technology. In addition, vancomycin (Van)-based chitosan (CS) hydrogel (Gel@Van) was loaded on the scaffold (PLA/nHA/CS-Van) to form a local antibiotic release system. The microstructure of the composite scaffold had high porosity with interconnected three-dimensional networks. The mechanical properties of the PLA/nHA/CS-Van composite scaffold were enhanced by the addition of CS-Van. The results of the water contact angle analysis showed that the hydrophilicity of the drug-loaded scaffold improved. In addition, the composite scaffold could produce sustained release in vitro for more than 8 weeks without adverse effects on the proliferation and differentiation of mouse embryonic osteoblasts (MC3T3-E1), which confirmed its good biocompatibility. During the in vitro antimicrobial study, the composite scaffold effectively inhibited the growth of Staphylococcus aureus (S. aureus). Therefore, our results suggest that the PLA/nHA/CS-Van composite scaffold is a promising strategy for treating infected bone defects.
Collapse
Affiliation(s)
- Xiaohan Gao
- The Affiliated Hospital of Qingdao University Qingdao 266000 China .,School of Stomatology of Qingdao University Qingdao 266000 China
| | - Zexian Xu
- The Affiliated Hospital of Qingdao University Qingdao 266000 China .,School of Stomatology of Qingdao University Qingdao 266000 China
| | - Shangbo Li
- The Affiliated Hospital of Qingdao University Qingdao 266000 China .,School of Stomatology of Qingdao University Qingdao 266000 China
| | - Lidi Cheng
- The Affiliated Hospital of Qingdao University Qingdao 266000 China .,School of Stomatology of Qingdao University Qingdao 266000 China
| | - Dian Xu
- The Affiliated Hospital of Qingdao University Qingdao 266000 China .,School of Stomatology of Qingdao University Qingdao 266000 China
| | - Li Li
- The Affiliated Hospital of Qingdao University Qingdao 266000 China .,School of Stomatology of Qingdao University Qingdao 266000 China
| | - Liqiang Chen
- The Affiliated Hospital of Qingdao University Qingdao 266000 China .,School of Stomatology of Qingdao University Qingdao 266000 China .,Dental Digital Medicine & 3D Printing Engineering Laboratory of Qingdao Qingdao 266000 China
| | - Yaoxiang Xu
- The Affiliated Hospital of Qingdao University Qingdao 266000 China .,School of Stomatology of Qingdao University Qingdao 266000 China
| | - Zijian Liu
- The Affiliated Hospital of Qingdao University Qingdao 266000 China .,School of Stomatology of Qingdao University Qingdao 266000 China
| | - Yanshan Liu
- The Affiliated Hospital of Qingdao University Qingdao 266000 China .,School of Stomatology of Qingdao University Qingdao 266000 China .,Dental Digital Medicine & 3D Printing Engineering Laboratory of Qingdao Qingdao 266000 China.,Shandong Provincial Key Laboratory of Digital Medicine and Computer-Assisted Surgery Qingdao 266000 China
| | - Jian Sun
- The Affiliated Hospital of Qingdao University Qingdao 266000 China .,School of Stomatology of Qingdao University Qingdao 266000 China .,Dental Digital Medicine & 3D Printing Engineering Laboratory of Qingdao Qingdao 266000 China.,Shandong Provincial Key Laboratory of Digital Medicine and Computer-Assisted Surgery Qingdao 266000 China
| |
Collapse
|
19
|
Farhan YAA, Abdelsameaa SES, Elgamily M, Awad S. Impact of Different Preparations of Tooth Graft vs Xenogeneic Bone Graft on Bone Healing: An Experimental Study. J Contemp Dent Pract 2022; 23:1163-1172. [PMID: 37073942 DOI: 10.5005/jp-journals-10024-3438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
AIM This study aims to compare the effect of demineralized xenogeneic tooth graft in its two forms, particulate and block, with bovine xenograft in the healing of a rabbit tibial bone defect model. MATERIALS AND METHODS Two monocortical bony defects were made in the right tibias of 36 rabbits, and were divided into four groups. Group I defects were left empty, while group II, III, and IV were filled with bovine xenograft, demineralized particulate tooth graft, and demineralized perforated block tooth graft, respectively for evaluation of the bone healing process. Three rabbits from each group were euthanized at 2, 4, and 6 weeks after surgery. The bone specimens were processed and stained with hematoxylin and eosin (H&E) and osteopontin (OPN) immunohistochemical staining. The results were subjected to image analysis and quantitative evaluation. RESULTS Demineralized particulate tooth graft showed the best bone healing capacity compared to all other groups at all time points tested, as it showed a large amount of the formed bone, rapid closure of the defect with a significant increase in OPN expression, and the least amount of the residual grafted particles. CONCLUSION In comparison to bovine xenograft and demineralized dentin block graft, the demineralized particulate tooth grafting material is a promising bone grafting substitute as it proved to be osteoconductive, biocompatible, and bioresorbable. CLINICAL SIGNIFICANCE Demineralized tooth grafting material can aid in the regeneration of large bone defects, leading to improvement in the filling of the bone defects which can help in oral and maxillofacial reconstruction.
Collapse
Affiliation(s)
| | | | - Mahitabe Elgamily
- Department of Oral Biology, Mansoura University, Mansoura, Egypt, Phone: +01000777402, e-mail:
| | - Sally Awad
- Department of Oral and Maxillofacial Surgery, Mansoura University, Mansoura, Egypt
| |
Collapse
|