1
|
Xu K, Zou H, Yang A, Yao Q, Li Q, Zhang J, Hu X. Effects of antimony on antioxidant system, damage indexes of blood-brain barrier and ultrastructure of zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2024; 286:110013. [PMID: 39173811 DOI: 10.1016/j.cbpc.2024.110013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/02/2024] [Accepted: 08/17/2024] [Indexed: 08/24/2024]
Abstract
Antimony (Sb) and its compounds can be harmful to people and are known to cause cancer, so they are a key pollutant to control. This study investigated the influence of antimony on non-enzymatic antioxidants and the blood-brain barrier (BBB) in zebrafish(Danio rerio), a model organism that shares a high degree of genetic similarity with humans. Zebrafish were exposed to different doses of antimony in water for 7, 18, and 30 days. The results indicated that antimony accumulated most in the liver, followed by the gills, flesh, and brain, with the accumulation increasing as the exposure duration extends. Additionally, under identical antimony concentrations, the buildup in the four tissues was positively correlated with the duration of exposure. After 18 days of exposure, the total antioxidant capacity (T-AOC) and endogenous non-enzymatic antioxidants vitamin C (VC) and vitamin E (VE) decreased as a result of antimony ingestion in zebrafish, although cysteine secretion was increased in the liver, gills, and brain. The structural integrity of the BBB was compromised by the elevation of ApoE4 and MMP-9 levels as a result of antimony exposure, which led to the breakdown of the basal lamina, tight junctions, and nerve fibers in the brain. At this injured region, 5-HT and MBP were also able to easily enter and leave the BBB, albeit at variable rates. Additionally, when the antimony exposure level reached 16.58 mg·L-1, antimony penetrated the BBB and bound to erythrocytes, causing their lysis.
Collapse
Affiliation(s)
- Kun Xu
- College of Resources and Environmental Engineering, Guizhou University, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, PR China
| | - Haitao Zou
- College of Resources and Environmental Engineering, Guizhou University, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, PR China
| | - Aijiang Yang
- College of Resources and Environmental Engineering, Guizhou University, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, PR China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang 50025, PR China; Institute of Environmental Engineering Planning and Designing, Guizhou University, Guiyang 550025, PR China; Guizhou Guida Yuanheng Environmental Protection Technology Co., LTD., Guiyang 550025, PR China.
| | - Qin Yao
- College of Resources and Environmental Engineering, Guizhou University, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, PR China
| | - Qing Li
- College of Resources and Environmental Engineering, Guizhou University, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, PR China
| | - Jingyun Zhang
- College of Resources and Environmental Engineering, Guizhou University, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, PR China
| | - Xia Hu
- College of Resources and Environmental Engineering, Guizhou University, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, PR China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang 50025, PR China
| |
Collapse
|
2
|
Astolfi ML, Frezzini MA, Massimi L, Rapa M, Canepari S, Conti ME. Sphagnum moss and peat comparative study: Metal release, binding properties and antioxidant activity. PLoS One 2024; 19:e0307210. [PMID: 39159168 PMCID: PMC11332952 DOI: 10.1371/journal.pone.0307210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/01/2024] [Indexed: 08/21/2024] Open
Abstract
Peat is the main constituent of cultivation substrates and a precious non-renewable fossil material. Peatlands provide important ecosystem services and allow the absorption and storage of carbon. Protecting peatlands helps tackle climate change and contributes to biodiversity conservation. Due to its importance, it is necessary to implement strategies to reduce the use of peat, such as replacing it with biomass-based alternative growing media constituents, such as Sphagnum moss. In this study, we compared the metal release and binding properties at two different pH, antioxidant activity, and total phenolic content of peat and Sphagnum moss from the Tierra del Fuego (TdF) region of southern Patagonia. Levels of the elements were determined by inductively coupled plasma mass spectrometry (ICP-MS), while the types and amounts of functional groups were characterized and compared using Fourier transform infrared (FTIR) spectroscopy. The total phenol level and antioxidant capacity were assessed using the Folin-Ciocalteu method and 2,2-diphenyl-1-picrylhydrazyl test. There are generally higher concentrations of leachable elements in peat than in Sphagnum moss at pH = 2, except Cs, Rb, Ti, and Zr. In contrast, at pH = 5, levels of all leached elements are highest in Sphagnum moss. Sphagnum moss shows a higher metal adsorption capacity than peat, except for Be, Mn, Tl, and Zn. Finally, the results showed that both matrices contained similar total phenolic contents: 0.018 ± 0.011 mg gallic acid equivalent (GAE) per gram dry sample for peat and 0.020 ± 0.007 mg GAE g-1 for Sphagnum moss. Instead, Sphagnum moss extracts showed a significantly higher antioxidant activity [0.026 ± 0.028 mmol Trolox equivalents (TE) g-1] than that estimated in peat (0.009 ± 0.005 mmol TE g-1). Humic acids, carboxylic acids, and phenolic and lignin groups were identified as the functional groups that mainly determined the antioxidant activity of the Sphagnum moss compared to peat. The present study resulted in an advancement of knowledge of these materials for more thoughtful future use and possible replacements.
Collapse
Affiliation(s)
- Maria Luisa Astolfi
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, Rome, Italy
| | | | - Lorenzo Massimi
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
- C.N.R. Institute of Atmospheric Pollution Research, Monterotondo St., Rome, Italy
| | - Mattia Rapa
- Department of Management, Sapienza University of Rome, Rome, Italy
| | - Silvia Canepari
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
- C.N.R. Institute of Atmospheric Pollution Research, Monterotondo St., Rome, Italy
| | | |
Collapse
|
3
|
Zhou W, Liu P, Ye Z, Wen B, Beckie RD, Zhou A, Zhou Z, Zhou J. Antimony mobility in soil near historical waste rock at the world's largest Sb mine, Central China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171194. [PMID: 38408677 DOI: 10.1016/j.scitotenv.2024.171194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
Soil near waste rock often contains high concentrations of antimony (Sb), but the mechanisms that mobilize Sb in a soil closely impacted by the waste rock piles are not well understood. We investigated these mobility mechanisms in soils near historical waste rock at the world's largest Sb mine. The sequential extraction (BCR) of soil reveal that over 95 % Sb is present in the residual fraction. The leached Sb concentration is related to the surface protonation and deprotonation of soil minerals. SEM-EDS shows Sb in the soil is associated with Fe and Ca. Moreover, X-ray absorption spectroscopy (XAS) results show Sb is predominantly present as Sb(V) and is associated with Fe in the form of tripuhyite (FeSbO4) as well as edge- and corner-sharing complexes on ferrihydrite and goethite. Thus, Fe in soils is important in controlling the mobility of Sb via surface complexation and co-precipitation of Sb by Fe oxides. The initially surface-adsorbed Sb(V) or co-precipitation is likely to undergo a phase transformation as the Fe oxides age. In addition, Sb mobility may be controlled by small amounts of calcium antimonate. These results further the understanding of the effect of secondary minerals in soils on the fate of Sb from waste rock weathering and inform source treatment for Sb-contaminated soils.
Collapse
Affiliation(s)
- Weiqing Zhou
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan 430074, China; Key Laboratory of Mine Ecological Effects and System Restoration, Ministry of Natural Resources, Beijing 100081, China
| | - Peng Liu
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan 430074, China; Key Laboratory of Mine Ecological Effects and System Restoration, Ministry of Natural Resources, Beijing 100081, China
| | - Zhihang Ye
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Bing Wen
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, China
| | - Roger D Beckie
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, 2020-2207 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Aiguo Zhou
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Ziyi Zhou
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Jianwei Zhou
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan 430074, China; Key Laboratory of Mine Ecological Effects and System Restoration, Ministry of Natural Resources, Beijing 100081, China.
| |
Collapse
|
4
|
Liu H, Kang C, Xie J, He M, Zeng W, Lin C, Ouyang W, Liu X. Monte Carlo simulation and delayed geochemical hazard revealed the contamination and risk of arsenic in natural water sources. ENVIRONMENT INTERNATIONAL 2023; 179:108164. [PMID: 37639857 DOI: 10.1016/j.envint.2023.108164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/10/2023] [Accepted: 08/20/2023] [Indexed: 08/31/2023]
Abstract
Due to its ubiquity and carcinogenicity, the geochemical behavior and health risks of arsenic (As) have been a research focus worldwide. A comprehensive investigation was conducted on the contamination and ecological and health risks of As in the Zijiang River (ZR)-a natural water source. The concentration ranges of As were separately 1.36-6.23 μg/L, 11.42-74.53 mg/kg, and 1.26-130.68 μg/L in surface waters (dissolved), sediments, and pore waters. The concentrations of As in the midstream pore waters and sediments were relatively high, which was related to mining, dam interception, and sediment resuspension. The Monte Carlo simulation results showed that the occurrence probability of As contamination and static risk in sediments was low, however, in the midstream, the secondary risk caused by the release of As should be given more consideration. In the sediments, the transformation paths and the dynamic risk of As were explored based on the delayed geochemical hazard model, showing that there was a probability of a potential burst of 26.47% - 55.88% in the sediments of the ZR. Although at the detected surface waters, the total risk of the noncarcinogenicity and carcinogenicity of As were low, overall adults have lower health risks than children, and As exposure in children should be of concern. This study complements the further understanding of the geochemical behavior of arsenic, which can be extended to other toxic metal(loid)s.
Collapse
Affiliation(s)
- Huiji Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Chanjuan Kang
- Ecological Environment Monitoring Station of Lengshuijiang City, Lengshuijiang 417099, Hunan, China
| | - Jun Xie
- Ecological Environment Monitoring Station of Lengshuijiang City, Lengshuijiang 417099, Hunan, China
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Wei Zeng
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wei Ouyang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China
| | - Xitao Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|