1
|
Gradișteanu-Pircalabioru G, Negut I, Dinu M, Parau AC, Bita B, Duta L, Ristoscu C, Sava B. Enhancing orthopaedic implant efficacy: the development of cerium-doped bioactive glass and polyvinylpyrrolidone composite coatings via MAPLE technique. Biomed Mater 2024; 20:015019. [PMID: 39612575 DOI: 10.1088/1748-605x/ad98d5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/29/2024] [Indexed: 12/01/2024]
Abstract
This study investigates the potential of combining Cerium-doped bioactive glass (BBGi) with Polyvinylpyrrolidone (PVP) to enhance the properties of titanium (Ti) implant surfaces using the Matrix-Assisted Pulsed Laser Evaporation (MAPLE) technique. The primary focus is on improving osseointegration, corrosion resistance, and evaluating the cytotoxicity of the developed thin films towards host cells. The innovative approach involves synthesizing a composite thin film comprising BBGi and PVP, leveraging the distinct benefits of both materials: BBGi's biocompatibility and osteoinductive capabilities, and PVP's film-forming and biocompatible properties. Results demonstrate that the BBGi + PVP coatings significantly enhance hydrophilicity, indicating improved cell-material interaction potential. The electrochemical analysis reveals superior corrosion resistance of the BBGi + PVP films compared to BBGi alone, which is critical for long-term implant stability. The mechanical adherence tests confirm the robust attachment of the coatings to Ti substrates, surpassing the ISO standards for implant materials. Biocompatibility tests show promising cell viability and negligible cytotoxic effects, with a controlled inflammatory response, underscoring the potential of BBGi + PVP coatings for orthopedic applications. The study concludes that the synergistic combination of BBGi and PVP, applied through the MAPLE technique, offers a promising route to fabricate bioactive and corrosion-resistant coatings for Ti implants, potentially enhancing osseointegration and longevity in clinical settings.
Collapse
Affiliation(s)
- Gratiela Gradișteanu-Pircalabioru
- eBio-Hub Research Center, University Politehnica of Bucharest-CAMPUS, 6 Iuliu Maniu Boulevard, 061344 Bucharest, Romania
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Str., District 5, 050044 Bucharest, Romania
| | - Irina Negut
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Street, PO Box MG 36, 077125 Magurele, Romania
| | - Mihaela Dinu
- National Institute of Research and Development for Optoelectronics-INOE2000, 409 Atomistilor St., 077125, Magurele, Romania
| | - Anca Constantina Parau
- National Institute of Research and Development for Optoelectronics-INOE2000, 409 Atomistilor St., 077125, Magurele, Romania
| | - Bogdan Bita
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Street, PO Box MG 36, 077125 Magurele, Romania
- Faculty of Physics, University of Bucharest, 077125 Magurele, Romania
| | - Liviu Duta
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Street, PO Box MG 36, 077125 Magurele, Romania
| | - Carmen Ristoscu
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Street, PO Box MG 36, 077125 Magurele, Romania
| | - Bogdan Sava
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Street, PO Box MG 36, 077125 Magurele, Romania
- University Politehnica of Bucharest, 313 Splaiul Independentei, sector 6, Bucharest, Romania
| |
Collapse
|
2
|
Negut I, Gradisteanu-Pircalabioru G, Dinu M, Bita B, Parau AC, Grumezescu V, Ristoscu C, Chifiriuc MC. Bioglass and Vitamin D3 Coatings for Titanium Implants: Osseointegration and Corrosion Protection. Biomedicines 2023; 11:2772. [PMID: 37893145 PMCID: PMC10604371 DOI: 10.3390/biomedicines11102772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
The use of MAPLE synthesized thin films based on BG and VD3 for improving the osseointegration and corrosion protection of Ti-like implant surfaces is reported. The distribution of chemical elements and functional groups was shown by FTIR spectrometry; the stoichiometry and chemical functional integrity of thin films after MAPLE deposition was preserved, optimal results being revealed especially for the BG+VD3_025 samples. The morphology and topography were examined by SEM and AFM, and revealed surfaces with many irregularities, favoring a good adhesion of cells. The thin films' cytotoxicity and biocompatibility were evaluated in vitro at the morphological, biochemical, and molecular level. Following incubation with HDF cells, BG57+VD3_ 025 thin films showed the best degree of biocompatibility, as illustrated by the viability assay values. According to the LDH investigation, all tested samples had higher values compared to the unstimulated cells. The evaluation of cell morphology was performed by fluorescence microscopy following cultivation of HDF cells on the obtained thin films. The cultivation of HDF's on the thin films did not induce major cellular changes. Cells cultured on the BG57+VD3_025 sample had similar morphology to that of unstimulated control cells. The inflammatory profile of human cells cultured on thin films obtained by MAPLE was analyzed by the ELISA technique. It was observed that the thin films did not change the pro- and anti-inflammatory profile of the HDF cells, the IL-6 and IL-10 levels being similar to those of the control sample. The wettability of the MAPLE thin films was investigated by the sessile drop method. A contact angle of 54.65° was measured for the sample coated with BG57+VD3_025. Electrochemical impedance spectroscopy gave a valuable insight into the electrochemical reactions occurring on the surface.
Collapse
Affiliation(s)
- Irina Negut
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Street, P.O. Box MG 36, 077125 Magurele, Romania; (I.N.); (B.B.); (V.G.)
| | - Gratiela Gradisteanu-Pircalabioru
- eBio-Hub Research Center, University Politehnica of Bucharest—CAMPUS, 6 Iuliu Maniu Boulevard, 061344 Bucharest, Romania;
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 050657 Bucharest, Romania;
- Academy of Romanian Scientists, 3 Ilfov Str., District 5, 050044 Bucharest, Romania
| | - Mihaela Dinu
- National Institute of Research and Development for Optoelectronics-INOE2000, 409 Atomistilor St., 077125 Magurele, Romania; (M.D.); (A.C.P.)
| | - Bogdan Bita
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Street, P.O. Box MG 36, 077125 Magurele, Romania; (I.N.); (B.B.); (V.G.)
- Faculty of Physics, University of Bucharest, 077125 Magurele, Romania
| | - Anca Constantina Parau
- National Institute of Research and Development for Optoelectronics-INOE2000, 409 Atomistilor St., 077125 Magurele, Romania; (M.D.); (A.C.P.)
| | - Valentina Grumezescu
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Street, P.O. Box MG 36, 077125 Magurele, Romania; (I.N.); (B.B.); (V.G.)
| | - Carmen Ristoscu
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Street, P.O. Box MG 36, 077125 Magurele, Romania; (I.N.); (B.B.); (V.G.)
| | - Mariana Carmen Chifiriuc
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 050657 Bucharest, Romania;
- Academy of Romanian Scientists, 3 Ilfov Str., District 5, 050044 Bucharest, Romania
- The Romanian Academy, Calea Victoriei 25, District 1, 010071 Bucharest, Romania
- Department of Microbiology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| |
Collapse
|
3
|
Petrini M, D'Amico E, Pierfelice TV, Aceto GM, Karaban M, Felice P, Piattelli A, Barone A, Iezzi G. Photodynamic Therapy with Aminolevulinic Acid Enhances the Cellular Activity of Cells Cultured on Porcine Acellular Dermal Matrix Membranes Used in Periodontology. Gels 2023; 9:584. [PMID: 37504463 PMCID: PMC10379034 DOI: 10.3390/gels9070584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
This study aims to test a photodynamic protocol based on a gel containing aminolevulinic acid followed by red-LED (ALAD-PDT) irradiation on human gingival fibroblasts (hGFs) and osteoblasts (hOBs) cultured on a porcine acellular dermal matrix membrane (PADMM). In the previous literature, ALAD-PDT showed solid antibacterial activity and proliferative induction on HGFs cultured on plates and HOBs cultured on a cortical lamina. PADMMs are used in dentistry and periodontology to treat gingival recessions and to increase the tissue thickness in the case of a thin biotype without the risks or postoperative discomfort associated with connective tissue grafts. However, one of the possible complications in this type of surgery is represented by bacterial invasion and membrane exposition during the healing period. We hypothesized that the addition of ALAD-PDT to PADMMs could enhance more rapid healing and decrease the risks connected with bacterial invasion. In periodontal surgery, PADMMs are inserted after a full-thickness flap elevation between the bone and the flap. Consequently, all procedures were performed in parallel on hOBs and hGFs obtained by dental patients. The group control (CTRL) was represented by the unexposed cells cultured on the membranes, group LED (PDT) were the cells subjected to 7 min of red LED irradiation, and ALAD-PDT were the cells subjected to 45 min of ALAD incubation and then to 7 min of red LED irradiation. After treatments, all groups were analyzed for MTT assay and subjected to histological examination at 3 and 7 days and to the SEM observations at 3, 7, and 14 days. Different bone mineralization assays were performed to quantify the effects of ALAD-PDT on hOBs: ALP activity, ALP gene expression, osteocalcin, and alizarin red. The effects of ALAD-PDT on hGFs were evaluated by quantifying collagen 1, fibronectin, and MMP-8. Results showed that ALAD-PDT promoted cellular induction, forming a dense cellular network on hOBs and hGFs, and the assays performed showed statistically significantly higher values for ALAD-PDT with respect to LED alone and CTRLs. In conclusion, ALAD-PDT could represent a promising aid for enhancing the healing of gingival tissues after PADMM applications.
Collapse
Affiliation(s)
- Morena Petrini
- Department of Medical, Oral and Biotechnological Sciences, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Emira D'Amico
- Department of Medical, Oral and Biotechnological Sciences, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Tania Vanessa Pierfelice
- Department of Medical, Oral and Biotechnological Sciences, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Gitana Maria Aceto
- Department of Medical, Oral and Biotechnological Sciences, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Maryia Karaban
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Pietro Felice
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Adriano Piattelli
- School of Dentistry, Saint Camillus International University of Health and Medical Sciences, 00131 Rome, Italy
| | - Antonio Barone
- Department of Surgical, Medical, Molecular Pathologies and of the Critical Needs, School of Dentistry, University of Pisa, 56126 Pisa, Italy
- Complex Unit of Stomatology and Oral Surgery, University Hospital of Pisa, 56126 Pisa, Italy
| | - Giovanna Iezzi
- Department of Medical, Oral and Biotechnological Sciences, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
4
|
D'Amico E, Pierfelice TV, Lepore S, Iezzi G, D'Arcangelo C, Piattelli A, Covani U, Petrini M. Hemostatic Collagen Sponge with High Porosity Promotes the Proliferation and Adhesion of Fibroblasts and Osteoblasts. Int J Mol Sci 2023; 24:ijms24097749. [PMID: 37175457 PMCID: PMC10177784 DOI: 10.3390/ijms24097749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/11/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
The use of biomaterial for tissue repair involves the interaction between materials and cells, and the coagulum formation represents the first step of tissue healing. This process is particularly critical in the oral cavity, where the wounds are immediately subjected to the masticatory mechanical stress, saliva invasion, and bacterial attack. Therefore, the present study aimed to explore the structural features and the biological activities of a hemostatic collagen sponge on human gingival fibroblasts (HGFs) and human oral osteoblasts (HOBs). The microstructure of the collagen sponge was characterized by a scanning electron microscope (SEM) and histological analysis. The porosity was also calculated. To investigate biological activities, HGFs and HOBs were cultured on the collagen sponges, and their adhesion was observed at SEM on the third day, while cell viability was investigated at the third and seventh days by Tetrazolium (MTT) assay. For osteoblasts seeded on collagen sponge the mineralization ability was also evaluated by alkaline phosphatase (ALP) assay at the seventh day, and by Alizarin red staining on the 14th. Furthermore, the gene expression of ALP and osteocalcin (OCN) was investigated after 3, 7 and 14 days. SEM images of the sponge without cells showed a highly porous 3D structure, confirmed by the measurement of porosity that was more than 90%. The samples cultured were characterized by cells uniformly distributed and adhered to the sponge surface. Proliferation ended up being promoted, as well as the mineralization ability of the osteoblasts, mainly at the mature stage. In conclusion, this collagen sponge could have a potential use for tissue healing.
Collapse
Affiliation(s)
- Emira D'Amico
- Department of Medical, Oral and Biotechnological Sciences, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Tania Vanessa Pierfelice
- Department of Medical, Oral and Biotechnological Sciences, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Stefania Lepore
- Department of Medical, Oral and Biotechnological Sciences, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Giovanna Iezzi
- Department of Medical, Oral and Biotechnological Sciences, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Camillo D'Arcangelo
- Department of Medical, Oral and Biotechnological Sciences, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Adriano Piattelli
- School of Dentistry, Saint Camillus International University of Health and Medical Sciences, Via di, Sant'Alessandro 8, 00131 Rome, Italy
- Facultad de Medicina, UCAM Universidad Catolica San Antonio de Murcia, 30107 Murcia, Spain
| | - Ugo Covani
- Istituto Stomatologico Toscano, Via Aurelia 335, 55041 Lido di Camaiore, Italy
| | - Morena Petrini
- Department of Medical, Oral and Biotechnological Sciences, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
5
|
Andreucci CA, Fonseca EMM, Jorge RN. A New Simplified Autogenous Sinus Lift Technique. Bioengineering (Basel) 2023; 10:bioengineering10050505. [PMID: 37237575 DOI: 10.3390/bioengineering10050505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Oral maxillofacial rehabilitation of the atrophic maxilla with or without pneumatization of the maxillary sinuses routinely presents limited bone availability. This indicates the need for vertical and horizontal bone augmentation. The standard and most used technique is maxillary sinus augmentation using distinct techniques. These techniques may or may not rupture the sinus membrane. Rupture of the sinus membrane increases the risk of acute or chronic contamination of the graft, implant, and maxillary sinus. The surgical procedure for maxillary sinus autograft involves two stages: removal of the autograft and preparation of the bone site for the graft. A third stage is often added to place the osseointegrated implants. This is because it was not possible to do this at the same time as the graft surgery. A new bioactive kinetic screw (BKS) bone implant model is presented that simplifies and effectively performs autogenous grafting, sinus augmentation, and implant fixation in a single step. In the absence of a minimum vertical bone height of 4 mm in the region to be implanted, an additional surgical procedure is performed to harvest bone from the retro-molar trigone region of the mandible to provide additional bone. The feasibility and simplicity of the proposed technique were demonstrated in experimental studies in synthetic maxillary bone and sinus. A digital torque meter was used to measure MIT and MRT during implant insertion and removal. The amount of bone graft was determined by weighing the bone material collected by the new BKS implant. The technique proposed here demonstrated the benefits and limitations of the new BKS implant for maxillary sinus augmentation and installation of dental implants simultaneously.
Collapse
Affiliation(s)
- Carlos Aurelio Andreucci
- Mechanical Engineering Department, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias 712, 4200-465 Porto, Portugal
| | - Elza M M Fonseca
- LAETA, INEGI, ISEP, Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal
| | - Renato N Jorge
- LAETA, INEGI, Mechanical Engineering Department, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias 712, 4200-465 Porto, Portugal
| |
Collapse
|
6
|
Felice P, D’Amico E, Pierfelice TV, Petrini M, Barausse C, Karaban M, Barone A, Iezzi G. Osteoblasts and Fibroblasts Interaction with a Porcine Acellular Dermal Matrix Membrane. Int J Mol Sci 2023; 24:3649. [PMID: 36835067 PMCID: PMC9964429 DOI: 10.3390/ijms24043649] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
The use of collagen membranes has remained the gold standard in GTR/GBR. In this study, the features and the biological activities of an acellular porcine dermis collagen matrix membrane applicable during dental surgery were investigated, and also by applying hydration with NaCl. Thus, two tested membranes were distinguished, the H-Membrane and Membrane, compared to the control cell culture plastic. The characterization was performed by SEM and histological analyses. In contrast, the biocompatibility was investigated on HGF and HOB cells at 3, 7, and 14 days by MTT for proliferation study; by SEM and histology for cell interaction study; and by RT-PCR for function-related genes study. In HOBs seeded on membranes, mineralization functions by ALP assay and Alizarin Red staining were also investigated. Results indicated that the tested membranes, especially when hydrated, can promote the proliferation and attachment of cells at each time. Furthermore, membranes significantly increased ALP and mineralization activities in HOBs as well as the osteoblastic-related genes ALP and OCN. Similarly, membranes significantly increased ECM-related and MMP8 gene expression in HGFs. In conclusion, the tested acellular porcine dermis collagen matrix membrane, mainly when it is hydrated, behaved as a suitable microenvironment for oral cells.
Collapse
Affiliation(s)
- Pietro Felice
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Emira D’Amico
- Department of Medical, Oral and Biotechnological Sciences, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Tania Vanessa Pierfelice
- Department of Medical, Oral and Biotechnological Sciences, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Morena Petrini
- Department of Medical, Oral and Biotechnological Sciences, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Carlo Barausse
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
- Postgraduate School of Oral Surgery, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Maryia Karaban
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Antonio Barone
- Unit of Oral Surgery and Implantology, University Hospitals of Geneva, University of Geneva, 1205 Geneva, Switzerland
- Complex Unit of Stomatology and Oral Surgery, Department of Surgical, Medical, Molecular Pathologies and of the Critical Needs, School of Dentistry, University of Pisa, University-Hospital of Pisa, 56124 Pisa, Italy
| | - Giovanna Iezzi
- Department of Medical, Oral and Biotechnological Sciences, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
7
|
Emerging Effects of Resveratrol Derivatives in Cells Involved in Oral Wound Healing: A Preliminary Study. Int J Mol Sci 2023; 24:ijms24043276. [PMID: 36834684 PMCID: PMC9963438 DOI: 10.3390/ijms24043276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/11/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
Recently, there has been an increasing interest in finding new approaches to manage oral wound healing. Although resveratrol (RSV) exhibited many biological properties, such as antioxidant and anti-inflammatory activities, its use as a drug is limited by unfavorable bioavailability. This study aimed to investigate a series of RSV derivatives (1a-j) with better pharmacokinetic profiles. At first, their cytocompatibility at different concentrations was tested on gingival fibroblasts (HGFs). Among them, derivatives 1d and 1h significantly increased cell viability compared to the reference compound RSV. Thus, 1d and 1h were investigated for cytotoxicity, proliferation, and gene expression in HGFs, endothelial cells (HUVECs), and oral osteoblasts (HOBs), which are the main cells involved in oral wound healing. For HUVECs and HGFs, the morphology was also evaluated, while for HOBs ALP and mineralization were observed. The results showed that both 1d and 1h did not exert negative effects on cell viability, and at a lower concentration (5 µM) both even significantly enhanced the proliferative rate, compared to RSV. The morphology observations pointed out that the density of HUVECs and HGFs was promoted by 1d and 1h (5 µM) and mineralization was promoted in HOBs. Moreover, 1d and 1h (5 µM) induced a higher eNOS mRNA level in HUVECs, higher COL1 mRNA in HGFs, and higher OCN in HOBs, compared to RSV. The appreciable physicochemical properties and good enzymatic and chemical stability of 1d and 1h, along with their promising biological properties, provide the scientific basis for further studies leading to the development of RSV-based agents useful in oral tissue repair.
Collapse
|
8
|
Insertion Torque, Removal Torque, and Resonance Frequency Analysis Values of Ultrashort, Short, and Standard Dental Implants: An In Vitro Study on Polyurethane Foam Sheets. J Funct Biomater 2022; 14:jfb14010010. [PMID: 36662057 PMCID: PMC9866818 DOI: 10.3390/jfb14010010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
Short implants were introduced to reduce morbidity, treatment duration, and complex bone regeneration interventions in atrophic jaws and to improve patient-reported outcomes. This study aimed to determine the insertion torque (IT), removal torque (RT), and resonance frequency analysis (RFA) values of ultrashort (3 mm length), short (7 mm length), and standard implants (10 mm length) inserted in 1-, 2-, 3-, and 4-mm thickness polyurethane sheets with densities of 10, 20, and 30 pounds per cubic foot (PCF). Standard-length implants were the gold standard (control). Overall, short-length implant IT values were higher or similar to the control in most experimental conditions. Those inserted into a 3 mm/30 PCF lamina showed the highest IT values, whereas 5 mm diameter ultrashort-length implants inserted into 2 and 3 mm/20 PCF laminas were higher than other implants. RT values followed the same trend and RFA values were more appreciable in short- and standard-length implants in all the scenarios. However, ultrashort-length implants reached a primary stability comparable to that of standard implants in lower thicknesses. In conclusion, although further studies are needed to corroborate this in vitro model with preclinical and clinical studies, our data shed light on short- and ultrashort-length implants geometries to a potential application in critical atrophy of the posterior jaws.
Collapse
|
9
|
Pierfelice TV, D’Amico E, Petrini M, Pandolfi A, D’Arcangelo C, Di Pietro N, Piattelli A, Iezzi G. The Effects of 5% 5-Aminolevulinic Acid Gel and Red Light (ALAD-PDT) on Human Fibroblasts and Osteoblasts. Gels 2022; 8:gels8080491. [PMID: 36005091 PMCID: PMC9407194 DOI: 10.3390/gels8080491] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 11/23/2022] Open
Abstract
This study aimed to evaluate the effects of a new photodynamic protocol (ALAD-PDT), consisting of 5% 5-aminolevulinic acid-gel and 630 nm-LED, already used for antibacterial effects in the treatment of periodontitis, on human gingival fibroblasts (HGF) and primary human osteoblasts (HOB). HGF and HOB were incubated with different ALAD concentrations for 45 min, and subsequently irradiated with 630 nm-LED for 7 min. Firstly, the cytotoxicity at 24 h and proliferation at 48 and 72 h were assessed. Then the intracellular content of the protoporphyrin IX (PpIX) of the ROS and the superoxide dismutase (SOD) activity were investigated at different times. Each result was compared with untreated and unirradiated cells as the control. Viable and metabolic active cells were revealed at any concentrations of ALAD-PDT, but only 100-ALAD-PDT significantly enhanced the proliferation rate. The PpIX fluorescence significantly increased after the addition of 100-ALAD, and decreased after the irradiation. Higher ROS generation was detected at 10 min in HGF, and at 30 min in HOB. The activity of the SOD enzyme augmented at 30 min in both cell types. In conclusion, ALAD-PDT not only showed no cytotoxic effects, but had pro-proliferative effects on HGF and HOB, probably via ROS generation.
Collapse
Affiliation(s)
- Tania Vanessa Pierfelice
- Department of Medical, Oral and Biotechnological Sciences, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Emira D’Amico
- Department of Medical, Oral and Biotechnological Sciences, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Morena Petrini
- Department of Medical, Oral and Biotechnological Sciences, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
- Correspondence: ; Tel.: +39-0871-355-4083
| | - Assunta Pandolfi
- Department of Medical, Oral and Biotechnological Sciences, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology-CAST, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Camillo D’Arcangelo
- Department of Medical, Oral and Biotechnological Sciences, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Natalia Di Pietro
- Department of Medical, Oral and Biotechnological Sciences, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology-CAST, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Adriano Piattelli
- School of Dentistry, Saint Camillus International University of Health and Medical Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy
- Dental School, University of Belgrade, 11000 Belgrade, Serbia
- Fondazione Villa Serena per la Ricerca, 65013 Città Sant’Angelo, Italy
- Casa di Cura Villa Serena del Dott. L. Petruzzi, 65013 Città Sant’Angelo, Italy
| | - Giovanna Iezzi
- Department of Medical, Oral and Biotechnological Sciences, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|