1
|
Hopf NB, Rousselle C, Poddalgoda D, Lamkarkach F, Bessems J, Schmid K, Jones K, Takaki K, Casteleyn L, Zare Jeddi M, Bader M, Koller M, Browne P, FitzGerald R, Viegas S, Göen T, Santonen T, Väänänen V, Duca RC, Pasanen-Kase R. A harmonized occupational biomonitoring approach. ENVIRONMENT INTERNATIONAL 2024; 191:108990. [PMID: 39244955 DOI: 10.1016/j.envint.2024.108990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/10/2024]
Abstract
Biomonitoring has been widely used in assessing exposures in both occupational and public health complementing chemical risk assessments because it measures the concentrations of chemical substances in human body fluids (e.g., urine and blood). Biomonitoring considers all routes and sources of exposure. An occupational biomonitoring guidance document has been elaborated (OECD Occupational Biomonitoring Guidance) within the OECD framework and specifically, the Working Parties on Exposure and Hazard Assessment by scientific experts from 40 institutes and organizations representing 15 countries. The guidance provides practical information for assessing chemical exposures in occupational settings including the three common routes of exposure: inhalation, skin absorption and ingestion due to hand to mouth contact. The elaborated stepwise approach for conducting biomonitoring is tailored for occupational health professionals, scientists, risk assessors, and regulators. It includes methods for selecting appropriate biomarkers, devising sampling strategies, and assessing laboratories for validated analytical methods for the biomarker of interest, and ensuring timely feedback of results. Furthermore, it describes procedures for setting up efficient biomonitoring programs based on the Similar Exposure Group (SEG) approaches. Derived health-based human exposure biomarker assessment values called Occupational Biomonitoring Levels (OBLs) are proposed for use in occupational exposure and risk assessment. It also helps with the interpretation of biomonitoring results routinely collected and procedures for communicating biomonitoring results at individual, collective, and workplace levels. Ethical considerations associated with biomonitoring are also discussed. The ultimate goal of this biomonitoring approach is to promote harmonized application and interpretation of biomarkers as well as evidence-based occupational risk management measures.
Collapse
Affiliation(s)
- Nancy B Hopf
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Route de la Corniche 2, 1011 Epalinges-Lausanne, Switzerland.
| | - Christophe Rousselle
- French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 94701 Maisons‑Alfort, France.
| | - Devika Poddalgoda
- Existing Substances Risk Assessment Bureau, Healthy Environment and Consumer Safety Branch, Health Canada, Government of Canada, Canada.
| | - Farida Lamkarkach
- French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 94701 Maisons Alfort, France.
| | | | - Kaspar Schmid
- State Secretariat for Economic Affairs (SECO), Section Chemicals and Occupational Health, Holzikofenweg 36, 3003 Bern, Switzerland.
| | - Kate Jones
- Health and Safety Executive, Harpur Hill, Buxton, SK17 9JN, UK.
| | | | | | | | - Michael Bader
- BASF SE, ESG/CB - Medical Center Z130, Carl-Bosch-Str. 38, 67056 Ludwigshafen am Rhein, Germany.
| | | | | | | | - Susana Viegas
- ENSP/UNL, NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, CHRC, NOVA University Lisbon, Portugal.
| | - Thomas Göen
- University of Erlangen, Friedrich-Alexander University (FAU) Erlangen-Nuremberg, Schillerstrasse 25, 91054, Erlangen, Germany.
| | - Tiina Santonen
- Finnish Institute of Occupational Health, Helsinki, Finland.
| | - Virpi Väänänen
- European Chemicals Agency, Telakkakatu 6, P.O. Box 400, FI-00121 Helsinki, Finland.
| | - Radu-Corneliu Duca
- Katholieke Universiteit Leuven, Belgium; Laboratoire National de Santé (LNS), Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, 1, Rue Louis Rech, L-3555 Dudelange, Luxembourg.
| | - Robert Pasanen-Kase
- State Secretariat for Economic Affairs (SECO), Section Chemicals and Occupational Health, Holzikofenweg 36, 3003 Bern, Switzerland.
| |
Collapse
|
2
|
Reale E, Zare Jeddi M, Paini A, Connolly A, Duca R, Cubadda F, Benfenati E, Bessems J, S Galea K, Dirven H, Santonen T, M Koch H, Jones K, Sams C, Viegas S, Kyriaki M, Campisi L, David A, Antignac JP, B Hopf N. Human biomonitoring and toxicokinetics as key building blocks for next generation risk assessment. ENVIRONMENT INTERNATIONAL 2024; 184:108474. [PMID: 38350256 DOI: 10.1016/j.envint.2024.108474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/15/2023] [Accepted: 02/01/2024] [Indexed: 02/15/2024]
Abstract
Human health risk assessment is historically built upon animal testing, often following Organisation for Economic Co-operation and Development (OECD) test guidelines and exposure assessments. Using combinations of human relevant in vitro models, chemical analysis and computational (in silico) approaches bring advantages compared to animal studies. These include a greater focus on the human species and on molecular mechanisms and kinetics, identification of Adverse Outcome Pathways and downstream Key Events as well as the possibility of addressing susceptible populations and additional endpoints. Much of the advancement and progress made in the Next Generation Risk Assessment (NGRA) have been primarily focused on new approach methodologies (NAMs) and physiologically based kinetic (PBK) modelling without incorporating human biomonitoring (HBM). The integration of toxicokinetics (TK) and PBK modelling is an essential component of NGRA. PBK models are essential for describing in quantitative terms the TK processes with a focus on the effective dose at the expected target site. Furthermore, the need for PBK models is amplified by the increasing scientific and regulatory interest in aggregate and cumulative exposure as well as interactions of chemicals in mixtures. Since incorporating HBM data strengthens approaches and reduces uncertainties in risk assessment, here we elaborate on the integrated use of TK, PBK modelling and HBM in chemical risk assessment highlighting opportunities as well as challenges and limitations. Examples are provided where HBM and TK/PBK modelling can be used in both exposure assessment and hazard characterization shifting from external exposure and animal dose/response assays to animal-free, internal exposure-based NGRA.
Collapse
Affiliation(s)
- Elena Reale
- Centre for Primary Care and Public Health (Unisanté), University of Lausanne, Switzerland
| | - Maryam Zare Jeddi
- National Institute for Public Health and the Environment (RIVM), the Netherlands
| | | | - Alison Connolly
- UCD Centre for Safety & Health at Work, School of Public Health, Physiotherapy, and Sports Science, University College Dublin, D04 V1W8, Dublin, Ireland for Climate and Air Pollution Studies, Physics, School of Natural Science and the Ryan Institute, National University of Ireland, University Road, Galway H91 CF50, Ireland
| | - Radu Duca
- Unit Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, Laboratoire national de santé (LNS), 1, Rue Louis Rech, 3555 Dudelange, Luxembourg; Environment and Health, Department of Public Health and Primary Care, KU Leuven, Kapucijnenvoer 35, 3000 Leuven, Belgium
| | - Francesco Cubadda
- Istituto Superiore di Sanità - National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Emilio Benfenati
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy
| | - Jos Bessems
- VITO HEALTH, Flemish Institute for Technological Research, 2400 Mol, Belgium
| | - Karen S Galea
- Institute of Occupational Medicine (IOM), Research Avenue North, Riccarton, Edinburgh EH14 4AP, UK
| | - Hubert Dirven
- Department of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Tiina Santonen
- Finnish Institute of Occupational Health (FIOH), P.O. Box 40, FI-00032 Työterveyslaitos, Finland
| | - Holger M Koch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Kate Jones
- HSE - Health and Safety Executive, Harpur Hill, Buxton SK17 9JN, UK
| | - Craig Sams
- HSE - Health and Safety Executive, Harpur Hill, Buxton SK17 9JN, UK
| | - Susana Viegas
- NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, CHRC, NOVA University Lisbon, Lisbon, Portugal
| | - Machera Kyriaki
- Benaki Phytopathological Institute, 8, Stephanou Delta Street, 14561 Kifissia, Athens, Greece
| | - Luca Campisi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; Flashpoint srl, Via Norvegia 56, 56021 Cascina (PI), Italy
| | - Arthur David
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)-UMR_S 1085, F-35000 Rennes, France
| | | | - Nancy B Hopf
- Centre for Primary Care and Public Health (Unisanté), University of Lausanne, Switzerland.
| |
Collapse
|
3
|
Zare Jeddi M, Galea KS, Viegas S, Fantke P, Louro H, Theunis J, Govarts E, Denys S, Fillol C, Rambaud L, Kolossa-Gehring M, Santonen T, van der Voet H, Ghosh M, Costa C, Teixeira JP, Verhagen H, Duca RC, Van Nieuwenhuyse A, Jones K, Sams C, Sepai O, Tranfo G, Bakker M, Palmen N, van Klaveren J, Scheepers PTJ, Paini A, Canova C, von Goetz N, Katsonouri A, Karakitsios S, Sarigiannis DA, Bessems J, Machera K, Harrad S, Hopf NB. FAIR environmental and health registry (FAIREHR)- supporting the science to policy interface and life science research, development and innovation. FRONTIERS IN TOXICOLOGY 2023; 5:1116707. [PMID: 37342468 PMCID: PMC10278765 DOI: 10.3389/ftox.2023.1116707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/19/2023] [Indexed: 06/23/2023] Open
Abstract
The environmental impact on health is an inevitable by-product of human activity. Environmental health sciences is a multidisciplinary field addressing complex issues on how people are exposed to hazardous chemicals that can potentially affect adversely the health of present and future generations. Exposure sciences and environmental epidemiology are becoming increasingly data-driven and their efficiency and effectiveness can significantly improve by implementing the FAIR (findable, accessible, interoperable, reusable) principles for scientific data management and stewardship. This will enable data integration, interoperability and (re)use while also facilitating the use of new and powerful analytical tools such as artificial intelligence and machine learning in the benefit of public health policy, and research, development and innovation (RDI). Early research planning is critical to ensuring data is FAIR at the outset. This entails a well-informed and planned strategy concerning the identification of appropriate data and metadata to be gathered, along with established procedures for their collection, documentation, and management. Furthermore, suitable approaches must be implemented to evaluate and ensure the quality of the data. Therefore, the 'Europe Regional Chapter of the International Society of Exposure Science' (ISES Europe) human biomonitoring working group (ISES Europe HBM WG) proposes the development of a FAIR Environment and health registry (FAIREHR) (hereafter FAIREHR). FAIR Environment and health registry offers preregistration of studies on exposure sciences and environmental epidemiology using HBM (as a starting point) across all areas of environmental and occupational health globally. The registry is proposed to receive a dedicated web-based interface, to be electronically searchable and to be available to all relevant data providers, users and stakeholders. Planned Human biomonitoring studies would ideally be registered before formal recruitment of study participants. The resulting FAIREHR would contain public records of metadata such as study design, data management, an audit trail of major changes to planned methods, details of when the study will be completed, and links to resulting publications and data repositories when provided by the authors. The FAIREHR would function as an integrated platform designed to cater to the needs of scientists, companies, publishers, and policymakers by providing user-friendly features. The implementation of FAIREHR is expected to yield significant benefits in terms of enabling more effective utilization of human biomonitoring (HBM) data.
Collapse
Affiliation(s)
- Maryam Zare Jeddi
- National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Karen S. Galea
- Institute of Occupational Medicine (IOM), Research Avenue North, Riccarton, United Kingdom
| | - Susana Viegas
- NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, CHRC, NOVA University Lisbon, Lisbon, Portugal
| | - Peter Fantke
- Quantitative Sustainability Assessment, Department of Environmental and Resource Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Henriqueta Louro
- National Institute of Health Dr. Ricardo Jorge, Department of Human Genetics, Lisbon and ToxOmics - Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Jan Theunis
- VITO HEALTH, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Eva Govarts
- VITO HEALTH, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Sébastien Denys
- SpF— Santé Publique France, Environmental and Occupational Health Division, Saint-Maurice, France
| | - Clémence Fillol
- SpF— Santé Publique France, Environmental and Occupational Health Division, Saint-Maurice, France
| | - Loïc Rambaud
- SpF— Santé Publique France, Environmental and Occupational Health Division, Saint-Maurice, France
| | | | - Tiina Santonen
- Finnish Institute of Occupational Health (FIOH), Helsinki, Finland
| | | | - Manosij Ghosh
- Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Carla Costa
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Porto, Portugal and EPIUnit—Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal
| | - João Paulo Teixeira
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Porto, Portugal and EPIUnit—Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal
| | - Hans Verhagen
- Nutrition Innovation Center for Food and Health (NICHE), University of Ulster, Coleraine, United Kingdom
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
- Food Safety and Nutrition Consultancy, Zeist, Netherlands
| | - Radu-Corneliu Duca
- Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
- Department of Health Protection, Laboratoire National de Santé (LNS), Dudelange, Luxembourg
| | - An Van Nieuwenhuyse
- Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
- Department of Health Protection, Laboratoire National de Santé (LNS), Dudelange, Luxembourg
| | - Kate Jones
- HSE—Health and Safety Executive, Buxton, United Kingdom
| | - Craig Sams
- HSE—Health and Safety Executive, Buxton, United Kingdom
| | - Ovnair Sepai
- UK Health Security Agency, Radiation, Chemical and Environmental Hazards Division, Chilton, United Kingdom
| | - Giovanna Tranfo
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Institute Against Accidents at Work (INAIL), Monte PorzioCatone(RM), Italy
| | - Martine Bakker
- National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Nicole Palmen
- National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Jacob van Klaveren
- National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Paul T. J. Scheepers
- Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, Netherlands
| | | | - Cristina Canova
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padova, Italy
| | - Natalie von Goetz
- Federal Office of Public Health, Bern, Switzerland
- Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | | | - Spyros Karakitsios
- HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimosthenis A. Sarigiannis
- HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Complex Risk and Data Analysis Research Center, University School for Advanced Studies IUSS, Pavia, Italy
| | - Jos Bessems
- VITO HEALTH, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Kyriaki Machera
- Laboratory of Pesticides’ Toxicology, Department of Pesticides Control and Phytopharmacy, Benaki Phytopathological Institute, Kifissia, Greece
| | - Stuart Harrad
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, United Kingdom
| | - Nancy B. Hopf
- Centre for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
4
|
Vorkamp K, Esteban López M, Gilles L, Göen T, Govarts E, Hajeb P, Katsonouri A, Knudsen LE, Kolossa-Gehring M, Lindh C, Nübler S, Pedraza-Díaz S, Santonen T, Castaño A. Coordination of chemical analyses under the European Human Biomonitoring Initiative (HBM4EU): Concepts, procedures and lessons learnt. Int J Hyg Environ Health 2023; 251:114183. [PMID: 37148759 DOI: 10.1016/j.ijheh.2023.114183] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/08/2023]
Abstract
The European Human Biomonitoring Initiative (HBM4EU) ran from 2017 to 2022 with the aim of advancing and harmonizing human biomonitoring in Europe. More than 40,000 analyses were performed on human samples in different human biomonitoring studies in HBM4EU, addressing the chemical exposure of the general population, temporal developments, occupational exposure and a public health intervention on mercury in populations with high fish consumption. The analyses covered 15 priority groups of organic chemicals and metals and were carried out by a network of laboratories meeting the requirements of a comprehensive quality assurance and control system. The coordination of the chemical analyses included establishing contacts between sample owners and qualified laboratories and monitoring the progress of the chemical analyses during the analytical phase, also addressing status and consequences of Covid-19 measures. Other challenges were related to the novelty and complexity of HBM4EU, including administrative and financial matters and implementation of standardized procedures. Many individual contacts were necessary in the initial phase of HBM4EU. However, there is a potential to develop more streamlined and standardized communication and coordination in the analytical phase of a consolidated European HBM programme.
Collapse
Affiliation(s)
- Katrin Vorkamp
- Aarhus University, Department of Environmental Science, Roskilde, Denmark.
| | - Marta Esteban López
- Instituto de Salud Carlos III, National Centre for Environmental Health, Majadahonda, Spain
| | - Liese Gilles
- VITO Health, Flemish Institute for Technological Research, Mol, Belgium
| | - Thomas Göen
- Friedrich-Alexander Universität Erlangen-Nürnberg, Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Erlangen, Germany
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research, Mol, Belgium
| | - Parvaneh Hajeb
- Aarhus University, Department of Environmental Science, Roskilde, Denmark
| | | | - Lisbeth E Knudsen
- University of Copenhagen, Institute of Public Health, Copenhagen, Denmark
| | | | - Christian Lindh
- Lund University, Division of Occupational and Environmental Medicine, Lund, Sweden
| | - Stefanie Nübler
- Friedrich-Alexander Universität Erlangen-Nürnberg, Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Erlangen, Germany
| | - Susana Pedraza-Díaz
- Instituto de Salud Carlos III, National Centre for Environmental Health, Majadahonda, Spain
| | - Tiina Santonen
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - Argelia Castaño
- Instituto de Salud Carlos III, National Centre for Environmental Health, Majadahonda, Spain
| |
Collapse
|
5
|
Scholten B, Westerhout J, Pronk A, Stierum R, Vlaanderen J, Vermeulen R, Jones K, Santonen T, Portengen L. A physiologically-based kinetic (PBK) model for work-related diisocyanate exposure: Relevance for the design and reporting of biomonitoring studies. ENVIRONMENT INTERNATIONAL 2023; 174:107917. [PMID: 37062159 DOI: 10.1016/j.envint.2023.107917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/05/2023] [Accepted: 04/02/2023] [Indexed: 06/19/2023]
Abstract
Diisocyanates are highly reactive substances and known causes of occupational asthma. Exposure occurs mainly in the occupational setting and can be assessed through biomonitoring which accounts for inhalation and dermal exposure and potential effects of protective equipment. However the interpretation of biomonitoring data can be challenging for chemicals with complex kinetic behavior and multiple exposure routes, as is the case for diisocyanates. To better understand the relation between external exposure and urinary concentrations of metabolites of diisocyanates, we developed a physiologically based kinetic (PBK) model for methylene bisphenyl isocyanate (MDI) and toluene di-isocyanate (TDI). The PBK model covers both inhalation and dermal exposure, and can be used to estimate biomarker levels after either single or chronic exposures. Key parameters such as absorption and elimination rates of diisocyanates were based on results from human controlled exposure studies. A global sensitivity analysis was performed on model predictions after assigning distributions reflecting a mixture of parameter uncertainty and population variability. Although model-based predictions of urinary concentrations of the degradation products of MDI and TDI for longer-term exposure scenarios compared relatively well to empirical results for a limited set of biomonitoring studies in the peer-reviewed literature, validation of model predictions was difficult because of the many uncertainties regarding the precise exposure scenarios that were used. Sensitivity analyses indicated that parameters with a relatively large impact on model estimates included the fraction of diisocyanates absorbed and the binding rate of diisocyanates to albumin relative to other macro molecules.We additionally investigated the effects of timing of exposure and intermittent urination, and found that both had a considerable impact on estimated urinary biomarker levels. This suggests that these factors should be taken into account when interpreting biomonitoring data and included in the standard reporting of isocyanate biomonitoring studies.
Collapse
Affiliation(s)
- B Scholten
- Risk Assessment for Products in Development, TNO Quality of Life, the Netherlands.
| | - J Westerhout
- Risk Assessment for Products in Development, TNO Quality of Life, the Netherlands
| | - A Pronk
- Risk Assessment for Products in Development, TNO Quality of Life, the Netherlands
| | - R Stierum
- Risk Assessment for Products in Development, TNO Quality of Life, the Netherlands
| | - J Vlaanderen
- Institute for Risk Assessment Sciences, Utrecht University, the Netherlands
| | - R Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, the Netherlands
| | - K Jones
- Health and Safety Executive (HSE), Harpur Hill, Buxton, UK
| | - T Santonen
- Finnish Institute of Occupational Health (FIOH), Finland
| | - L Portengen
- Institute for Risk Assessment Sciences, Utrecht University, the Netherlands
| |
Collapse
|
6
|
Louro H, Gomes BC, Saber AT, Iamiceli AL, Göen T, Jones K, Katsonouri A, Neophytou CM, Vogel U, Ventura C, Oberemm A, Duca RC, Fernandez MF, Olea N, Santonen T, Viegas S, Silva MJ. The Use of Human Biomonitoring to Assess Occupational Exposure to PAHs in Europe: A Comprehensive Review. TOXICS 2022; 10:toxics10080480. [PMID: 36006159 PMCID: PMC9414426 DOI: 10.3390/toxics10080480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/05/2022] [Accepted: 08/13/2022] [Indexed: 06/02/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are among the chemicals with proven impact on workers' health. The use of human biomonitoring (HBM) to assess occupational exposure to PAHs has become more common in recent years, but the data generated need an overall view to make them more usable by regulators and policymakers. This comprehensive review, developed under the Human Biomonitoring for Europe (HBM4EU) Initiative, was based on the literature available from 2008-2022, aiming to present and discuss the information on occupational exposure to PAHs, in order to identify the strengths and limitations of exposure and effect biomarkers and the knowledge needs for regulation in the workplace. The most frequently used exposure biomarker is urinary 1-hydroxypyrene (1-OH-PYR), a metabolite of pyrene. As effect biomarkers, those based on the measurement of oxidative stress (urinary 8-oxo-dG adducts) and genotoxicity (blood DNA strand-breaks) are the most common. Overall, a need to advance new harmonized approaches both in data and sample collection and in the use of appropriate biomarkers in occupational studies to obtain reliable and comparable data on PAH exposure in different industrial sectors, was noted. Moreover, the use of effect biomarkers can assist to identify work environments or activities of high risk, thus enabling preventive risk mitigation and management measures.
Collapse
Affiliation(s)
- Henriqueta Louro
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), Nova Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal
| | - Bruno Costa Gomes
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), Nova Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal
| | - Anne Thoustrup Saber
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark
| | | | - Thomas Göen
- IPASUM, Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Kate Jones
- Health and Safety Executive, Buxton, Derbyshire SK17 9JN, UK
| | - Andromachi Katsonouri
- Cyprus State General Laboratory, Ministry of Health, P.O. Box 28648, Nicosia 2081, Cyprus
| | - Christiana M. Neophytou
- Cyprus State General Laboratory, Ministry of Health, P.O. Box 28648, Nicosia 2081, Cyprus
- Department of Life Sciences, European University Cyprus, Nicosia 2404, Cyprus
| | - Ulla Vogel
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark
- National Food Institute, Technical University of Denmark, Kemitorvet, Bygning 202, DK-2800 Kgs Lyngby, Denmark
| | - Célia Ventura
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), Nova Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal
| | - Axel Oberemm
- German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Radu Corneliu Duca
- Unit Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, Laboratoire National de Santé (LNS), 1, Rue Louis Rech, 3555 Dudelange, Luxembourg
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven (University of Leuven), O&N 5b, Herestraat 49, 3000 Leuven, Belgium
| | - Mariana F. Fernandez
- Centre of Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain
- Biosanitary Research Institute of Granada (ibs.GRANADA), 18012 Granada, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| | - Nicolas Olea
- Centre of Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain
- Biosanitary Research Institute of Granada (ibs.GRANADA), 18012 Granada, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| | - Tiina Santonen
- Finnish Institute of Occupational Health, 00250 Helsinki, Finland
| | - Susana Viegas
- Public Health Research Centre, NOVA National School of Public Health, Universidade NOVA de Lisboa, 1600-560 Lisbon, Portugal
- Comprehensive Health Research Center (CHRC), 1169-056 Lisbon, Portugal
| | - Maria João Silva
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), Nova Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal
| |
Collapse
|