1
|
Zhao Y, Wang S, Zhang M, Zeng L, Zhang L, Huang S, Zhang R, Zhou W, Ai C. Nitrogen Application and Rhizosphere Effect Exert Opposite Effects on Key Straw-Decomposing Microorganisms in Straw-Amended Soil. Microorganisms 2024; 12:574. [PMID: 38543625 PMCID: PMC10974416 DOI: 10.3390/microorganisms12030574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 11/12/2024] Open
Abstract
Crop residue decomposition is an important part of the carbon cycle in agricultural ecosystems, and microorganisms are widely recognized as key drivers during this process. However, we still know little about how nitrogen (N) input and rhizosphere effects from the next planting season impact key straw-decomposing microbial communities. Here, we combined amplicon sequencing and DNA-Stable Isotope Probing (DNA-SIP) to explore these effects through a time-series wheat pot experiment with four treatments: 13C-labeled maize straw addition with or without N application (S1N1 and S1N0), and no straw addition with or without N application (S0N1 and S0N0). The results showed that straw addition significantly reduced soil microbial alpha diversity in the early stages. Straw addition changed microbial beta diversity and increased absolute abundance in all stages. Growing plants in straw-amended soil further reduced bacterial alpha diversity, weakened straw-induced changes in beta diversity, and reduced bacterial and fungal absolute abundance in later stages. In contrast, N application could only increase the absolute abundance of soil bacteria and fungi while having little effect on alpha and beta diversity. The SIP-based taxonomic analysis of key straw-decomposing bacteria further indicated that the dominant phyla were Actinobacteria and Proteobacteria, with overrepresented genera belonging to Vicinamibacteraceae and Streptomyces. Key straw-decomposing fungi were dominated by Ascomycota, with overrepresented genera belonging to Penicillium and Aspergillus. N application significantly increased the absolute abundance of key straw-decomposing microorganisms; however, this increase was reduced by the rhizosphere effect. Overall, our study identified key straw-decomposing microorganisms in straw-amended soil and demonstrated that they exhibited opposite responses to N application and the rhizosphere effect.
Collapse
Affiliation(s)
- Yuanzheng Zhao
- Soil and Fertilizer Institute, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining 810016, China
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Shiyu Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Meiling Zhang
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Li Zeng
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Liyu Zhang
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Shuyu Huang
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Rong Zhang
- Soil and Fertilizer Institute, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining 810016, China
| | - Wei Zhou
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Chao Ai
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| |
Collapse
|
2
|
Reiß F, Kiefer N, Purahong W, Borken W, Kalkhof S, Noll M. Active soil microbial composition and proliferation are directly affected by the presence of biocides from building materials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168689. [PMID: 38000743 DOI: 10.1016/j.scitotenv.2023.168689] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/20/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023]
Abstract
Combinations of biocides are commonly added to building materials to prevent microbial growth and thereby cause degradation of the façades. These biocides reach the environment by leaching from façades posing an environmental risk. Although ecotoxicity to the aquatic habitat is well established, there is hardly any data on the ecotoxicological effects of biocides on the soil habitat. This study aimed to characterize the effect of the biocides terbutryn, isoproturon, octhilinone, and combinations thereof on the total and metabolically active soil microbial community composition and functions. Total soil microbial community was retrieved directly from the nucleic acid extracts, while the DNA of the active soil microbial community was separated after bromodeoxyuridine labeling. Bacterial 16S rRNA gene and fungal internal transcribed spacer region gene-based amplicon sequencing was carried out for both active and total, while gene copy numbers were quantified only for the total soil microbial community. Additionally, soil respiration and physico-chemical parameters were analyzed to investigate overall soil microbial activity. The bacterial and fungal gene copy numbers were significantly affected by single biocides and combined biocide soil treatment but not soil respiration and physico-chemical parameters. While the total soil microbiome experienced only minor effects from single and combined biocide treatment, the active soil microbiome was significantly impacted in its diversity, richness, composition, and functional patterns. The active bacterial richness was more sensitive than fungal richness. However, the adverse effects of the biocide combination treatments on soil bacterial richness were highly dependent on the identities of the biocide combination. Our results demonstrate that the presence of biocides frequently used in building materials affects the active soil microbiome. Thereby, the approach described herein can be used as an ecotoxicological measure for the effect on complex soil environments in future studies.
Collapse
Affiliation(s)
- Fabienne Reiß
- Institute for Bioanalysis, Department of Applied Natural Sciences and Health, Coburg University of Applied Sciences and Arts, Coburg, Germany
| | - Nadine Kiefer
- Institute for Bioanalysis, Department of Applied Natural Sciences and Health, Coburg University of Applied Sciences and Arts, Coburg, Germany
| | - Witoon Purahong
- Department of Soil Ecology, Helmholtz Centre for Environmental Research-UFZ, Halle (Saale), Germany
| | - Werner Borken
- Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| | - Stefan Kalkhof
- Institute for Bioanalysis, Department of Applied Natural Sciences and Health, Coburg University of Applied Sciences and Arts, Coburg, Germany; Proteomics Unit, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Matthias Noll
- Institute for Bioanalysis, Department of Applied Natural Sciences and Health, Coburg University of Applied Sciences and Arts, Coburg, Germany; Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany.
| |
Collapse
|
3
|
Guo Y, Wu C, Wang Z, Shi Y, Sun J. Co-occurrence of toxic metals, bacterial communities and metal resistance genes in coastal sediments from Bohai bay. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122666. [PMID: 37788796 DOI: 10.1016/j.envpol.2023.122666] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/29/2023] [Accepted: 09/29/2023] [Indexed: 10/05/2023]
Abstract
Sediment heavy metal contamination poses substantial risks to microbial community composition and functional gene distribution. Bohai Bay (BHB), the second-largest bay in the Bohai Sea, is subject to severe anthropogenic pollution. However, to date, there have been no studies conducted to evaluate the distribution of metal resistance genes (MRGs) and bacterial communities in the coastal sediments of BHB. In this study, we employed high-throughput sequencing based on 16S rRNA genes and real-time quantitative PCR (qPCR) to provide a comprehensive view of toxic metals, MRGs, and bacterial communities in BHB's coastal sediment samples across two seasons. We detected high levels of Cd in the summer samples and As in the autumn samples. The metal content in most autumn samples and all summer samples, based on ecological indices, indicated low ecological risk. Proteobacteria dominated all samples, followed by Desulfobacterota, Bacteroidota and Campilobacterota. Bacterial community variability was higher between autumn sampling sites but more stable in summer. We detected 9 MRG subtypes in all samples, with abundances ranging from 4.58 × 10-1 to 2.25 copies/16S rRNA copies. arsB exhibited the highest relative abundance, followed by acr3, czcA and arrA. The efflux mechanism is a common mechanism for sediment resistance to metal stress in Bohai Bay. Procrustes analysis indicated that bacterial community composition may be a determinant of MRGs composition in BHB sediments. Network analysis suggested that eight classes could be potential hosts for six MRGs. However, this type of correlation requires further validation. To summarize, our study offers preliminary insights into bacterial community and MRG distribution patterns in heavy metal-exposed sediments, laying the groundwork for understanding microbial community adaptations in multi-metal polluted environments and supporting ecological restoration efforts.
Collapse
Affiliation(s)
- Yiyan Guo
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan, 430074, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China; Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, 300457, China; Institute for Advanced Marine Research, China University of Geosciences, Guangzhou, 511462, China
| | - Chao Wu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China; State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
| | - Zhi Wang
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, 300457, China; Institute for Advanced Marine Research, China University of Geosciences, Guangzhou, 511462, China
| | - Yifeng Shi
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan, 430074, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China; Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, 300457, China; Institute for Advanced Marine Research, China University of Geosciences, Guangzhou, 511462, China
| | - Jun Sun
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan, 430074, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China; Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, 300457, China; Institute for Advanced Marine Research, China University of Geosciences, Guangzhou, 511462, China.
| |
Collapse
|
4
|
Xie X, Yuan K, Chen X, Zhao Z, Huang Y, Hu L, Liu H, Luan T, Chen B. Characterization of metal resistance genes carried by waterborne free-living and particle-attached bacteria in the Pearl River Estuary. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121547. [PMID: 37028791 DOI: 10.1016/j.envpol.2023.121547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
Toxic metals can substantially change the bacterial community and functions thereof in aquatic environments. Herein, metal resistance genes (MRGs) are the core genetic foundation for microbial responses to the threats of toxic metals. In this study, waterborne bacteria collected from the Pearl River Estuary (PRE) were separated into the free-living bacteria (FLB) and particle-attached bacteria (PAB), and analyzed using metagenomic approaches. MRGs were ubiquitous in the PRE water and mainly related to Cu, Cr, Zn, Cd and Hg. The levels of PAB MRGs in the PRE water ranged from 8.11 × 109 to 9.93 × 1012 copies/kg, which were significantly higher than those of the FLB (p < 0.01). It could be attributed to a large bacterial population attached on the suspended particulate matters (SPMs), which was evidenced by a significant correlation between the PAB MRGs and 16S rRNA gene levels in the PRE water (p < 0.05). Moreover, the total levels of PAB MRGs were also significantly correlated with those of FLB MRGs in the PRE water. The spatial pattern of MRGs of both FLB and PAB exhibited a declining trend from the low reaches of the PR to the PRE and on to the coastal areas, which was closely related to metal pollution degree. MRGs likely carried by plasmids were also enriched on the SPMs with a range from to 3.85 × 108 to 3.08 × 1012 copies/kg. MRG profiles and taxonomic composition of the predicted MRG hosts were significantly different between the FLB and PAB in the PRE water. Our results suggested that FLB and PAB could behave differential response to heavy metals in the aquatic environments from the perspective of MRGs.
Collapse
Affiliation(s)
- Xiuqin Xie
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, China; Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai, 519082, China
| | - Ke Yuan
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, China; Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai, 519082, China
| | - Xin Chen
- South China Sea Environmental Monitoring Center, South China Sea Bureau, Ministry of Natural Resources, Guangzhou, 510300, China
| | - Zongshan Zhao
- School of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Yongshun Huang
- Guangdong Provincial Hospital for Occupational Diseases Prevention and Treatment, Guangzhou, 510300, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Hongtao Liu
- Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou, 510300, China
| | - Tiangang Luan
- Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Baowei Chen
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, China; Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai, 519082, China.
| |
Collapse
|
5
|
Li M, Yao J, Sunahara G, Duran R, Liu B, Cao Y, Li H, Pang W, Liu H, Jiang S, Zhu J, Zhang Q. Assembly processes of bacterial and fungal communities in metal(loid)s smelter soil. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131153. [PMID: 36893604 DOI: 10.1016/j.jhazmat.2023.131153] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/20/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
There are few studies on concurrent bacterial and fungal community assembly processes that govern the metal(loid)s biogeochemical cycles at smelters. Here, a systematic investigation combined geochemical characterization, co-occurrence patterns, and assembly mechanisms of bacterial and fungal communities inhabiting soils around an abandoned arsenic smelter. Acidobacteriota, Actinobacteriota, Chloroflexi, and Pseudomonadota were dominant in bacterial communities, whereas Ascomycota and Basidiomycota dominated fungal communities. The random forest model indicated the bioavailable fractions of Fe (9.58%) were the main positive factor driving the beta diversity of bacterial communities, and the total N (8.09%) was the main negative factor for fungal communities. Microbe-contaminant interactions demonstrate the positive impact of the bioavailable fractions of certain metal(loid)s on bacteria (Comamonadaceae and Rhodocyclaceae) and fungi (Meruliaceae and Pleosporaceae). The fungal co-occurrence networks exhibited more connectivity and complexity than the bacterial networks. The keystone taxa were identified in bacterial (including Diplorickettsiaceae, norank_o_Candidatus_Woesebacteria, norank_o_norank_c_AT-s3-28, norank_o_norank_c_bacteriap25, and Phycisphaeraceae) and fungal (including Biatriosporaceae, Ganodermataceae, Peniophoraceae, Phaeosphaeriaceae, Polyporaceae, Teichosporaceae, Trichomeriaceae, Wrightoporiaceae, and Xylariaceae) communities. Meanwhile, community assembly analysis revealed that deterministic processes dominated the microbial community assemblies, which were highly impacted by pH, total N, and total and bioavailable metal(loid) content. This study provides helpful information to develop bioremediation strategies for the mitigation of metal(loid)s-polluted soils.
Collapse
Affiliation(s)
- Miaomiao Li
- Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Jun Yao
- Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China.
| | - Geoffrey Sunahara
- Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China; Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Drive, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Robert Duran
- Universite de Pau et des Pays de l'Adour, UPPA/E2S, IPREM CNRS 5254, Pau, France
| | - Bang Liu
- Universite de Pau et des Pays de l'Adour, UPPA/E2S, IPREM CNRS 5254, Pau, France
| | - Ying Cao
- Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Hao Li
- Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Wancheng Pang
- Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Houquan Liu
- Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Shun Jiang
- Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Junjie Zhu
- Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Qinghua Zhang
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|