1
|
Chen L, Zhang L, Hua H, Liu L, Mao Y, Wang R. Interactions between toll-like receptors signaling pathway and gut microbiota in host homeostasis. Immun Inflamm Dis 2024; 12:e1356. [PMID: 39073297 PMCID: PMC11284964 DOI: 10.1002/iid3.1356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 07/04/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Toll-like receptors (TLRs) are a family of fundamental pattern recognition receptors in the innate immune system, constituting the first line of defense against endogenous and exogenous antigens. The gut microbiota, a collection of commensal microorganisms in the intestine, is a major source of exogenous antigens. The components and metabolites of the gut microbiota interact with specific TLRs to contribute to whole-body immune and metabolic homeostasis. OBJECTIVE This review aims to summarize the interaction between the gut microbiota and TLR signaling pathways and to enumerate the role of microbiota dysbiosis-induced TLR signaling pathways in obesity, inflammatory bowel disease (IBD), and colorectal cancer (CRC). RESULTS Through the recognition of TLRs, the microbiota facilitates the development of both the innate and adaptive immune systems, while the immune system monitors dynamic changes in the commensal bacteria to maintain the balance of the host-microorganism symbiosis. Dysbiosis of the gut microbiota can induce a cascade of inflammatory and metabolic responses mediated by TLR signaling pathways, potentially resulting in various metabolic and inflammatory diseases. CONCLUSION Understanding the crosstalk between TLRs and the gut microbiota contributes to potential therapeutic applications in related diseases, offering new avenues for treatment strategies in conditions like obesity, IBD, and CRC.
Collapse
Affiliation(s)
- Luping Chen
- Shanghai Innovation Center of TCM Health ServiceShanghai University of Traditional Chinese MedicineShanghaiChina
- Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in MetabolismMaastricht UniversityMaastrichtThe Netherlands
| | - Linfang Zhang
- Shanghai Innovation Center of TCM Health ServiceShanghai University of Traditional Chinese MedicineShanghaiChina
- Oxford Suzhou Centre for Advanced ResearchSuzhouChina
| | - Hua Hua
- Sichuan Institute for Translational Chinese MedicineChengduChina
- Sichuan Academy of Chinese Medical SciencesChengduChina
| | - Li Liu
- Sichuan Institute for Translational Chinese MedicineChengduChina
- Sichuan Academy of Chinese Medical SciencesChengduChina
| | - Yuejian Mao
- Global R&D Innovation CenterInner Mongolia Mengniu Dairy (Group) Co. Ltd.HohhotInner MongoliaChina
| | - Ruirui Wang
- Shanghai Innovation Center of TCM Health ServiceShanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
2
|
Almanaa TN, Mubarak A, Sajjad M, Ullah A, Hassan M, Waheed Y, Irfan M, Khan S, Ahmad S. Design and validation of a novel multi-epitopes vaccine against hantavirus. J Biomol Struct Dyn 2024; 42:4185-4195. [PMID: 37261466 DOI: 10.1080/07391102.2023.2219324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023]
Abstract
Hantavirus is a member of the order Bunyavirales and an emerging global pathogen. Hantavirus infections have affected millions of people globally based on available epidemiological data and research studies. Hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS) are the two main human diseases associated with hantavirus infections. Hence, efforts are required to develop a potent vaccine against the pathogen. The only vaccine that is in use for hantavirus is an inactivated virus vaccine, "Hantavax", but it failed to produce neutralizing antibodies. Vaccine development is of much importance in dealing with the surge of hantavirus globally. In this study, hantavirus five proteins (N protein, G1 and G2, L protein, and non-structural proteins) were used in NetCTL 1.2 program to predict T-cell epitopes. To predict major histocompatibility complex (MHC) binding alleles, an immune epitope database (IEDB) was used. All predicted epitopes were then investigated for different immunoinformatics analyses such as antigenicity and toxicity analyses. The good water-soluble, non-toxic, probable antigenic, and DRB*0101 binder was selected. A multi-epitopes-based vaccine designing was then done where linkers were used to connect the shortlisted epitopes. In addition, an adjuvant molecule was supplementary to the multi-epitopes peptide to improve the vaccine's immunogenic potential. The final vaccine construct's three-dimensional structure was modeled by ab initio method. The vaccine molecule was then evaluated for its binding potential with TLR-3 immune receptor, which is key for its recognition and processing by the host immune system. Docking studies were performed using HADDOCK software. The best-docked complex was selected and visualized for intermolecular binding and interactions using UCSF Chimera 1.16 software. The findings revealed that the designed vaccine might be a potential vaccine against hantavirus and can be used in experimental animal model testings.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Taghreed N Almanaa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ayman Mubarak
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Muhammad Sajjad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
| | - Asad Ullah
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
| | - Muhammad Hassan
- Department of Pharmacy, Bacha Khan University, Charsadda, Pakistan
| | - Yasir Waheed
- Office of Research, Innovation and Commercialization, Shaheed Zulfiqar Ali Bhutto Medical University (SZABMU), Islamabad, Pakistan
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Muhammad Irfan
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Saifullah Khan
- Institute of Biotechnology and Microbiology, Bacha Khan University, Charsadda, Pakistan
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
- Department of Computer Science, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
3
|
Voronina AK, Arapidi GP. Helicobacter cinaedi bacterium association with atherosclerosis and other diseases. Front Microbiol 2024; 15:1371717. [PMID: 38650874 PMCID: PMC11033375 DOI: 10.3389/fmicb.2024.1371717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/20/2024] [Indexed: 04/25/2024] Open
Abstract
Helicobacter is a genus of spiral-shaped Gram-negative enterohepatic bacteria whose members are capable of causing bacteremia in humans. One of the poorly studied members of this genus is the bacterium Helicobacter cinaedi. This microorganism was first isolated from human fecal samples in 1984. Although it was long considered to be associated with only immunocompromised patients, more evidence in recent years has implicated H. cinaedi in causing serious pathologies in immunocompetent populations. In addition, H. cinaedi is also reported to be associated with a few chronic or severe illnesses, such as atherosclerosis, which in turn can lead to the development of other cardiovascular pathologies: one of the leading causes of mortality worldwide. Helicobacter cinaedi often goes unnoticed in standard diagnostic methods due to its slow growth under microaerobic conditions. This often leads to significant underdetection and hence undermines the role of this bacterium in the pathogenesis of various diseases and the extent of its spread in humans. In this review, we have compiled information on pathologies associated with H. cinaedi, the occurrence of the bacterium in humans and animals, and the latest developments in diagnosing the bacterium and treating associated diseases.
Collapse
Affiliation(s)
- Alice K. Voronina
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Georgij P. Arapidi
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
4
|
Albutti A. An integrated multi-pronged reverse vaccinology and biophysical approaches for identification of potential vaccine candidates against Nipah virus. Saudi Pharm J 2023; 31:101826. [PMID: 38028215 PMCID: PMC10651679 DOI: 10.1016/j.jsps.2023.101826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Nipah virus, a paramyxovirus linked to Hendra virus that first appeared in Malaysia and is the etiological agent of viral lethal encephalitis, has emerged as a strong threat to the health community in recent decades. Viral infections are seriously affecting global health. Since there are now no efficient therapeutic options, it will take considerable effort to develop appropriate therapeutic management for the Nipah virus. The main purpose of this study was to design a messenger RNA-based multi-epitope vaccine construct against Nipah virus. This purpose was achieved through multiple immunogenic epitopes prediction using Nipah virus antigenic protein using the immune epitope database and analysis resource (IEDB) followed by the vaccine construction and processing. As in multi-epitopes vaccine construction we selected immunogenic potential fragments of viral proteins, therefore in host immune stimulation we observed proper immune responses toward a multi-epitopes vaccine. In this study, the Nipah virus V protein was used to identify immunodominant epitopes utilizing several reverse vaccinology, immunoinformatics and biophysical methods. The potential antigenic predicted epitopes were further analyzed for immunoinformatics analysis and only selected probable antigenic and non-toxic epitopes were used in designing a multi-epitope mRNA based in silico vaccine against the target pathogen. In vaccine designing a total number of 03B cell epitopes, 09 Cytotoxic T lymphocytes (CTLs) and 01 Helper T lymphocytes (HTL) were prioritized as a good vaccine candidate. In the vaccine construction phase, the selected epitopes were linked together using EAAAK, GPGPG, KK, and AAY linkers, and B-defensin (adjuvant), and MITD sequences were also added to the vaccine construct to increase the potency. After vaccine construction, the physiochemical properties of the vaccine construct were evaluated which predicted that the vaccine construct comprises 320 amino acids with 34.29 kDa (kDa) molecular weight. The instability index was 36.55 proving its stability with the aliphatic index of 82.88. Furthermore, 9.0 theoretical pI and -0.317, GRAVY (Grand Average of Hydropathy) values were predicted in physicochemical properties analysis. A solubility check was applied against the vaccine construct depicting that the vaccine construct is soluble with its calculated value of 0.6. Additionally, after prediction the 3D structure was modeled and refined for docking analysis, the refined 3D structure of the vaccine candidate was further checked for binding affinity with immune cell receptors through docking analysis, in the docking analysis we observed that the vaccine construct has a good binding affinity with immune cells receptor and can induce a proper immune response in host cells. As we predicted effective binding of the designed vaccine construct, hence it can further facilitate the development of vaccine formulation against the Nipah virus. Additionally, molecular dynamic simulation was done using the AMBER v20 package for analysis of the dynamic behaviour of the docked complexes and we observed proper binding stability of the vaccine with target receptor. In C-immune simulation, different humoral and cellular antibody titer was observed in response to the vaccine. Overall using bioinformatics, immunoinformatics, and biophysical approaches we observed that this mRNA base epitopes vaccine construct could facilitate the proof of concept for the formation of the experimental base vaccine against the Nipah virus, as the in silico predictions indicated that the vaccine is highly promising in terms of developing protective immunity. However experimental validation is required to disclose the real immune-protective efficacy of the vaccine.
Collapse
Affiliation(s)
- Aqel Albutti
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
5
|
Kadiri M, Sevugapperumal N, Nallusamy S, Ragunathan J, Ganesan MV, Alfarraj S, Ansari MJ, Sayyed RZ, Lim HR, Show PL. Pan-genome analysis and molecular docking unveil the biocontrol potential of Bacillus velezensis VB7 against Phytophthora infestans. Microbiol Res 2023; 268:127277. [PMID: 36577205 DOI: 10.1016/j.micres.2022.127277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/23/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Management of late blight of potato incited by Phytophthora infestans remains a major challenge. Coevolution of pathogen with resistant strains and the rise of fungicide resistance have made it more challenging to prevent the spread of P. infestans. Here, the anti-oomycete potential of Bacillus velezensis VB7 against P. infestans through pan-genome analysis and molecular docking were explored. The Biocontrol potential of VB7 against P. infestans was assessed using a confrontational assay. The biomolecules from the inhibition zone were identified and subjected to in silico analysis against P. infestans target proteins. Nucleotide sequences for 54 B. velezensis strains from different geographical locations were used for pan-genome analysis. The confrontational assay revealed the anti-oomycetes potential of VB7 against P. infestans. Molecular docking confirmed that the penicillamine disulfide had the maximum binding energy with eight effector proteins of P. infestans. Besides, scanning electron microscopic observations of P. infestans interaction with VB7 revealed structural changes in hypha and sporangia. Pan-genome analysis between 54 strains of B. velezensis confirmed that the core genome had 2226 genes, and it has an open pan-genome. The present study confirmed the anti-oomycete potential of B. velezensis VB7 against P. infestans and paved the way to explore the genetic potential of VB7.
Collapse
Affiliation(s)
- Mahendra Kadiri
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Nakkeeran Sevugapperumal
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India.
| | - Saranya Nallusamy
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology & Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Janani Ragunathan
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Malathi Varagur Ganesan
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Saleh Alfarraj
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College, Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly), 244001, India.
| | - R Z Sayyed
- Asian PGPR Society, Department of Entomology, Auburn University, Auburn, AL, 36849, USA.
| | - Hooi Ren Lim
- Department of Chemical and Environmental Engineering, University of Nottingham, Malaysia, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, University of Nottingham, Malaysia, 43500, Semenyih, Selangor Darul Ehsan, Malaysia; Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, India 602105.
| |
Collapse
|
6
|
Targeted Protein-Specific Multi-Epitope-Based Vaccine Designing against Human Cytomegalovirus by Using Immunoinformatics Approaches. Vaccines (Basel) 2023; 11:vaccines11020203. [PMID: 36851082 PMCID: PMC9959080 DOI: 10.3390/vaccines11020203] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Cytomegaloviruses are emerging pathogenic agents known to cause congenital disorders in humans. In this study, immune epitopes (CTL, B cell and HTL) were screened for highly antigenic target proteins of the Human Cytomegalovirus. These shortlisted epitopes were then joined together through suitable linkers to construct multi epitope-based vaccine constructs (MEVCs). The functionality of each vaccine construct was evaluated through tertiary vaccine structure modelling and validations. Furthermore, physio-chemical properties including allergenicity, antigenicity molecular weight and many others were also predicted. The vaccine designs were also docked with the human TLR-4 receptor to demonstrate the receptor specific affinity and formed interactions. The vaccine peptides sequences were also subjected to codon optimization to confirm the potential vaccines expression in E. coli hosts. Additionally, all the MEVCs were also evaluated for immune response (IgG and IgM) induction. However, further in vivo tests are needed to ensure the efficacy of these vaccine designs.
Collapse
|
7
|
Zia K, Rao MJ, Sadaqat M, Azeem F, Fatima K, Tahir ul Qamar M, Alshammari A, Alharbi M. Pangenome-wide analysis of cyclic nucleotide-gated channel (CNGC) gene family in citrus Spp. Revealed their intraspecies diversity and potential roles in abiotic stress tolerance. Front Genet 2022; 13:1034921. [PMID: 36303546 PMCID: PMC9593079 DOI: 10.3389/fgene.2022.1034921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/27/2022] [Indexed: 11/27/2022] Open
Abstract
Cyclic nucleotide-gated channels (CNGC) gene family has been found to be involved in physiological processes including signaling pathways, environmental stresses, plant growth, and development. This gene family of non-selective cation channels is known to regulate the uptake of calcium and is reported in several plant species. The pangenome-wide studies enable researchers to understand the genetic diversity comprehensively; as a comparative analysis of multiple plant species or member of a species at once helps to better understand the evolutionary relationships and diversity present among them. In the current study, pangenome-wide analysis of the CNGC gene family has been performed on five Citrus species. As a result, a total of 32 genes in Citrus sinensis, 27 genes in Citrus recticulata, 30 genes in Citrus grandis, 31 genes in Atalantia buxfolia, and 30 genes in Poncirus trifoliata were identified. In addition, two unique genes CNGC13 and CNGC14 were identified, which may have potential roles. All the identified CNGC genes were unevenly distributed on 9 chromosomes except P. trifoliata had genes distributed on 7 chromosomes and were classified into four major groups and two sub-groups namely I, II, III, IV-A, and IV-B. Cyclic nucleotide binding (CNB) motif, calmodulin-binding motif (CaMB), and motif for IQ-domain were conserved in Citrus Spp. Intron exon structures of citrus species were not exactly as same as the gene structures of Arabidopsis. The majority of cis-regulatory elements (CREs) were light responsive and others include growth, development, and stress-related indicating potential roles of the CNGC gene family in these functions. Both segmental and tandem duplication were involved in the expansion of the CNGC gene family in Citrus Spp. The miRNAs are involved in the response of CsCNGC genes towards drought stress along with having regulatory association in the expression of these genes. Protein- Protein interaction (PPI) analysis also showed the interaction of CNGC proteins with other CNGCs which suggested their potential role in pathways regulating different biological processes. GO enrichment revealed that CNGC genes were involved in the transport of ions across membranes. Furthermore, tissue-specific expression patterns of leaves sample of C. sinensis were studied under drought stress. Out of 32 genes of C. sinensis 3 genes i.e., CsCNGC1.4, CsCNGC2.1, and CsCNGC4.2 were highly up-regulated, and only CsCNGC4.6 was highly down-regulated. The qRT-PCR analysis also showed that CNGC genes were highly expressed after treatment with drought stress, while gene expression was lower under controlled conditions. This work includes findings based on multiple genomes instead of one, therefore, this will provide more genomic information rather than single genome-based studies. These findings will serve as a basis for further functional insights into the CNGC gene family.
Collapse
Affiliation(s)
- Komal Zia
- Integrative Omics and Molecular Modeling Laboratory, Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Muhammad Junaid Rao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
| | - Muhammad Sadaqat
- Integrative Omics and Molecular Modeling Laboratory, Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Farrukh Azeem
- Integrative Omics and Molecular Modeling Laboratory, Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Kinza Fatima
- Integrative Omics and Molecular Modeling Laboratory, Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Muhammad Tahir ul Qamar
- Integrative Omics and Molecular Modeling Laboratory, Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
- Department of Botany and Plant Sciences, University of California Riverside (UCR), Riverside, CA, United States
- *Correspondence: Muhammad Tahir ul Qamar,
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|