1
|
Feigl V, Medgyes-Horváth A, Kari A, Török Á, Bombolya N, Berkl Z, Farkas É, Fekete-Kertész I. The potential of Hungarian bauxite residue isolates for biotechnological applications. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2024; 41:e00825. [PMID: 38225962 PMCID: PMC10788403 DOI: 10.1016/j.btre.2023.e00825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/17/2024]
Abstract
Bauxite residue (red mud) is considered an extremely alkaline and salty environment for the biota. We present the first attempt to isolate, identify and characterise microbes from Hungarian bauxite residues. Four identified bacterial strains belonged to the Bacilli class, one each to the Actinomycetia, Gammaproteobacteria, and Betaproteobacteria classes, and two to the Alphaproteobacteria class. All three identified fungi strains belonged to the Ascomycota division. Most strains tolerated pH 8-10 and salt content at 5-7% NaCl concentration. Alkalihalobacillus pseudofirmus BRHUB7 and Robertmurraya beringensis BRHUB9 can be considered halophilic and alkalitolerant. Priestia aryabhattai BRHUB2, Penicillium chrysogenum BRHUF1 and Aspergillus sp. BRHUF2 are halo- and alkalitolerant strains. Most strains produced siderophores and extracellular polymeric substances, could mobilise phosphorous, and were cellulose degraders. These strains and their enzymes are possible candidates for biotechnological applications in processes requiring extreme conditions, e.g. bioleaching of critical raw materials and rehabilitation of alkaline waste deposits.
Collapse
Affiliation(s)
- Viktória Feigl
- Budapest University of Technology and Economics, Faculty of Chemical Technology and Biotechnology, Department of Applied Biotechnology and Food Science, Műegyetem Rkp 3., Budapest 1111, Hungary
| | - Anna Medgyes-Horváth
- ELTE Eötvös Loránd University, Department of Physics of Complex Systems, Pázmány P. s. 1A, Budapest 1117, Hungary
| | - András Kari
- ELTE Eötvös Loránd University, Department of Microbiology, Pázmány P. s. 1A, Budapest 1117, Hungary
| | - Ádám Török
- Budapest University of Technology and Economics, Faculty of Chemical Technology and Biotechnology, Department of Applied Biotechnology and Food Science, Műegyetem Rkp 3., Budapest 1111, Hungary
| | - Nelli Bombolya
- Budapest University of Technology and Economics, Faculty of Chemical Technology and Biotechnology, Department of Applied Biotechnology and Food Science, Műegyetem Rkp 3., Budapest 1111, Hungary
| | - Zsófia Berkl
- Budapest University of Technology and Economics, Faculty of Chemical Technology and Biotechnology, Department of Applied Biotechnology and Food Science, Műegyetem Rkp 3., Budapest 1111, Hungary
| | - Éva Farkas
- Budapest University of Technology and Economics, Faculty of Chemical Technology and Biotechnology, Department of Applied Biotechnology and Food Science, Műegyetem Rkp 3., Budapest 1111, Hungary
- Norwegian Institute of Bioeconomy Research (NIBIO), Division of Environment and Natural Resources, Department of Biogeochemistry and Soil Quality, Høgskoleveien 7, 1432 Ås, Norway
| | - Ildikó Fekete-Kertész
- Budapest University of Technology and Economics, Faculty of Chemical Technology and Biotechnology, Department of Applied Biotechnology and Food Science, Műegyetem Rkp 3., Budapest 1111, Hungary
| |
Collapse
|