1
|
Warneke K, Lohmann LH, Plöschberger G, Konrad A. Critical evaluation and recalculation of current systematic reviews with meta-analysis on the effects of acute and chronic stretching on passive properties and passive peak torque. Eur J Appl Physiol 2024; 124:3153-3173. [PMID: 39066912 PMCID: PMC11519181 DOI: 10.1007/s00421-024-05564-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/09/2024] [Indexed: 07/30/2024]
Abstract
PURPOSE Muscle, tendon, and muscle-tendon unit (MTU) stiffness as well as passive peak torque (PPT) or delayed stretching pain sensation are typical explanatory approaches for stretching adaptations. However, in literature, differences in the study inclusion, as well as applying meta-analytical models without accounting for intrastudy dependency of multiple and heteroscedasticity of data bias the current evidence. Furthermore, most of the recent analyses neglected to investigate PPT adaptations and further moderators. METHODS The presented review used the recommended meta-analytical calculation method to investigate the effects of stretching on stiffness as well as on passive torque parameters using subgroup analyses for stretching types, stretching duration, and supervision. RESULTS Chronic stretching reduced muscle stiffness ( - 0.38, p = 0.01) overall, and also for the supervised ( - 0.49, p = 0.004) and long static stretching interventions ( - 0.61, p < 0.001), while the unsupervised and short duration subgroups did not reach the level of significance (p = 0.21, 0.29). No effects were observed for tendon stiffness or for subgroups (e.g., long-stretching durations). Chronic PPT (0.55, p = 0.005) in end ROM increased. Only long-stretching durations sufficiently decreased muscle stiffness acutely. No effects could be observed for acute PPT. CONCLUSION While partially in accordance with previous literature, the results underline the relevance of long-stretching durations when inducing changes in passive properties. Only four acute PPT in end ROM studies were eligible, while a large number were excluded as they provided mathematical models and/or lacked control conditions, calling for further randomized controlled trials on acute PPT effects.
Collapse
Affiliation(s)
- Konstantin Warneke
- Institute of Human Movement Science, Sport and Health, Karl-Franzens University of Graz, Mozartgasse 14, 8010, Graz, Austria.
- Institute of Sport Science, University of Klagenfurt, Klagenfurt am Wörthersee, Austria.
| | - Lars Hubertus Lohmann
- Department of Human Motion Science and Exercise Physiology, University of Jena, Jena, Germany
| | - Gerit Plöschberger
- Institute of Human Movement Science, Sport and Health, Karl-Franzens University of Graz, Mozartgasse 14, 8010, Graz, Austria
- Institute of Sport Science, University of Klagenfurt, Klagenfurt am Wörthersee, Austria
| | - Andreas Konrad
- Institute of Human Movement Science, Sport and Health, Karl-Franzens University of Graz, Mozartgasse 14, 8010, Graz, Austria
| |
Collapse
|
2
|
Rosenfeldt M, Stien N, Behm DG, Saeterbakken AH, Andersen V. Comparison of resistance training vs static stretching on flexibility and maximal strength in healthy physically active adults, a randomized controlled trial. BMC Sports Sci Med Rehabil 2024; 16:142. [PMID: 38943165 PMCID: PMC11212372 DOI: 10.1186/s13102-024-00934-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND The aim of the present study was to compare the effects of resistance training through full range of motion and static stretching (SS) of the hip and lower back extensors on flexibility and strength in healthy, physically active, adults. METHODS Eighteen participants (age: 24.2 ± 3.0 years, body mass: 71.3 ± 8.9 kg, height: 172.8 ± 7.5 cm) were randomly assigned to either a Resistance Training (RT) (n = 6), SS (n = 6), or control (CON) group (n = 6). The sit & reach (S&R) flexibility test and maximum isometric straight legged deadlift (ISLDL) at 95% and 50% range of motion (ROM) were tested pre- and post-intervention with significance set at p < 0.05. Both groups conducted four to eight sets per session. Within each set, the RT group performed eight repetitions each lasting four seconds, while the SS group stretched continuously for 32 s. The rest periods between each set were 60-90 s. Consequently training volume and rest times were matched between the groups. RESULTS The RT and SS groups achieved significant, large magnitude improvements in the S&R test compared to the CON group (p < 0.01 g = 2.53 and p = 0.01, g = 2.44), but no differences were observed between the RT and SS groups (p = 1.00). Furthermore, the RT group demonstrated a larger improvement in 50% and 95% ROM ISLDL compared to SS (p < 0.01, g = 2.69-3.36) and CON (p < 0.01, g = 2.44-2.57). CONCLUSION Resistance training through a full ROM was equally effective as SS for improving S&R flexibility, but improved hip- and lower back extensor strength more than SS and the CON. The authors recommend using large ROM resistance training to improve hip and lower back extensor flexibility and muscle strength. TRIAL REGISTRATION ISRCTN88839251, registered 24. April 2024, Retrospectively registered.
Collapse
Affiliation(s)
- Morten Rosenfeldt
- Faculty of Education, Arts and Sports, Western Norway University of Applied Sciences, PB 133, Sogndal, 6851, Norway
| | - Nicolay Stien
- Faculty of Education, Arts and Sports, Western Norway University of Applied Sciences, PB 133, Sogndal, 6851, Norway
| | - David G Behm
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Atle Hole Saeterbakken
- Faculty of Education, Arts and Sports, Western Norway University of Applied Sciences, PB 133, Sogndal, 6851, Norway
| | - Vidar Andersen
- Faculty of Education, Arts and Sports, Western Norway University of Applied Sciences, PB 133, Sogndal, 6851, Norway.
| |
Collapse
|
3
|
Afonso J, Andrade R, Rocha-Rodrigues S, Nakamura FY, Sarmento H, Freitas SR, Silva AF, Laporta L, Abarghoueinejad M, Akyildiz Z, Chen R, Pizarro A, Ramirez-Campillo R, Clemente FM. What We Do Not Know About Stretching in Healthy Athletes: A Scoping Review with Evidence Gap Map from 300 Trials. Sports Med 2024; 54:1517-1551. [PMID: 38457105 PMCID: PMC11239752 DOI: 10.1007/s40279-024-02002-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Stretching has garnered significant attention in sports sciences, resulting in numerous studies. However, there is no comprehensive overview on investigation of stretching in healthy athletes. OBJECTIVES To perform a systematic scoping review with an evidence gap map of stretching studies in healthy athletes, identify current gaps in the literature, and provide stakeholders with priorities for future research. METHODS Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 and PRISMA-ScR guidelines were followed. We included studies comprising healthy athletes exposed to acute and/or chronic stretching interventions. Six databases were searched (CINAHL, EMBASE, PubMed, Scopus, SPORTDiscus, and Web of Science) until 1 January 2023. The relevant data were narratively synthesized; quantitative data summaries were provided for key data items. An evidence gap map was developed to offer an overview of the existing research and relevant gaps. RESULTS Of ~ 220,000 screened records, we included 300 trials involving 7080 athletes [mostly males (~ 65% versus ~ 20% female, and ~ 15% unreported) under 36 years of age; tiers 2 and 3 of the Participant Classification Framework] across 43 sports. Sports requiring extreme range of motion (e.g., gymnastics) were underrepresented. Most trials assessed the acute effects of stretching, with chronic effects being scrutinized in less than 20% of trials. Chronic interventions averaged 7.4 ± 5.1 weeks and never exceeded 6 months. Most trials (~ 85%) implemented stretching within the warm-up, with other application timings (e.g., post-exercise) being under-researched. Most trials examined static active stretching (62.3%), followed by dynamic stretching (38.3%) and proprioceptive neuromuscular facilitation (PNF) stretching (12.0%), with scarce research on alternative methods (e.g., ballistic stretching). Comparators were mostly limited to passive controls, with ~ 25% of trials including active controls (e.g., strength training). The lower limbs were primarily targeted by interventions (~ 75%). Reporting of dose was heterogeneous in style (e.g., 10 repetitions versus 10 s for dynamic stretching) and completeness of information (i.e., with disparities in the comprehensiveness of the provided information). Most trials (~ 90%) reported performance-related outcomes (mainly strength/power and range of motion); sport-specific outcomes were collected in less than 15% of trials. Biomechanical, physiological, and neural/psychological outcomes were assessed sparsely and heterogeneously; only five trials investigated injury-related outcomes. CONCLUSIONS There is room for improvement, with many areas of research on stretching being underexplored and others currently too heterogeneous for reliable comparisons between studies. There is limited representation of elite-level athletes (~ 5% tier 4 and no tier 5) and underpowered sample sizes (≤ 20 participants). Research was biased toward adult male athletes of sports not requiring extreme ranges of motion, and mostly assessed the acute effects of static active stretching and dynamic stretching during the warm-up. Dose-response relationships remain largely underexplored. Outcomes were mostly limited to general performance testing. Injury prevention and other effects of stretching remain poorly investigated. These relevant research gaps should be prioritized by funding policies. REGISTRATION OSF project ( https://osf.io/6auyj/ ) and registration ( https://osf.io/gu8ya ).
Collapse
Affiliation(s)
- José Afonso
- Faculty of Sport, Centre of Research, Education, Innovation, and Intervention in Sport (CIFI2D), University of Porto, Porto, Portugal.
| | - Renato Andrade
- Clínica Espregueira-FIFA Medical Centre of Excellence, Porto, Portugal
- Dom Henrique Research Centre, Porto, Portugal
- Porto Biomechanics Laboratory (LABIOMEP), University of Porto, Porto, Portugal
| | - Sílvia Rocha-Rodrigues
- Escola Superior de Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun'Alvares, 4900-347, Viana do Castelo, Portugal
- Tumour and Microenvironment Interactions Group, INEB-Institute of Biomedical Engineering, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 4200-153, Porto, Portugal
- Sport Physical Activity and Health Research & Innovation Center, 4900-347, Viana do Castelo, Portugal
| | - Fábio Yuzo Nakamura
- Research Center in Sports Sciences, Health Sciences and Human Development (CIDESD), University of Maia, Maia, Portugal
| | - Hugo Sarmento
- University of Coimbra, Research Unit for Sport and Physical Activity (CIDAF), Faculty of Sport Sciences and Physical Education, Coimbra, Portugal
| | - Sandro R Freitas
- Laboratório de Função Neuromuscular, Faculdade de Motricidade Humana, Universidade de Lisboa, Cruz Quebrada, Portugal
| | - Ana Filipa Silva
- Escola Superior de Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun'Alvares, 4900-347, Viana do Castelo, Portugal
- Sport Physical Activity and Health Research & Innovation Center, 4900-347, Viana do Castelo, Portugal
| | - Lorenzo Laporta
- Núcleo de Estudos em Performance Analysis Esportiva (NEPAE/UFSM), Universidade Federal de Santa Maria, Avenida Roraima, nº 1000, Cidade Universitária, Bairro Camobi, Santa Maria, RS, CEP: 97105-900, Brazil
| | | | - Zeki Akyildiz
- Sports Science Faculty, Department of Coaching Education, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - Rongzhi Chen
- Faculty of Sport, Centre of Research, Education, Innovation, and Intervention in Sport (CIFI2D), University of Porto, Porto, Portugal
| | - Andreia Pizarro
- Faculty of Sport, Research Center in Physical Activity, Health and Leisure (CIAFEL), University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Rua das Taipas, 135, 4050-600, Porto, Portugal
| | - Rodrigo Ramirez-Campillo
- Exercise and Rehabilitation Sciences Institute, School of Physical Therapy. Faculty of Rehabilitation Sciences, Universidad Andres Bello, 7591538, Santiago, Chile
| | - Filipe Manuel Clemente
- Escola Superior de Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun'Alvares, 4900-347, Viana do Castelo, Portugal
- Sport Physical Activity and Health Research & Innovation Center, 4900-347, Viana do Castelo, Portugal
- Gdańsk University of Physical Education and Sport, 80-336, Gdańsk, Poland
| |
Collapse
|
4
|
Behm DG, Granacher U, Warneke K, Aragão-Santos JC, Da Silva-Grigoletto ME, Konrad A. Minimalist Training: Is Lower Dosage or Intensity Resistance Training Effective to Improve Physical Fitness? A Narrative Review. Sports Med 2024; 54:289-302. [PMID: 37924459 PMCID: PMC10933173 DOI: 10.1007/s40279-023-01949-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUND Findings from original research, systematic reviews, and meta-analyses have demonstrated the effectiveness of resistance training (RT) on markers of performance and health. However, the literature is inconsistent with regards to the dosage effects (frequency, intensity, time, type) of RT to maximize training-induced improvements. This is most likely due to moderating factors such as age, sex, and training status. Moreover, individuals with limited time to exercise or who lack motivation to perform RT are interested in the least amount of RT to improve physical fitness. OBJECTIVES The objective of this review was to investigate and identify lower than typically recommended RT dosages (i.e., shorter durations, lower volumes, and intensity activities) that can improve fitness components such as muscle strength and endurance for sedentary individuals or beginners not meeting the minimal recommendation of exercise. METHODS Due to the broad research question involving different RT types, cohorts, and outcome measures (i.e., high heterogeneity), a narrative review was selected instead of a systematic meta-analysis approach. RESULTS It seems that one weekly RT session is sufficient to induce strength gains in RT beginners with < 3 sets and loads below 50% of one-repetition maximum (1RM). With regards to the number of repetitions, the literature is controversial and some authors report that repetition to failure is key to achieve optimal adaptations, while other authors report similar adaptations with fewer repetitions. Additionally, higher intensity or heavier loads tend to provide superior results. With regards to the RT type, multi-joint exercises induce similar or even larger effects than single-joint exercises. CONCLUSION The least amount of RT that can be performed to improve physical fitness for beginners for at least the first 12 weeks is one weekly session at intensities below 50% 1RM, with < 3 sets per multi-joint exercise.
Collapse
Affiliation(s)
- David G Behm
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, A1C 5S7, Canada
| | - Urs Granacher
- Department of Sport and Sport Science Exercise and Human Movement Science, University of Freiburg, Freiburg, Germany
| | - Konstantin Warneke
- Institute for Exercise, Sport and Health, Leuphana University, Lüneburg, Germany
| | - Jose Carlos Aragão-Santos
- Department of Physical Education, Post Graduate Program in Health Sciences, Federal University of Sergipe, São Cristóvão, Brazil
| | - Marzo Edir Da Silva-Grigoletto
- Department of Physical Education, Post Graduate Program in Health Sciences, Federal University of Sergipe, São Cristóvão, Brazil
| | - Andreas Konrad
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, A1C 5S7, Canada.
- Institute of Human Movement Science, Sport and Health, Graz University, Graz, Austria.
| |
Collapse
|
5
|
McMahon JJ, Ripley NJ, Comfort P, Robles-Palazón FJ, Fahey JT, Badby AJ, Bramah C. The Kneeling Isometric Plantar Flexor Test: Preliminary Reliability and Feasibility in Professional Youth Football. J Funct Morphol Kinesiol 2023; 8:164. [PMID: 38132719 PMCID: PMC10744255 DOI: 10.3390/jfmk8040164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
Calf injuries are common in professional football; thus, the establishment of reliable and time-efficient methods of measuring the peak force capabilities of the plantar flexors with equipment that is accessible to football practitioners is valuable. In this study, we determined the preliminary reliability and feasibility of a new test, termed the kneeling isometric plantar flexion test (KIPFT), for footballers. Twenty-one male youth footballers (age = 17.8 ± 1.1 years, height = 182 ± 5 cm, weight = 77.6 ± 5.9 kg) from English League One football clubs completed three trials of the KIPFT on a wireless force plate at the end (2022-2023) and start (2023-2024) of the season. The within-session reliability of the peak force (relative to body weight) was good-excellent for both limbs and both occasions. On average, performance of the KIPFT took just over 1 min per limb and ~2 min to set up. The peak force values were larger for the non-dominant limbs only at the start versus the end of the season, but there were no between-limb differences. From these results, it was determined that (1) the KIPFT is feasible, (2) a minimum of 32 footballers would be required to establish its between-session reliability with ≥80% statistical power and (3) large-cohort normative data for the KIPFT may be best collected at the start of the football season.
Collapse
Affiliation(s)
- John J. McMahon
- Centre for Human Movement and Rehabilitation Research, University of Salford, Salford M6 6PU, UK; (N.J.R.); (P.C.); (F.J.R.-P.); (J.T.F.); (A.J.B.); (C.B.)
| | - Nicholas J. Ripley
- Centre for Human Movement and Rehabilitation Research, University of Salford, Salford M6 6PU, UK; (N.J.R.); (P.C.); (F.J.R.-P.); (J.T.F.); (A.J.B.); (C.B.)
| | - Paul Comfort
- Centre for Human Movement and Rehabilitation Research, University of Salford, Salford M6 6PU, UK; (N.J.R.); (P.C.); (F.J.R.-P.); (J.T.F.); (A.J.B.); (C.B.)
- Centre for Exercise and Sport Science Research, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Francisco Javier Robles-Palazón
- Centre for Human Movement and Rehabilitation Research, University of Salford, Salford M6 6PU, UK; (N.J.R.); (P.C.); (F.J.R.-P.); (J.T.F.); (A.J.B.); (C.B.)
- Department of Physical Activity and Sport, Faculty of Sport Sciences, Campus of Excellence Mare Nostrum, University of Murcia, 30720 Murcia, Spain
| | - Jack T. Fahey
- Centre for Human Movement and Rehabilitation Research, University of Salford, Salford M6 6PU, UK; (N.J.R.); (P.C.); (F.J.R.-P.); (J.T.F.); (A.J.B.); (C.B.)
| | - Andrew J. Badby
- Centre for Human Movement and Rehabilitation Research, University of Salford, Salford M6 6PU, UK; (N.J.R.); (P.C.); (F.J.R.-P.); (J.T.F.); (A.J.B.); (C.B.)
| | - Christopher Bramah
- Centre for Human Movement and Rehabilitation Research, University of Salford, Salford M6 6PU, UK; (N.J.R.); (P.C.); (F.J.R.-P.); (J.T.F.); (A.J.B.); (C.B.)
| |
Collapse
|
6
|
Warneke K, Lohmann LH, Lima CD, Hollander K, Konrad A, Zech A, Nakamura M, Wirth K, Keiner M, Behm DG. Physiology of Stretch-Mediated Hypertrophy and Strength Increases: A Narrative Review. Sports Med 2023; 53:2055-2075. [PMID: 37556026 PMCID: PMC10587333 DOI: 10.1007/s40279-023-01898-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2023] [Indexed: 08/10/2023]
Abstract
Increasing muscle strength and cross-sectional area is of crucial importance to improve or maintain physical function in musculoskeletal rehabilitation and sports performance. Decreases in muscular performance are experienced in phases of reduced physical activity or immobilization. These decrements highlight the need for alternative, easily accessible training regimens for a sedentary population to improve rehabilitation and injury prevention routines. Commonly, muscle hypertrophy and strength increases are associated with resistance training, typically performed in a training facility. Mechanical tension, which is usually induced with resistance machines and devices, is known to be an important factor that stimulates the underlying signaling pathways to enhance protein synthesis. Findings from animal studies suggest an alternative means to induce mechanical tension to enhance protein synthesis, and therefore muscle hypertrophy by inducing high-volume stretching. Thus, this narrative review discusses mechanical tension-induced physiological adaptations and their impact on muscle hypertrophy and strength gains. Furthermore, research addressing stretch-induced hypertrophy is critically analyzed. Derived from animal research, the stretching literature exploring the impact of static stretching on morphological and functional adaptations was reviewed and critically discussed. No studies have investigated the underlying physiological mechanisms in humans yet, and thus the underlying mechanisms remain speculative and must be discussed in the light of animal research. However, studies that reported functional and morphological increases in humans commonly used stretching durations of > 30 min per session of the plantar flexors, indicating the importance of high stretching volume, if the aim is to increase muscle mass and maximum strength. Therefore, the practical applicability seems limited to settings without access to resistance training (e.g., in an immobilized state at the start of rehabilitation), as resistance training seems to be more time efficient. Nevertheless, further research is needed to generate evidence in different human populations (athletes, sedentary individuals, and rehabilitation patients) and to quantify stretching intensity.
Collapse
Affiliation(s)
- Konstantin Warneke
- Institute for Exercise, Sport and Health, Leuphana University, Universitätsallee 1, 21335, Lüneburg, Deutschland, Germany.
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, Canada.
- Institute of Sport Science, Alpen-Adria University Klagenfurt, Klagenfurt, Germany.
| | - Lars H Lohmann
- University Sports Center, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Camila D Lima
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Karsten Hollander
- Institute of Interdisciplinary Exercise Science and Sports Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Andreas Konrad
- Institute of Human Movement Science, Sport and Health, University of Graz, Graz, Austria
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Astrid Zech
- Department of Human Motion Science and Exercise Physiology, Friedrich Schiller University, Jena, Germany
| | - Masatoshi Nakamura
- Faculty of Rehabilitation Sciences, Nishi Kyushu University, Ozaki, Kanzaki, Saga, Japan
| | - Klaus Wirth
- Institute of Sport Science, University of Applied Sciences Wiener Neustadt, Wiener Neustadt, Austria
| | - Michael Keiner
- Department of Sport Science, German University of Health and Sport, Ismaning, Germany
| | - David G Behm
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
7
|
Warneke K, Zech A, Wagner CM, Konrad A, Nakamura M, Keiner M, Schoenfeld BJ, Behm DG. Sex differences in stretch-induced hypertrophy, maximal strength and flexibility gains. Front Physiol 2023; 13:1078301. [PMID: 36685189 PMCID: PMC9846774 DOI: 10.3389/fphys.2022.1078301] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023] Open
Abstract
Introduction: If the aim is to increase maximal strength (MSt) and muscle mass, resistance training (RT) is primarily used to achieve these outcomes. However, research indicates that long-duration stretching sessions of up to 2 h per day can also provide sufficient stimuli to induce muscle growth. In RT literature, sex-related differences in adaptations are widely discussed, however, there is a lack of evidence addressing the sex-related effects on MSt and muscle thickness (MTh) of longer duration stretch training. Therefore, this study aimed to investigate the effects of 6 weeks of daily (1 h) unilateral static stretch training of the plantar flexors using a calf-muscle stretching device. Methods: Fifty-five healthy (m = 28, f = 27), active participants joined the study. MSt and range of motion (ROM) were measured with extended and flexed knee joint, and MTh was investigated in the medial and lateral heads of the gastrocnemius. Results: Statistically significant increases in MSt of 6%-15% (p < .001-.049, d = 0.45-1.09), ROM of 6%-21% (p < .001-.037, d = 0.47-1.38) and MTh of 4%-14% (p < .001-.005, d = 0.46-0.72) from pre-to post-test were observed, considering both sexes and both legs. Furthermore, there was a significant higher increase in MSt, MTh and ROM in male participants. In both groups, participants showed more pronounced adaptations in MSt and ROM with an extended knee joint as well as MTh in the medial head of the gastrocnemius (p < .001-.047). Results for relative MSt increases showed a similar result (p < .001-.036, d = 0.48-1.03). Discussion: Results are in accordance with previous studies pointing out significant increases of MSt, MTh and ROM due to long duration static stretch training. Both sexes showed significant increases in listed parameters however, male participants showed superior increases.
Collapse
Affiliation(s)
- Konstantin Warneke
- Department for Exercise, Sport and Health, Leuphana University, Lüneburg, Germany
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. Johns, NL, Canada
| | - Astrid Zech
- Department of Human Motion Science and Exercise Physiology, Friedrich Schuller University, Jena, Germany
| | | | - Andreas Konrad
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. Johns, NL, Canada
- Institute of Human Movement Science, Sport and Health, University of Graz, Graz, Austria
| | - Masatoshi Nakamura
- Faculty of Rehabilitation Sciences, Nishi Kyushu University, Kanzaki, Saga, Japan
| | - Michael Keiner
- Department of Training Science, German University of Health & Sport, Ismaning, Germany
| | - Brad J. Schoenfeld
- Department of Exercise Science and Recreation, Lehman College, Bronx, NY, United States
| | - David George Behm
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. Johns, NL, Canada
| |
Collapse
|
8
|
Warneke K, Zech A, Wagner CM, Konrad A, Nakamura M, Keiner M, Schoenfeld BJ, Behm DG. Sex differences in stretch-induced hypertrophy, maximal strength and flexibility gains. Front Physiol 2022. [PMID: 36685189 DOI: 10.3389/fphys.2022.878955/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Introduction: If the aim is to increase maximal strength (MSt) and muscle mass, resistance training (RT) is primarily used to achieve these outcomes. However, research indicates that long-duration stretching sessions of up to 2 h per day can also provide sufficient stimuli to induce muscle growth. In RT literature, sex-related differences in adaptations are widely discussed, however, there is a lack of evidence addressing the sex-related effects on MSt and muscle thickness (MTh) of longer duration stretch training. Therefore, this study aimed to investigate the effects of 6 weeks of daily (1 h) unilateral static stretch training of the plantar flexors using a calf-muscle stretching device. Methods: Fifty-five healthy (m = 28, f = 27), active participants joined the study. MSt and range of motion (ROM) were measured with extended and flexed knee joint, and MTh was investigated in the medial and lateral heads of the gastrocnemius. Results: Statistically significant increases in MSt of 6%-15% (p < .001-.049, d = 0.45-1.09), ROM of 6%-21% (p < .001-.037, d = 0.47-1.38) and MTh of 4%-14% (p < .001-.005, d = 0.46-0.72) from pre-to post-test were observed, considering both sexes and both legs. Furthermore, there was a significant higher increase in MSt, MTh and ROM in male participants. In both groups, participants showed more pronounced adaptations in MSt and ROM with an extended knee joint as well as MTh in the medial head of the gastrocnemius (p < .001-.047). Results for relative MSt increases showed a similar result (p < .001-.036, d = 0.48-1.03). Discussion: Results are in accordance with previous studies pointing out significant increases of MSt, MTh and ROM due to long duration static stretch training. Both sexes showed significant increases in listed parameters however, male participants showed superior increases.
Collapse
Affiliation(s)
- Konstantin Warneke
- Department for Exercise, Sport and Health, Leuphana University, Lüneburg, Germany
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. Johns, NL, Canada
| | - Astrid Zech
- Department of Human Motion Science and Exercise Physiology, Friedrich Schuller University, Jena, Germany
| | | | - Andreas Konrad
- Institute of Human Movement Science, Sport and Health, University of Graz, Graz, Austria
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. Johns, NL, Canada
| | - Masatoshi Nakamura
- Faculty of Rehabilitation Sciences, Nishi Kyushu University, Kanzaki, Saga, Japan
| | - Michael Keiner
- Department of Training Science, German University of Health & Sport, Ismaning, Germany
| | - Brad J Schoenfeld
- Department of Exercise Science and Recreation, Lehman College, Bronx, NY, United States
| | - David George Behm
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. Johns, NL, Canada
| |
Collapse
|