Bahramian M, Hynds PD, Priyadarshini A. Dynamic life cycle assessment of commercial and household food waste: A critical global review of emerging techniques.
THE SCIENCE OF THE TOTAL ENVIRONMENT 2024;
921:170853. [PMID:
38369144 DOI:
10.1016/j.scitotenv.2024.170853]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/19/2024] [Accepted: 02/07/2024] [Indexed: 02/20/2024]
Abstract
DLCA has been applied to several food waste streams, however, to date no critical assessment of its strengths, weaknesses, opportunities, and threats (SWOT) is available in the scientific literature. Accordingly, the present review aims to provide a comprehensive overview of the available literature on DLCA and its application to Household and Commercial Food Waste (HCFW) by providing critical assessment and perspectives for future research. The Population, Intervention, Comparison, and Outcome (PICO) framework for literature review was employed, with just 12 relevant studies identified between 1999 and 2022, highlighting a dearth of research on DLCA of food waste and the need for further research. Identified studies exhibit significant variations with respect to DLCA methodology, boundary settings, and data quality and reporting, with more attention typically given to combining conventional LCA with dynamic characterization models, thus making it difficult to draw conclusive findings or identify consistent trends. Additionally, most identified studies employed DLCA for a specific case study and comparison with traditional LCA outcomes was typically ignored; just one study presented the projected impact from both LCA and DLCA for the entire life cycle of a product. Employed functional/reference units ranged from specific quantities such as 1 kg of refined crystals or syrup, 1 g L-1 Sophorolipid solution, and 1 kg of dry food with packaging material, to broader indicators like 1 kg of biofuel or 1 MJ of primary energy. Monte Carlo simulation was the most frequently employed method for uncertainty analyses within identified studies. Sensitivity analyses were conducted in just 4 studies, but it was not always clearly reported. While DLCA is undoubtedly a more realistic approach to impact assessment, and thus likely more accurate, a need exists for increasingly standardized and regulated versions of DLCA for global and multi-criteria practices.
Collapse