1
|
Perveen S, Negi A, Saini S, Gangwar A, Sharma R. Identification of Chemical Scaffolds Targeting Drug-Resistant and Latent Mycobacterium tuberculosis through High-Throughput Whole-Cell Screening. ACS Infect Dis 2024; 10:513-526. [PMID: 38238154 DOI: 10.1021/acsinfecdis.3c00463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Identification of structurally unique chemical entities targeting unexplored bacterial targets is a prerequisite to combat increasing drug resistance against Mycobacterium tuberculosis. This study employed a whole-cell screening approach as an initial filter to scrutinize a 10,000-compound chemical library, resulting in the discovery of seven potent compounds with MIC values ranging from 1.56 to 25 μM. These compounds were categorized into four distinct chemical groups. Remarkably, they demonstrated efficacy against drug-resistant and nonreplicating tuberculosis strains, highlighting their effectiveness across different infection states. With a favorable selectivity index (>10), these compounds showed a safe therapeutic range and exhibited potency in an intracellular model of Mtb infection, mimicking the in vivo setup. Combining these identified hits with established anti-TB drugs revealed additive effects with rifampicin, isoniazid, and bedaquiline. Notably, IIIM-IDD-01 exhibited synergy with isoniazid and bedaquiline, likely due to their complementary mechanisms of targeting Mtb. Most potent hits, IIIM-IDD-01 and IIIM-IDD-02, displayed time- and concentration-dependent killing of Mtb. Mechanistic insights were sought through SEM and docking studies, although comprehensive evaluation is ongoing to unravel the hits' specific targets and modes of action. The hits demonstrated favorable pharmacokinetic properties (ADME-Tox) and showed a low risk of adverse effects, along with a predicted high level of oral bioavailability. These promising hits can serve as an initial basis for subsequent medicinal chemistry endeavors aimed at developing a new series of anti-TB agents. Moreover, the study affirms the significance of high-throughput in vitro assays for the TB drug discovery. It also emphasizes the necessity of targeting diverse TB strains to address the heterogeneity of tuberculosis bacteria.
Collapse
Affiliation(s)
- Summaya Perveen
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anjali Negi
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sapna Saini
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anjali Gangwar
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rashmi Sharma
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Screening of compound library identifies novel inhibitors against the MurA enzyme of Escherichia coli. Appl Microbiol Biotechnol 2021; 105:3611-3623. [PMID: 33860835 DOI: 10.1007/s00253-021-11272-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/27/2021] [Accepted: 04/05/2021] [Indexed: 11/27/2022]
Abstract
Bacterial cell has always been an attractive target for anti-infective drug discovery. MurA (UDP-N-acetylglucosamine enolpyruvyl transferase) enzyme of Escherichia coli (E.coli) is crucial for peptidoglycan biosynthetic pathway, as it is involved in the early stages of bacterial cell wall biosynthesis. In the present study we aim to identify novel chemical structures targeting the MurA enzyme. For screening purpose, we used in silico approach (pharmacophore based strategy) for 52,026 library compounds (Chembridge, Chemdiv and in house synthetics) which resulted in identification of 50 compounds. These compounds were screened in vitro against MurA enzyme and release of inorganic phosphate (Pi) was estimated. Two compounds (IN00152 and IN00156) were found to inhibit MurA enzyme > 70% in primary screening and IC50 of 14.03 to 32.30 μM respectively. These two hits were further evaluated for their mode of inhibition studies and whole-cell activity where we observed 2-4 folds increase in activity in presence of Permeabilizer EDTA (Ethylenediaminetetraacetic acid). Combination studies were also performed with known antibiotics in presence of EDTA. Hits are reported for the first time against this target and our report also support the use of OM permeabilizer in combination with antibacterial compounds to address the permeability and efficacy issue. These lead hits can be further optimized for drug discovery. KEY POINTS: • Emerging Gram negative resistant strains is a matter of concern. • Need for new screening strategies to cope with drying up antibiotics pipeline. • Outer membrane permeabilizers could be useful to improve potency of molecules to reach its target.
Collapse
|
3
|
Martínez-García GG, Mariño G. Autophagy role in environmental pollutants exposure. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 172:257-291. [PMID: 32620245 DOI: 10.1016/bs.pmbts.2020.02.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
During the last decades, the potential harmfulness derived from the exposure to environmental pollutants has been largely demonstrated, with associated damages ranging from geno- and cyto-toxicity to tissue malfunction and alterations in organism physiology. Autophagy is an evolutionarily-conserved cellular mechanism essential for cellular homeostasis, which contributes to protect cells from a wide variety of intracellular and extracellular stressors. Due to its pivotal importance, its correct functioning is directly linked to cell, tissue and organismal fitness. Environmental pollutants, particularly industrial compounds, are able to impact autophagic flux, either by increasing it as a protective response, by blocking it, or by switching its protective role toward a pro-cell death mechanism. Thus, the understanding of the effects of chemicals exposure on autophagy has become highly relevant, offering new potential approaches for risk assessment, protection and preventive measures to counteract the detrimental effects of environmental pollutants on human health.
Collapse
Affiliation(s)
- Gemma G Martínez-García
- Laboratorio "Autofagia y Metabolismo", Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain; Departamento de Biología Funcional, Universidad de Oviedo, Oviedo, Spain
| | - Guillermo Mariño
- Laboratorio "Autofagia y Metabolismo", Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain; Departamento de Biología Funcional, Universidad de Oviedo, Oviedo, Spain.
| |
Collapse
|
4
|
Huang X, Han X, Huang Z, Yu M, Zhang Y, Fan Y, Xu B, Zhou K, Song L, Wang X, Lu C, Xia Y. Maternal pentachlorophenol exposure induces developmental toxicity mediated by autophagy on pregnancy mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 169:829-836. [PMID: 30597782 DOI: 10.1016/j.ecoenv.2018.11.073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 11/16/2018] [Accepted: 11/17/2018] [Indexed: 06/09/2023]
Abstract
Pentachlorophenol (PCP) is often used as chlorinated hydrocarbon herbicides and insecticides, which has been suggested that toxicity of carcinogenic effect, teratogenic effect and reproductive system. However, there was still precious known about the underlying molecular mechanism of PCP on mammalian early development. To explore the developmental toxicity of PCP and its potential mechanism, pregnancy ICR mice except controls were exposed to PCP (0.02, 0.2 or 2 mg/kg) during gestation day (GD) 0.5 to GD8.5 in this study. We found that the fetal loss rate was increased and placental chorionic villi structure was disorder in hematoxylin-eosin staining (HE) on GD16.5. Meanwhile, autophagosomes were observed in chorionic villi through Transmission Electron Microscope (TEM). Moreover, the mRNA and/or protein expression of P62, LC3-ІІ/LC3-І and Beclin1 were increased in placenta, indicating the occurrence of autophagy. Then, to further explore the autophagy mechanism, microRNA (miR)-30a-5p, an expression inhibitor of Beclin1, was predicted through bioinformatics predictions and RT-PCR, and it was reduced in PCP-treated mice. Transfection and luciferase reporter gene test were used to verify the interaction between Beclin1 and miR-30a-5p. These results firstly indicate that, PCP exposure could downregulate the expression of miR-30a-5p, and then induced autophagy through upregulation of Beclin1 to result in fetal loss. Our study laid a foundation for understanding the PCP developmental toxicity through autophagy.
Collapse
Affiliation(s)
- Xiaomin Huang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiumei Han
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhenyao Huang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Mingming Yu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yan Zhang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yun Fan
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Bo Xu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Kun Zhou
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ling Song
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chuncheng Lu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
5
|
Rath SK, Singh S, Kumar S, Wani NA, Rai R, Koul S, Khan IA, Sangwan PL. Synthesis of amides from (E)-3-(1-chloro-3,4-dihydronaphthalen-2-yl)acrylic acid and substituted amino acid esters as NorA efflux pump inhibitors of Staphylococcus aureus. Bioorg Med Chem 2018; 27:343-353. [PMID: 30552006 DOI: 10.1016/j.bmc.2018.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 12/01/2018] [Accepted: 12/05/2018] [Indexed: 12/14/2022]
Abstract
Inhibitors for NorA efflux pump of Staphylococcus aureus have attracted the attention of many researchers towards the discovery and development of novel efflux pump inhibitors (EPIs). In an attempt to find specific potent inhibitors of NorA efflux pump of S. aureus, a total of 15 amino acid conjugates of 3-(1-chloro-3,4-dihydronaphthalen-2-yl)acrylic acid (4-18) were synthesized using a simple convenient synthetic approach and bioevaluated against NorA efflux pump. Two compounds 7 and 8 (each having MEC of 1.56 µg/mL) were found to restore the activity of ciprofloxacin through reduction of the MIC elucidated by comparing the ethidium bromide efflux in dose dependent manner in addition to ethidium bromide efflux inhibition and accumulation study using NorA overexpressing strain SA-1199B. Most potent compounds among these were able to restore the antibacterial activity of ciprofloxacin completely against SA-1199B. Structure activity relationship (SAR) studies and docking study of potent compounds 7 and 8 could elucidate the structural requirements necessary for interaction with the NorA efflux pumps. On the whole, compounds 7 and 8 have ability to reverse the NorA efflux mediated resistance and could be further optimized for development of potent efflux pump inhibitors.
Collapse
Affiliation(s)
- Santosh K Rath
- Bioorganic Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IIIM Campus, Jammu 180001, India
| | - Samsher Singh
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IIIM Campus, Jammu 180001, India; Clinical Microbiology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road Jammu, 180001, India
| | - Sunil Kumar
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IIIM Campus, Jammu 180001, India; Clinical Microbiology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road Jammu, 180001, India
| | - Naiem A Wani
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road Jammu, 180001, India
| | - Rajkishor Rai
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IIIM Campus, Jammu 180001, India; Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road Jammu, 180001, India
| | - Surrinder Koul
- Bioorganic Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road Jammu, 180001, India
| | - Inshad A Khan
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IIIM Campus, Jammu 180001, India; Clinical Microbiology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road Jammu, 180001, India
| | - Payare L Sangwan
- Bioorganic Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IIIM Campus, Jammu 180001, India.
| |
Collapse
|
6
|
Mehra R, Rajput VS, Gupta M, Chib R, Kumar A, Wazir P, Khan IA, Nargotra A. Benzothiazole Derivative as a Novel Mycobacterium tuberculosis Shikimate Kinase Inhibitor: Identification and Elucidation of Its Allosteric Mode of Inhibition. J Chem Inf Model 2016; 56:930-40. [PMID: 27149193 DOI: 10.1021/acs.jcim.6b00056] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mycobacterium tuberculosis shikimate kinase (Mtb-SK) is a key enzyme involved in the biosynthesis of aromatic amino acids through the shikimate pathway. Since it is proven to be essential for the survival of the microbe and is absent from mammals, it is a promising target for anti-TB drug discovery. In this study, a combined approach of in silico similarity search and pharmacophore building using already reported inhibitors was used to screen a procured library of 20,000 compounds of the commercially available ChemBridge database. From the in silico screening, 15 hits were identified, and these hits were evaluated in vitro for Mtb-SK enzyme inhibition. Two compounds presented significant enzyme inhibition with IC50 values of 10.69 ± 0.9 and 46.22 ± 1.2 μM. The best hit was then evaluated for the in vitro mode of inhibition where it came out to be an uncompetitive and noncompetitive inhibitor with respect to shikimate (SKM) and ATP, respectively, suggesting its binding at an allosteric site. Potential binding sites of Mtb-SK were identified which confirmed the presence of an allosteric binding pocket apart from the ATP and SKM binding sites. The docking simulations were performed at this pocket in order to find the mode of binding of the best hit in the presence of substrates and the products of the enzymatic reaction. Molecular dynamics (MD) simulations elucidated the probability of inhibitor binding at the allosteric site in the presence of ADP and shikimate-3-phosphate (S-3-P), that is, after the formation of products of the reaction. The inhibitor binding may prevent the release of the product from Mtb-SK, thereby inhibiting its activity. The binding stability and the key residue interactions of the inhibitor to this product complex were also revealed by the MD simulations. Residues ARG43, ILE45, and PHE57 were identified as crucial that were involved in interactions with the best hit. This is the first report of an allosteric binding site of Mtb-SK, which could largely address the selectivity issue associated with kinase inhibitors.
Collapse
Affiliation(s)
- Rukmankesh Mehra
- Discovery Informatics Division, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu 180001, India
| | - Vikrant Singh Rajput
- Clinical Microbiology Division, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu 180001, India.,Academy of Scientific and Innovative Research, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu 180001, India
| | - Monika Gupta
- Discovery Informatics Division, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu 180001, India
| | - Reena Chib
- Clinical Microbiology Division, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu 180001, India
| | - Amit Kumar
- Discovery Informatics Division, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu 180001, India
| | - Priya Wazir
- Instrumentation Division, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu 180001, India
| | - Inshad Ali Khan
- Clinical Microbiology Division, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu 180001, India.,Academy of Scientific and Innovative Research, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu 180001, India
| | - Amit Nargotra
- Discovery Informatics Division, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu 180001, India.,Academy of Scientific and Innovative Research, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu 180001, India
| |
Collapse
|
7
|
Screening of antitubercular compound library identifies novel shikimate kinase inhibitors of Mycobacterium tuberculosis. Appl Microbiol Biotechnol 2016; 100:5415-26. [DOI: 10.1007/s00253-015-7268-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 11/26/2015] [Accepted: 12/22/2015] [Indexed: 10/22/2022]
|
8
|
Sharma R, Rani C, Mehra R, Nargotra A, Chib R, Rajput VS, Kumar S, Singh S, Sharma PR, Khan IA. Identification and characterization of novel small molecule inhibitors of the acetyltransferase activity of Escherichia coli N-acetylglucosamine-1-phosphate-uridyltransferase/glucosamine-1-phosphate-acetyltransferase (GlmU). Appl Microbiol Biotechnol 2015; 100:3071-85. [PMID: 26563552 DOI: 10.1007/s00253-015-7123-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/19/2015] [Accepted: 10/26/2015] [Indexed: 10/22/2022]
Abstract
This study aims at identifying novel chemical scaffolds as inhibitors specific to the acetyltransferase domain of a bifunctional enzyme, Escherichia coli GlmU, involved in the cell wall biosynthesis of Gram-negative organisms. A two-pronged approach was used to screen a 50,000 small-molecule library. Using the first approach, the library was in silico screened by docking the library against acetyltransferase domain of E. coli GlmU studies. In the second approach, complete library was screened against Escherichia coli ATCC 25922 to identify the whole cell active compounds. Active compounds from both the screens were screened in a colorimetric absorbance-based assay to identify inhibitors of acetyltransferase domain of E. coli GlmU which resulted in the identification of 1 inhibitor out of 56 hits identified by in silico screening and 4 inhibitors out of 35 whole cell active compounds on Gram-negative bacteria with the most potent inhibitor showing IC50 of 1.40 ± 0.69 μM. Mode of inhibition studies revealed these inhibitors to be competitive with AcCoA and uncompetitive with GlcN-1-P. These selected inhibitors were also tested for their antibacterial and cytotoxic activities. Compounds 5175178 and 5215319 exhibited antibacterial activity that co-related with GlmU inhibition. These compounds, therefore, represent novel chemical scaffolds targeting acetyltransferase activity of E. coli GlmU.
Collapse
Affiliation(s)
- Rashmi Sharma
- Clinical Microbiology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001, India.,Academy of Scientific and Innovative Research, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Chitra Rani
- Clinical Microbiology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001, India.,Academy of Scientific and Innovative Research, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Rukmankesh Mehra
- Discovery Informatics Division, CSIR-Indian Institute of Integrative Medicine (CSIR), Canal Road, Jammu, 180001, India
| | - Amit Nargotra
- Discovery Informatics Division, CSIR-Indian Institute of Integrative Medicine (CSIR), Canal Road, Jammu, 180001, India.,Academy of Scientific and Innovative Research, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Reena Chib
- Clinical Microbiology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001, India
| | - Vikrant S Rajput
- Clinical Microbiology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001, India.,Academy of Scientific and Innovative Research, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Sunil Kumar
- Clinical Microbiology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001, India.,Academy of Scientific and Innovative Research, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Samsher Singh
- Clinical Microbiology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001, India.,Academy of Scientific and Innovative Research, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Parduman R Sharma
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine (CSIR), Canal Road, Jammu Tawi, 180001, India.,Academy of Scientific and Innovative Research, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Inshad A Khan
- Clinical Microbiology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001, India. .,Academy of Scientific and Innovative Research, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India.
| |
Collapse
|
9
|
High-throughput screen identifies small molecule inhibitors targeting acetyltransferase activity of Mycobacterium tuberculosis GlmU. Tuberculosis (Edinb) 2015; 95:664-677. [PMID: 26318557 DOI: 10.1016/j.tube.2015.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/18/2015] [Accepted: 06/23/2015] [Indexed: 10/23/2022]
Abstract
N-acetylglucosamine-1-phosphate uridyltransferase (GlmU) is a pivotal bifunctional enzyme, its N and C terminal domains catalyzes uridyltransferase and acetyltransferase activities, respectively. Final product of GlmU catalyzed reaction, uridine-diphospho-N-acetylglucosamine (UDP-GlcNAc), acts as sugar donor providing GlcNAc residues in the synthesis of peptidoglycan and a disaccharide linker (D-N-GlcNAc-1-rhamnose), the key structural components of Mycobacterium tuberculosis (M. tuberculosis) cell wall. In the present study, we have searched new inhibitors against acetyltransferase activity of M. tuberculosis GlmU. A subset of 1607 synthetic compounds, selected through dual approach i.e., in-silico and whole cell screen against 20,000 compounds from ChemBridge library, was further screened using an in-vitro high throughput bioassay to identify inhibitors of acetyltransferase domain of M. tuberculosis GlmU. Four compounds were found to inhibit GlmU enzyme specific to acetyltransferase activity, with IC50 values ranging from 9 to 70 μM. Two compounds (6624116, 5655606) also exhibited whole cell activity against drug susceptible as well as drug resistant M. tuberculosis. These two compounds also exhibited increased anti-TB activity when tested in combination with rifampicin, isoniazid and ethambutol, however 5655606 was cytotoxic to eukaryotic cell line. These results demonstrate that identified chemical scaffolds can be used as inhibitors of M. tuberculosis cell wall enzyme after optimizations for future anti-TB drug development program.
Collapse
|
10
|
Munagala G, Yempalla KR, Singh S, Sharma S, Kalia NP, Rajput VS, Kumar S, Sawant SD, Khan IA, Vishwakarma RA, Singh PP. Synthesis of new generation triazolyl- and isoxazolyl-containing 6-nitro-2,3-dihydroimidazooxazoles as anti-TB agents: in vitro, structure–activity relationship, pharmacokinetics and in vivo evaluation. Org Biomol Chem 2015; 13:3610-24. [DOI: 10.1039/c5ob00054h] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Promising nitroimidazoloxazole scaffold gives another novel triazolyl-containing 6-nitro-2,3-dihydroimidazooxazole as anti-TB lead.
Collapse
|
11
|
Pietsch C, Hollender J, Dorusch F, Burkhardt-Holm P. Cytotoxic effects of pentachlorophenol (PCP) and its metabolite tetrachlorohydroquinone (TCHQ) on liver cells are modulated by antioxidants. Cell Biol Toxicol 2014; 30:233-52. [DOI: 10.1007/s10565-014-9283-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 06/25/2014] [Indexed: 11/29/2022]
|
12
|
4-epi-Pimaric acid: a phytomolecule as a potent antibacterial and anti-biofilm agent for oral cavity pathogens. Eur J Clin Microbiol Infect Dis 2011; 31:149-59. [DOI: 10.1007/s10096-011-1287-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 04/26/2011] [Indexed: 10/18/2022]
|
13
|
Evaluation of pathways involved in pentachlorophenol-induced apoptosis in rat neurons. Neurotoxicology 2009; 30:451-8. [DOI: 10.1016/j.neuro.2009.02.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 01/23/2009] [Accepted: 02/01/2009] [Indexed: 11/17/2022]
|
14
|
Song ZH. Effects of pentachlorophenol on Galba pervia, Tubifex sinicus and Chironomus plumousus larvae. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2007; 79:278-82. [PMID: 17713712 DOI: 10.1007/s00128-007-9258-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Accepted: 07/27/2007] [Indexed: 05/16/2023]
Abstract
The 24-h median lethal concentrations of pentachlorophenol to Chironomus plumousus, Tubifex sinicus and Galba pervia were 0.302, 0.977 and 0.293 mg/L, respectively. Bioconcentration factors of C. plumousus, T. sinicus and G. pervia to pentachlorophenol were 108, 367 and 85 at 0.02 mg/L pentachlorophenol, respectively. As pentachlorophenol concentration increased, the G. pervia egg hatching rates became lower, and the total hatched time became longer. Pentachlorophenol teratogenesis was demonstrated by observing the deformation of C. plumousus larvae mentum.
Collapse
Affiliation(s)
- Z H Song
- School of Environment and Safety Engineering, Qingdao University of Science & Technology, Qingdao, 266042, People's Republic of China.
| |
Collapse
|
15
|
Dorsey WC, Tchounwou PB, Ford BD. Neuregulin 1-Beta cytoprotective role in AML 12 mouse hepatocytes exposed to pentachlorophenol. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2007; 3:11-22. [PMID: 16823072 PMCID: PMC3785675 DOI: 10.3390/ijerph2006030002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neuregulins are a family of growth factor domain proteins that are structurally related to the epidermal growth factor. Accumulating evidence has shown that neuregulins have cyto- and neuroprotective properties in various cell types. In particular, the neuregulin-1 Beta (NRG1-Beta) isoform is well documented for its antiinflammatory properties in rat brain after acute stroke episodes. Pentachlorophenol (PCP) is an organochlorine compound that has been widely used as a biocide in several industrial, agricultural, and domestic applications. Previous investigations from our laboratory have demonstrated that PCP exerts both cytotoxic and mitogenic effects in human liver carcinoma (HepG2) cells, primary catfish hepatocytes and AML 12 mouse hepatocytes. We have also shown that in HepG2 cells, PCP has the ability to induce stress genes that may play a role in the molecular events leading to toxicity and tumorigenesis. In the present study, we hypothesize that NRG1-Beta will exert its cytoprotective effects in PCP-treated AML 12 mouse hepatocytes by its ability to suppress the toxic effects of PCP. To test this hypothesis, we performed the MTT-cell respiration assay to assess cell viability, and Western-blot analysis to assess stress-related proteins as a consequence of PCP exposure. Data obtained from 48 h-viability studies demonstrated a biphasic response; showing a dose-dependent increase in cell viability within the range of 0 to 3.87 microg/mL, and a gradual decrease within the concentration range of 7.75 to 31.0 microg/mL in concomitant treatments of NRG1-Beta+PCP and PCP. Cell viability percentages indicated that NRG1-Beta+PCPtreated cells were not significantly impaired, while PCP-treated cells were appreciably affected; suggesting that NRG1-Beta has the ability to suppress the toxic effects of PCP. Western Blot analysis demonstrated the potential of PCP to induce oxidative stress and inflammatory response (c-fos), growth arrest and DNA damage (GADD153), proteotoxic effects (HSP70), cell cycle arrest as consequence of DNA damage (p53), mitogenic response (cyclin- D1), and apoptosis (caspase-3). NRG1-Beta exposure attenuated stress-related protein expression in PCP-treated AML 12 mouse hepatocytes. Here we provide clear evidence that NRG1-Beta exerts cytoprotective effects in AML 12 mouse hepatocytes exposed to PCP.
Collapse
Affiliation(s)
- Waneene C. Dorsey
- Molecular Toxicology Research Laboratory, Grambling State University, Grambling, LA,
USA
| | - Paul B. Tchounwou
- Molecular Toxicology Research Laboratory, NIH-Center for Environmental Health, College of Science, Engineering, and Technology, Jackson State University, Jackson, MS,
USA
- Correspondence to Dr. Paul B. Tchounwou.
| | - Byron D. Ford
- Department of Anatomy and Neurobiology, Morehouse School of Medicine, Atlanta, GA,
USA
| |
Collapse
|
16
|
Dorsey WC, Ford BD, Roane L, Haynie DT, Tchounwou PB. Induced mitogenic activity in AML-12 mouse hepatocytes exposed to low-dose ultra-wideband electromagnetic radiation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2006; 2:24-30. [PMID: 16705798 PMCID: PMC3814693 DOI: 10.3390/ijerph2005010024] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ultra–wideband (UWB) technology has increased with the use of various civilian and military applications. In the present study, we hypothesized that low-dose UWB electromagnetic radiation (UWBR) could elicit a mitogenic effect in AML-12 mouse hepatocytes, in vitro. To test this hypothesis, we exposed AML-12 mouse hepatocytes, to UWBR in a specially constructed gigahertz transverse electromagnetic mode (GTEM) cell. Cells were exposed to UWBR for 2 h at a temperature of 23°C, a pulse width of 10 ns, a repetition rate of 1 kHz, and field strength of 5–20 kV/m. UWB pulses were triggered by an external pulse generator for UWBR exposure but were not triggered for the sham exposure. We performed an MTT Assay to assess cell viability for UWBR-treated and sham-exposed hepatocytes. Data from viability studies indicated a time-related increase in hepatocytes at time intervals from 8–24 h post exposure. UWBR exerted a statistically significant (p < 0.05) dose-dependent response in cell viability in both serum-treated and serum free medium (SFM) -treated hepatocytes. Western blot analysis of hepatocyte lysates demonstrated that cyclin A protein was induced in hepatocytes, suggesting that increased MTT activity after UWBR exposure was due to cell proliferation. This study indicates that UWBR has a mitogenic effect on AML-12 mouse hepatocytes and implicates a possible role for UWBR in hepatocarcinoma.
Collapse
Affiliation(s)
- W. C. Dorsey
- Wildlife Biology Unit, Grambling State University, Grambling, LA. USA
| | - B. D. Ford
- Department of Anatomy and Neurobiology, Morehouse School of Medicine, Atlanta, GA. USA
| | - L. Roane
- Wildlife Biology Unit, Grambling State University, Grambling, LA. USA
| | - D. T. Haynie
- Biomedical Engineering & Physics, Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA. USA
| | - P. B. Tchounwou
- Molecular Toxicology Research Laboratory, NIH-Center for Environmental Health, College of Science, Engineering, and Technology, Jackson State University, Jackson, MS, USA
- Correspondence to Dr. Paul B. Tchounwou.
| |
Collapse
|