1
|
Cagna DR, Donovan TE, McKee JR, Metz JE, Marzola R, Murphy KG, Troeltzsch M. Annual review of selected scientific literature: A report of the Committee on Scientific Investigation of the American Academy of Restorative Dentistry. J Prosthet Dent 2024:S0022-3913(24)00704-2. [PMID: 39489673 DOI: 10.1016/j.prosdent.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
The Scientific Investigation Committee of the American Academy of Restorative Dentistry offers this review of select 2023 dental literature to briefly touch on several topics of interest to modern restorative dentistry. Each committee member brings discipline-specific expertize in their subject areas that include (in order of appearance here): prosthodontics; periodontics, alveolar bone, and peri-implant tissues; dental materials and therapeutics; occlusion and temporomandibular disorders; sleep-related breathing disorders; oral medicine, oral and maxillofacial surgery, and oral radiology; and dental caries and cariology. The authors have focused their efforts on presenting information likely to influence the daily dental treatment decisions of the reader with an emphasis on current innovations, new materials and processes, emerging technology, and future trends in dentistry. With the overwhelming volume of literature published daily in dentistry and related disciplines, this review cannot be comprehensive. Instead, its purpose is to inform and update interested readers and provide valuable resource material for those willing to subsequently pursue greater detail on their own. Our intent remains to assist colleagues in navigating the tremendous volume of newly minted information produced annually. Finally, we hope readers find this work helpful in providing evidence-based care to patients seeking healthier and happier lives. (J Prosthet Dent 2024;132:■■■-■■■).
Collapse
Affiliation(s)
- David R Cagna
- Professor (adjunct) and Postdoctoral Program Consultant, Department of Prosthodontics, University of Tennessee Health Sciences Center College of Dentistry, Memphis, Tenn.
| | - Terence E Donovan
- Professor, Department of Comprehensive Oral Health, University of North Carolina School of Dentistry, Chapel Hill, NC
| | | | - James E Metz
- Private practice, Restorative Dentistry, Columbus, Ohio; Assistant Professor (adjunct), Department of Prosthodontics, University of Tennessee Health Science Center College of Dentistry, Memphis, Tenn.; Clinical Professor, Marshall University's Joan C. Edwards School of Medicine, Department of Dentistry & Oral Surgery, Huntington, WV
| | | | - Kevin G Murphy
- Associate Clinical Professor, Department of Periodontics, University of Maryland College of Dentistry, Baltimore, MD
| | - Matthias Troeltzsch
- Private practice, Oral, Maxillofacial, and Facial Plastic Surgery, Ansbach, Germany; and Department of Oral and Maxillofacial Surgery, Ludwig-Maximilian University of Munich, Munich, Germany
| |
Collapse
|
2
|
Giraldo-Roldán D, Dos Santos GC, Araújo ALD, Nakamura TCR, Pulido-Díaz K, Lopes MA, Santos-Silva AR, Kowalski LP, Moraes MC, Vargas PA. Deep Convolutional Neural Network for Accurate Classification of Myofibroblastic Lesions on Patch-Based Images. Head Neck Pathol 2024; 18:117. [PMID: 39466448 PMCID: PMC11519240 DOI: 10.1007/s12105-024-01723-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/17/2024] [Indexed: 10/30/2024]
Abstract
OBJECTIVE This study aimed to implement and evaluate a Deep Convolutional Neural Network for classifying myofibroblastic lesions into benign and malignant categories based on patch-based images. METHODS A Residual Neural Network (ResNet50) model, pre-trained with weights from ImageNet, was fine-tuned to classify a cohort of 20 patients (11 benign and 9 malignant cases). Following annotation of tumor regions, the whole-slide images (WSIs) were fragmented into smaller patches (224 × 224 pixels). These patches were non-randomly divided into training (308,843 patches), validation (43,268 patches), and test (42,061 patches) subsets, maintaining a 78:11:11 ratio. The CNN training was caried out for 75 epochs utilizing a batch size of 4, the Adam optimizer, and a learning rate of 0.00001. RESULTS ResNet50 achieved an accuracy of 98.97%, precision of 99.91%, sensitivity of 97.98%, specificity of 99.91%, F1 score of 98.94%, and AUC of 0.99. CONCLUSIONS The ResNet50 model developed exhibited high accuracy during training and robust generalization capabilities in unseen data, indicating nearly flawless performance in distinguishing between benign and malignant myofibroblastic tumors, despite the small sample size. The excellent performance of the AI model in separating such histologically similar classes could be attributed to its ability to identify hidden discriminative features, as well as to use a wide range of features and benefit from proper data preprocessing.
Collapse
Affiliation(s)
- Daniela Giraldo-Roldán
- Faculdade de Odontologia de Piracicaba, Universidade de Campinas (FOP-UNICAMP), Piracicaba, São Paulo, Brazil.
- Department of Oral Diagnosis, Oral Pathology Area Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira, 901, 13.414-903, Piracicaba, São Paulo, Brazil.
| | - Giovanna Calabrese Dos Santos
- Institute of Science and Technology, Federal University of São Paulo (ICT-Unifesp), São José dos Campos, São Paulo, Brazil
| | | | - Thaís Cerqueira Reis Nakamura
- Institute of Science and Technology, Federal University of São Paulo (ICT-Unifesp), São José dos Campos, São Paulo, Brazil
| | - Katya Pulido-Díaz
- Health Care Department, Oral Pathology and Medicine Master, Autonomous Metropolitan University, Mexico City, Mexico
| | - Marcio Ajudarte Lopes
- Faculdade de Odontologia de Piracicaba, Universidade de Campinas (FOP-UNICAMP), Piracicaba, São Paulo, Brazil
| | - Alan Roger Santos-Silva
- Faculdade de Odontologia de Piracicaba, Universidade de Campinas (FOP-UNICAMP), Piracicaba, São Paulo, Brazil
| | - Luiz Paulo Kowalski
- Head and Neck Surgery Department, University of São Paulo Medical School (FMUSP), São Paulo, Brazil
- Department of Head and Neck Surgery and Otorhinolaryngology, A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Matheus Cardoso Moraes
- Institute of Science and Technology, Federal University of São Paulo (ICT-Unifesp), São José dos Campos, São Paulo, Brazil
| | - Pablo Agustin Vargas
- Faculdade de Odontologia de Piracicaba, Universidade de Campinas (FOP-UNICAMP), Piracicaba, São Paulo, Brazil
| |
Collapse
|
3
|
Zhang L, Shi R, Youssefi N. Oral cancer diagnosis based on gated recurrent unit networks optimized by an improved version of Northern Goshawk optimization algorithm. Heliyon 2024; 10:e32077. [PMID: 38912510 PMCID: PMC11190545 DOI: 10.1016/j.heliyon.2024.e32077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/12/2024] [Accepted: 05/28/2024] [Indexed: 06/25/2024] Open
Abstract
Oral cancer early diagnosis is a critical task in the field of medical science, and one of the most necessary things is to develop sound and effective strategies for early detection. The current research investigates a new strategy to diagnose an oral cancer based upon combination of effective learning and medical imaging. The current research investigates a new strategy to diagnose an oral cancer using Gated Recurrent Unit (GRU) networks optimized by an improved model of the NGO (Northern Goshawk Optimization) algorithm. The proposed approach has several advantages over existing methods, including its ability to analyze large and complex datasets, its high accuracy, as well as its capacity to detect oral cancer at the very beginning stage. The improved NGO algorithm is utilized to improve the GRU network that helps to improve the performance of the network and increase the accuracy of the diagnosis. The paper describes the proposed approach and evaluates its performance using a dataset of oral cancer patients. The findings of the study demonstrate the efficiency of the suggested approach in accurately diagnosing oral cancer.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Stomatology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong, China
| | - Rongji Shi
- Department of Stomatology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong, China
| | - Naser Youssefi
- Islamic Azad University, Science and Research Branch, Tehran, Iran
- College of Technical Engineering, The Islamic University, Najaf, Iraq
| |
Collapse
|
4
|
Jebreen K, Radwan E, Kammoun-Rebai W, Alattar E, Radwan A, Safi W, Radwan W, Alajez M. Perceptions of undergraduate medical students on artificial intelligence in medicine: mixed-methods survey study from Palestine. BMC MEDICAL EDUCATION 2024; 24:507. [PMID: 38714993 PMCID: PMC11077786 DOI: 10.1186/s12909-024-05465-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 04/24/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND The current applications of artificial intelligence (AI) in medicine continue to attract the attention of medical students. This study aimed to identify undergraduate medical students' attitudes toward AI in medicine, explore present AI-related training opportunities, investigate the need for AI inclusion in medical curricula, and determine preferred methods for teaching AI curricula. METHODS This study uses a mixed-method cross-sectional design, including a quantitative study and a qualitative study, targeting Palestinian undergraduate medical students in the academic year 2022-2023. In the quantitative part, we recruited a convenience sample of undergraduate medical students from universities in Palestine from June 15, 2022, to May 30, 2023. We collected data by using an online, well-structured, and self-administered questionnaire with 49 items. In the qualitative part, 15 undergraduate medical students were interviewed by trained researchers. Descriptive statistics and an inductive content analysis approach were used to analyze quantitative and qualitative data, respectively. RESULTS From a total of 371 invitations sent, 362 responses were received (response rate = 97.5%), and 349 were included in the analysis. The mean age of participants was 20.38 ± 1.97, with 40.11% (140) in their second year of medical school. Most participants (268, 76.79%) did not receive formal education on AI before or during medical study. About two-thirds of students strongly agreed or agreed that AI would become common in the future (67.9%, 237) and would revolutionize medical fields (68.7%, 240). Participants stated that they had not previously acquired training in the use of AI in medicine during formal medical education (260, 74.5%), confirming a dire need to include AI training in medical curricula (247, 70.8%). Most participants (264, 75.7%) think that learning opportunities for AI in medicine have not been adequate; therefore, it is very important to study more about employing AI in medicine (228, 65.3%). Male students (3.15 ± 0.87) had higher perception scores than female students (2.81 ± 0.86) (p < 0.001). The main themes that resulted from the qualitative analysis of the interview questions were an absence of AI learning opportunities, the necessity of including AI in medical curricula, optimism towards the future of AI in medicine, and expected challenges related to AI in medical fields. CONCLUSION Medical students lack access to educational opportunities for AI in medicine; therefore, AI should be included in formal medical curricula in Palestine.
Collapse
Affiliation(s)
- Kamel Jebreen
- Department of Mathematics, Palestine Technical University - Kadoorie, Hebron, Palestine
- Department of Mathematics, An-Najah National University, Nablus, Palestine
- Unité de Recherche Clinique Saint-Louis Fernand-Widal Lariboisière, APHP, Paris, France
| | - Eqbal Radwan
- Department of Biology, Faculty of Science, Islamic University of Gaza, Gaza, Palestine.
| | | | - Etimad Alattar
- Department of Biology, Faculty of Science, Islamic University of Gaza, Gaza, Palestine
| | - Afnan Radwan
- Faculty of Education, Islamic University of Gaza, Gaza, Palestine
| | - Walaa Safi
- Department of Biotechnology, Faculty of Science, Islamic University of Gaza, Gaza, Palestine
| | - Walaa Radwan
- University College of Applied Sciences - Gaza, Gaza, Palestine
| | | |
Collapse
|
5
|
Tiryaki B, Torenek-Agirman K, Miloglu O, Korkmaz B, Ozbek İY, Oral EA. Artificial intelligence in tongue diagnosis: classification of tongue lesions and normal tongue images using deep convolutional neural network. BMC Med Imaging 2024; 24:59. [PMID: 38459518 PMCID: PMC10924407 DOI: 10.1186/s12880-024-01234-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/22/2024] [Indexed: 03/10/2024] Open
Abstract
OBJECTIVE This study aims to classify tongue lesion types using tongue images utilizing Deep Convolutional Neural Networks (DCNNs). METHODS A dataset consisting of five classes, four tongue lesion classes (coated, geographical, fissured tongue, and median rhomboid glossitis), and one healthy/normal tongue class, was constructed using tongue images of 623 patients who were admitted to our clinic. Classification performance was evaluated on VGG19, ResNet50, ResNet101, and GoogLeNet networks using fusion based majority voting (FBMV) approach for the first time in the literature. RESULTS In the binary classification problem (normal vs. tongue lesion), the highest classification accuracy performance of 93,53% was achieved utilizing ResNet101, and this rate was increased to 95,15% with the application of the FBMV approach. In the five-class classification problem of tongue lesion types, the VGG19 network yielded the best accuracy rate of 83.93%, and the fusion approach improved this rate to 88.76%. CONCLUSION The obtained test results showed that tongue lesions could be identified with a high accuracy by applying DCNNs. Further improvement of these results has the potential for the use of the proposed method in clinic applications.
Collapse
Affiliation(s)
- Burcu Tiryaki
- Department of Electrical Electronic Engineering, Faculty of Engineering, Ataturk University, Erzurum, Turkey
| | - Kubra Torenek-Agirman
- Department of Oral Diagnosis and Dentomaxillofacial Radiology, Faculty of Dentistry, Ataturk University, Erzurum, Turkey
| | - Ozkan Miloglu
- Department of Oral Diagnosis and Dentomaxillofacial Radiology, Faculty of Dentistry, Ataturk University, Erzurum, Turkey.
- Department of Oral, Dental and Maxillofacial Radiology, Faculty of Dentistry, Ataturk University, Erzurum, 25240, Turkey.
| | - Berfin Korkmaz
- Department of Oral Diagnosis and Dentomaxillofacial Radiology, Faculty of Dentistry, Ataturk University, Erzurum, Turkey
| | - İbrahim Yucel Ozbek
- Department of Electrical Electronic Engineering (High Performance Comp Applicat & Res Ctr), Ataturk University, Erzurum, Turkey
| | - Emin Argun Oral
- Department of Electrical Electronic Engineering, Faculty of Engineering, Ataturk University, Erzurum, Turkey
| |
Collapse
|
6
|
Gomes RFT, Schmith J, de Figueiredo RM, Freitas SA, Machado GN, Romanini J, Almeida JD, Pereira CT, Rodrigues JDA, Carrard VC. Convolutional neural network misclassification analysis in oral lesions: an error evaluation criterion by image characteristics. Oral Surg Oral Med Oral Pathol Oral Radiol 2024; 137:243-252. [PMID: 38161085 DOI: 10.1016/j.oooo.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 01/03/2024]
Abstract
OBJECTIVE This retrospective study analyzed the errors generated by a convolutional neural network (CNN) when performing automated classification of oral lesions according to their clinical characteristics, seeking to identify patterns in systemic errors in the intermediate layers of the CNN. STUDY DESIGN A cross-sectional analysis nested in a previous trial in which automated classification by a CNN model of elementary lesions from clinical images of oral lesions was performed. The resulting CNN classification errors formed the dataset for this study. A total of 116 real outputs were identified that diverged from the estimated outputs, representing 7.6% of the total images analyzed by the CNN. RESULTS The discrepancies between the real and estimated outputs were associated with problems relating to image sharpness, resolution, and focus; human errors; and the impact of data augmentation. CONCLUSIONS From qualitative analysis of errors in the process of automated classification of clinical images, it was possible to confirm the impact of image quality, as well as identify the strong impact of the data augmentation process. Knowledge of the factors that models evaluate to make decisions can increase confidence in the high classification potential of CNNs.
Collapse
Affiliation(s)
- Rita Fabiane Teixeira Gomes
- Department of Oral Pathology, Faculdade de Odontologia-Federal University of Rio Grande do Sul-UFRGS, Porto Alegre, Brazil.
| | - Jean Schmith
- Polytechnic School, University of Vale do Rio dos Sinos-UNISINOS, São Leopoldo, Brazil; Technology in Automation and Electronics Laboratory-TECAE Lab, University of Vale do Rio dos Sinos-UNISINOS, São Leopoldo, Brazil
| | - Rodrigo Marques de Figueiredo
- Polytechnic School, University of Vale do Rio dos Sinos-UNISINOS, São Leopoldo, Brazil; Technology in Automation and Electronics Laboratory-TECAE Lab, University of Vale do Rio dos Sinos-UNISINOS, São Leopoldo, Brazil
| | - Samuel Armbrust Freitas
- Department of Applied Computing, University of Vale do Rio dos Sinos-UNISINOS, São Leopoldo, Brazil
| | | | - Juliana Romanini
- Oral Medicine, Otorhynolaringology Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Janete Dias Almeida
- Department of Biosciences and Oral Diagnostics, São Paulo State University, Campus São José dos Campos, São Paulo, Brazil
| | | | - Jonas de Almeida Rodrigues
- Department of Surgery and Orthopaedics, Faculdade de Odontologia-Federal University of Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Vinicius Coelho Carrard
- Department of Oral Pathology, Faculdade de Odontologia-Federal University of Rio Grande do Sul-UFRGS, Porto Alegre, Brazil; TelessaudeRS-UFRGS, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Oral Medicine, Otorhynolaringology Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
7
|
Rokhshad R, Mohammad-Rahimi H, Price JB, Shoorgashti R, Abbasiparashkouh Z, Esmaeili M, Sarfaraz B, Rokhshad A, Motamedian SR, Soltani P, Schwendicke F. Artificial intelligence for classification and detection of oral mucosa lesions on photographs: a systematic review and meta-analysis. Clin Oral Investig 2024; 28:88. [PMID: 38217733 DOI: 10.1007/s00784-023-05475-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 12/21/2023] [Indexed: 01/15/2024]
Abstract
OBJECTIVE This study aimed to review and synthesize studies using artificial intelligence (AI) for classifying, detecting, or segmenting oral mucosal lesions on photographs. MATERIALS AND METHOD Inclusion criteria were (1) studies employing AI to (2) classify, detect, or segment oral mucosa lesions, (3) on oral photographs of human subjects. Included studies were assessed for risk of bias using Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2). A PubMed, Scopus, Embase, Web of Science, IEEE, arXiv, medRxiv, and grey literature (Google Scholar) search was conducted until June 2023, without language limitation. RESULTS After initial searching, 36 eligible studies (from 8734 identified records) were included. Based on QUADAS-2, only 7% of studies were at low risk of bias for all domains. Studies employed different AI models and reported a wide range of outcomes and metrics. The accuracy of AI for detecting oral mucosal lesions ranged from 74 to 100%, while that for clinicians un-aided by AI ranged from 61 to 98%. Pooled diagnostic odds ratio for studies which evaluated AI for diagnosing or discriminating potentially malignant lesions was 155 (95% confidence interval 23-1019), while that for cancerous lesions was 114 (59-221). CONCLUSIONS AI may assist in oral mucosa lesion screening while the expected accuracy gains or further health benefits remain unclear so far. CLINICAL RELEVANCE Artificial intelligence assists oral mucosa lesion screening and may foster more targeted testing and referral in the hands of non-specialist providers, for example. So far, it remains unclear if accuracy gains compared with specialized can be realized.
Collapse
Affiliation(s)
- Rata Rokhshad
- Topic Group Dental Diagnostics and Digital Dentistry, ITU/WHO Focus Group AI On Health, Berlin, Germany
| | - Hossein Mohammad-Rahimi
- Topic Group Dental Diagnostics and Digital Dentistry, ITU/WHO Focus Group AI On Health, Berlin, Germany
- School of Dentistry, Shahid Beheshti University of Medical Sciences, Daneshjoo Blvd, Evin, Shahid Chamran Highway, Tehran, Postal Code: 1983963113, Iran
| | - Jeffery B Price
- Department of Oncology and Diagnostic Sciences, University of Maryland, School of Dentistry, Baltimore, Maryland 650 W Baltimore St, Baltimore, MD, 21201, USA
| | - Reyhaneh Shoorgashti
- Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, 9Th Neyestan, Pasdaran, Tehran, Iran
| | | | - Mahdieh Esmaeili
- Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, 9Th Neyestan, Pasdaran, Tehran, Iran
| | - Bita Sarfaraz
- School of Dentistry, Shahid Beheshti University of Medical Sciences, Daneshjoo Blvd, Evin, Shahid Chamran Highway, Tehran, Postal Code: 1983963113, Iran
| | - Arad Rokhshad
- Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, 9Th Neyestan, Pasdaran, Tehran, Iran
| | - Saeed Reza Motamedian
- Dentofacial Deformities Research Center, Research Institute of Dental Sciences & Department of Orthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Daneshjoo Blvd, Evin, Shahid Chamran Highway, Tehran, Postal Code: 1983963113, Iran.
| | - Parisa Soltani
- Department of Oral and Maxillofacial Radiology, Dental Implants Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Salamat Blv, Isfahan Dental School, Isfahan, Iran
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Nepales, Italy
| | - Falk Schwendicke
- Topic Group Dental Diagnostics and Digital Dentistry, ITU/WHO Focus Group AI On Health, Berlin, Germany
- Department of Oral Diagnostics, Digital Health and Health Services Research, Charité - Universitätsmedizin Berlin, Charitépl. 1, 10117, Berlin, Germany
| |
Collapse
|
8
|
Tiwari A, Gupta N, Singla D, Ranjan Swain J, Gupta R, Mehta D, Kumar S. Artificial Intelligence's Use in the Diagnosis of Mouth Ulcers: A Systematic Review. Cureus 2023; 15:e45187. [PMID: 37842407 PMCID: PMC10576017 DOI: 10.7759/cureus.45187] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/13/2023] [Indexed: 10/17/2023] Open
Abstract
Artificial intelligence (AI) has been cited as being helpful in the diagnosis of diseases, the prediction of prognoses, and the development of patient-specific therapeutic strategies. AI can help dentists, in particular, when they need to make important judgments quickly. It can eliminate human mistakes in making decisions, resulting in superior and consistent medical treatment while lowering the workload on dentists. The existing studies relevant to the study and application of AI in the diagnosis of various forms of mouth ulcers are reviewed in this work. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) standards were followed in the preparation of the review. There were no rule violations, with the significant exception of the use of a better search method that led to more accurate findings. Using search terms mainly such as AI, oral health, oral ulcers, oral herpes simplex, oral lichen planus, pemphigus vulgaris, recurrent aphthous ulcer (RAU), oral cancer, premalignant and malignant disorders, etc., a comprehensive search was carried out in the reliable sources of literature, namely PubMed, Scopus, Embase, Web of Science, Ovid, Global Health, and PsycINFO. For all papers, exhaustive searches were done using inclusion criteria as well as exclusion criteria between June 28, 2018, and June 28, 2023. An AI framework for the automatic categorization of oral ulcers from oral clinical photographs was developed by the authors, and it performed satisfactorily. The newly designed AI model works better than the current convolutional neural network image categorization techniques and shows a fair level of precision in the classification of oral ulcers. However, despite being useful for identifying oral ulcers, the suggested technique needs a broader set of data for validation and training purposes before being used in clinical settings. Automated OCSCC identification using a deep learning-based technique is a quick, harmless, affordable, and practical approach to evaluating the effectiveness of cancer treatment. The categorization and identification of RAU lesions through the use of non-intrusive oral pictures using the previously developed ResNet50 and YOLOV algorithms demonstrated better accuracy as well as adequate potential for the future, which could be helpful in clinical practice. Moreover, the most reliable projections for the likelihood of the presence or absence of RAU were made by the optimized neural network. The authors also discovered variables associated with RAU that might be used as input information to build artificial neural networks that anticipate RAU.
Collapse
Affiliation(s)
- Anushree Tiwari
- Clinical Quality and Value, American Academy of Orthopaedic Surgeons, Rosemont, USA
| | - Neha Gupta
- Department of Oral Pathology, Microbiology & Forensic Odontology, Dental College, Rajendra Institute of Medical Sciences, Ranchi, IND
| | - Deepika Singla
- Department of Conservative Dentistry & Endodontics, Desh Bhagat Dental College & Hospital, Malout, IND
| | - Jnana Ranjan Swain
- Department of Pedodontics and Preventive Dentistry, Institute of Dental Sciences, Siksha 'O' Anusandhan, Bhubaneswar, IND
| | - Ruchi Gupta
- Department of Prosthodontics, Rungta College of Dental Sciences and Research, Bhilai, IND
| | - Dhaval Mehta
- Department of Oral Medicine and Radiology, Narsinbhai Patel Dental College and Hospital, Sankalchand Patel University, Visnagar, IND
| | - Santosh Kumar
- Department of Periodontology and Implantology, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| |
Collapse
|
9
|
Pereira-Prado V, Martins-Silveira F, Sicco E, Hochmann J, Isiordia-Espinoza MA, González RG, Pandiar D, Bologna-Molina R. Artificial Intelligence for Image Analysis in Oral Squamous Cell Carcinoma: A Review. Diagnostics (Basel) 2023; 13:2416. [PMID: 37510160 PMCID: PMC10378350 DOI: 10.3390/diagnostics13142416] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Head and neck tumor differential diagnosis and prognosis have always been a challenge for oral pathologists due to their similarities and complexity. Artificial intelligence novel applications can function as an auxiliary tool for the objective interpretation of histomorphological digital slides. In this review, we present digital histopathological image analysis applications in oral squamous cell carcinoma. A literature search was performed in PubMed MEDLINE with the following keywords: "artificial intelligence" OR "deep learning" OR "machine learning" AND "oral squamous cell carcinoma". Artificial intelligence has proven to be a helpful tool in histopathological image analysis of tumors and other lesions, even though it is necessary to continue researching in this area, mainly for clinical validation.
Collapse
Affiliation(s)
- Vanesa Pereira-Prado
- Molecular Pathology Area, School of Dentistry, Universidad de la República, Montevideo 11400, Uruguay
| | - Felipe Martins-Silveira
- Molecular Pathology Area, School of Dentistry, Universidad de la República, Montevideo 11400, Uruguay
| | - Estafanía Sicco
- Molecular Pathology Area, School of Dentistry, Universidad de la República, Montevideo 11400, Uruguay
| | - Jimena Hochmann
- Molecular Pathology Area, School of Dentistry, Universidad de la República, Montevideo 11400, Uruguay
| | - Mario Alberto Isiordia-Espinoza
- Department of Clinics, Los Altos University Center, Institute of Research in Medical Sciences, University of Guadalajara, Guadalajara 44100, Mexico
| | - Rogelio González González
- Research Department, School of Dentistry, Universidad Juárez del Estado de Durango, Durango 34000, Mexico
| | - Deepak Pandiar
- Department of Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Chennai 600077, India
| | - Ronell Bologna-Molina
- Molecular Pathology Area, School of Dentistry, Universidad de la República, Montevideo 11400, Uruguay
- Research Department, School of Dentistry, Universidad Juárez del Estado de Durango, Durango 34000, Mexico
| |
Collapse
|
10
|
Ueda A, Tussie C, Kim S, Kuwajima Y, Matsumoto S, Kim G, Satoh K, Nagai S. Classification of Maxillofacial Morphology by Artificial Intelligence Using Cephalometric Analysis Measurements. Diagnostics (Basel) 2023; 13:2134. [PMID: 37443528 DOI: 10.3390/diagnostics13132134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023] Open
Abstract
The characteristics of maxillofacial morphology play a major role in orthodontic diagnosis and treatment planning. While Sassouni's classification scheme outlines different categories of maxillofacial morphology, there is no standardized approach to assigning these classifications to patients. This study aimed to create an artificial intelligence (AI) model that uses cephalometric analysis measurements to accurately classify maxillofacial morphology, allowing for the standardization of maxillofacial morphology classification. This study used the initial cephalograms of 220 patients aged 18 years or older. Three orthodontists classified the maxillofacial morphologies of 220 patients using eight measurements as the accurate classification. Using these eight cephalometric measurement points and the subject's gender as input features, a random forest classifier from the Python sci-kit learning package was trained and tested with a k-fold split of five to determine orthodontic classification; distinct models were created for horizontal-only, vertical-only, and combined maxillofacial morphology classification. The accuracy of the combined facial classification was 0.823 ± 0.060; for anteroposterior-only classification, the accuracy was 0.986 ± 0.011; and for the vertical-only classification, the accuracy was 0.850 ± 0.037. ANB angle had the greatest feature importance at 0.3519. The AI model created in this study accurately classified maxillofacial morphology, but it can be further improved with more learning data input.
Collapse
Affiliation(s)
- Akane Ueda
- Division of Orthodontics, Department of Developmental Oral Health Science, School of Dentistry, Iwate Medical University, 1-3-27 Chuo-dori, Morioka 020-8505, Iwate, Japan
- Department of Restorative Dentistry and Biomaterial Sciences, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA
| | - Cami Tussie
- DMD Candidate Class of 2025, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA
| | - Sophie Kim
- DMD Candidate Class of 2025, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA
| | - Yukinori Kuwajima
- Division of Orthodontics, Department of Developmental Oral Health Science, School of Dentistry, Iwate Medical University, 1-3-27 Chuo-dori, Morioka 020-8505, Iwate, Japan
| | - Shikino Matsumoto
- Division of Orthodontics, Department of Developmental Oral Health Science, School of Dentistry, Iwate Medical University, 1-3-27 Chuo-dori, Morioka 020-8505, Iwate, Japan
| | - Grace Kim
- Department of Developmental Biology, Harvard School of Dental Medicine,188 Longwood Avenue, Boston, MA 02115, USA
| | - Kazuro Satoh
- Division of Orthodontics, Department of Developmental Oral Health Science, School of Dentistry, Iwate Medical University, 1-3-27 Chuo-dori, Morioka 020-8505, Iwate, Japan
| | - Shigemi Nagai
- Department of Restorative Dentistry and Biomaterial Sciences, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
11
|
Roganović J, Radenković M, Miličić B. Responsible Use of Artificial Intelligence in Dentistry: Survey on Dentists' and Final-Year Undergraduates' Perspectives. Healthcare (Basel) 2023; 11:healthcare11101480. [PMID: 37239766 DOI: 10.3390/healthcare11101480] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/26/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
The introduction of artificial intelligence (AI)-based dental applications into clinical practice could play a significant role in improving diagnostic accuracy and reforming dental care, but its implementation relies on the readiness of dentists, as well as the health system, to adopt it in everyday practice. A cross-sectional anonymous online survey was conducted among experienced dentists and final-year undergraduate students from the School of Dental Medicine at the University of Belgrade (n = 281) in order to investigate their current perspectives and readiness to accept AI into practice. Responders (n = 193) in the present survey, especially final-year undergraduates (n = 76), showed a lack of knowledge about AI (only 7.9% of them were familiar with AI use) and were skeptical (only 34% of them believed that AI should be used), and the underlying reasons, as shown by logistic regression analyses, were a lack of knowledge about the AI technology associated with a fear of being replaced by AI, as well as a lack of regulatory policy. Female dentists perceived ethical issues more significantly than men regarding AI implementation in the practice. The present results encourage an ethical debate on education/training and regulatory policies for AI as a prerequisite for regular AI use in dental practice.
Collapse
Affiliation(s)
- Jelena Roganović
- Department of Pharmacology in Dentistry, School of Dental Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Miroslav Radenković
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Biljana Miličić
- Department of Medical Statistics and Informatics, School of Dental Medicine, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|