Vaddi A, Tadinada A, Lurie A, Deymier A. Evaluation of near-infrared Raman spectroscopy in the differentiation of cortical bone, trabecular bone, and Bio-Oss bone graft: an ex-vivo study.
Oral Surg Oral Med Oral Pathol Oral Radiol 2023;
136:632-639. [PMID:
37394288 DOI:
10.1016/j.oooo.2023.05.015]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 07/04/2023]
Abstract
OBJECTIVE
We evaluated the ability of near-infrared Raman spectroscopy (near-IR RS) to differentiate among cortical bone, trabecular bone, and Bio-Oss, a bovinebone-based graft material.
STUDY DESIGN
We obtained a thinly sliced section of the mandible to collect cortical and trabecular bone samples and placed compacted Bio-Oss bone graft into a partially edentulous mandible in a dry human skull to obtain a comparable Bio-Oss sample. We performed near-IR RS of the 3 samples and evaluated the resultant Raman spectra to evaluate their differences.
RESULTS
We identified 3 sets of spectroscopic markers that differentiated Bio-Oss from human bone. The first consisted of significant shifts in the location of the 960 cm-1 phosphate (PO43-) peak and a reduction in its width, suggesting that Bio-Oss is more crystalline than bone. The second was the reduced carbonate content of Bio-Oss compared to bone, as determined from the 1070 cm-1/960 cm-1 peak area ratio. The final marker was the lack of collagen-associated peaks in Bio-Oss compared to cortical and trabecular bone.
CONCLUSIONS
Near-IR RS can reliably differentiate human cortical and trabecular bone from Bio-Oss via 3 sets of spectral markers associated with mineral crystallinity, carbonate content, and collagen content that differ significantly between them. Integrating this modality into dental practice may assist in implant treatment planning.
Collapse