1
|
A Supervoxel-Based Random Forest Method for Robust and Effective Airborne LiDAR Point Cloud Classification. REMOTE SENSING 2022. [DOI: 10.3390/rs14061516] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
As an essential part of point cloud processing, autonomous classification is conventionally used in various multifaceted scenes and non-regular point distributions. State-of-the-art point cloud classification methods mostly process raw point clouds, using a single point as the basic unit and calculating point cloud features by searching local neighbors via the k-neighborhood method. Such methods tend to be computationally inefficient and have difficulty obtaining accurate feature descriptions due to inappropriate neighborhood selection. In this paper, we propose a robust and effective point cloud classification approach that integrates point cloud supervoxels and their locally convex connected patches into a random forest classifier, which effectively improves the point cloud feature calculation accuracy and reduces the computational cost. Considering the different types of point cloud feature descriptions, we divide features into three categories (point-based, eigen-based, and grid-based) and accordingly design three distinct feature calculation strategies to improve feature reliability. Two International Society of Photogrammetry and Remote Sensing benchmark tests show that the proposed method achieves state-of-the-art performance, with average F1-scores of 89.16 and 83.58, respectively. The successful classification of point clouds with great variation in elevation also demonstrates the reliability of the proposed method in challenging scenes.
Collapse
|
2
|
IAGC: Interactive Attention Graph Convolution Network for Semantic Segmentation of Point Clouds in Building Indoor Environment. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION 2022. [DOI: 10.3390/ijgi11030181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Point-based networks have been widely used in the semantic segmentation of point clouds owing to the powerful 3D convolution neural network (CNN) baseline. Most of the current methods resort to intermediate regular representations for reorganizing the structure of point clouds for 3D CNN networks, but they may neglect the inherent contextual information. In our work, we focus on capturing discriminative features with the interactive attention mechanism and propose a novel method consisting of the regional simplified dual attention network and global graph convolution network. Firstly, we cluster homogeneous points into superpoints and construct a superpoint graph to effectively reduce the computation complexity and greatly maintain spatial topological relations among superpoints. Secondly, we integrate cross-position attention and cross-channel attention into a single head attention module and design a novel interactive attention gating (IAG)-based multilayer perceptron (MLP) network (IAG–MLP), which is utilized for the expansion of the receptive field and augmentation of discriminative features in local embeddings. Afterwards, the combination of stacked IAG–MLP blocks and the global graph convolution network, called IAGC, is proposed to learn high-dimensional local features in superpoints and progressively update these local embeddings with the recurrent neural network (RNN) network. Our proposed framework is evaluated on three indoor open benchmarks, and the 6-fold cross-validation results of the S3DIS dataset show that the local IAG–MLP network brings about 1% and 6.1% improvement in overall accuracy (OA) and mean class intersection-over-union (mIoU), respectively, compared with the PointNet local network. Furthermore, our IAGC network outperforms other CNN-based approaches in the ScanNet V2 dataset by at least 7.9% in mIoU. The experimental results indicate that the proposed method can better capture contextual information and achieve competitive overall performance in the semantic segmentation task.
Collapse
|