1
|
A Method for Exploring and Analyzing Spatiotemporal Patterns of Traffic Congestion in Expressway Networks Based on Origin–Destination Data. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION 2021. [DOI: 10.3390/ijgi10050288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Traffic congestion in expressway networks has a strong negative influence on regional development. Understanding the spatiotemporal patterns of traffic congestion in expressway networks is critical for improving the exchange of products in regional production and promoting regional economic development. Nevertheless, existing studies pay less attention to these spatiotemporal patterns of traffic congestion. Considering that Origin–Destination (OD) data are available for the recorded spatial movements of vehicles in expressways, this study proposes a method with which to explore traffic congestion at the level of road segments in the regional expressway network, the mainstream of driving behaviors, and traffic regulations. Methods for analyzing spatial disparity and temporal changes in traffic congestion in expressway networks are also put forward in this paper. The empirical results show that the proposed methods could detect road segments where traffic congestion happens, and then uncover temporal patterns of several congested locations and spatial patterns of road segments with frequent congestion. These spatiotemporal patterns of traffic congestion could be in accord with the actual situation. This study provides a new approach to investigating traffic congestion in expressway networks based on low-cost data, which might be helpful for optimizing expressway network planning and promoting balanced regional development.
Collapse
|
2
|
Lyu T, Wang P(S, Gao Y, Wang Y. Research on the big data of traditional taxi and online car-hailing: A systematic review. JOURNAL OF TRAFFIC AND TRANSPORTATION ENGINEERING (ENGLISH EDITION) 2021. [DOI: 10.1016/j.jtte.2021.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
3
|
Building the Traffic Flow Network with Taxi GPS Trajectories and Its Application to Identify Urban Congestion Areas for Traffic Planning. SUSTAINABILITY 2020. [DOI: 10.3390/su13010266] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Traffic congestion is becoming a critical problem in urban traffic planning. Intelligent transportation systems can help expand the capacity of urban roads to alleviate traffic congestion. As a key concept in intelligent transportation systems, urban traffic networks, especially dynamic traffic networks, can serve as potential solutions for traffic congestion, based on the complex network theory. In this paper, we build a traffic flow network model to investigate traffic congestion problems through taxi GPS trajectories. Moreover, to verify the effectiveness of the traffic flow network, an actual case of identifying the congestion areas is considered. The results indicate that the traffic flow network is reliable. Finally, several key problems related to traffic flow networks are discussed. The proposed traffic flow network can provide a methodological reference for traffic planning, especially to solve traffic congestion problems.
Collapse
|
4
|
Public Traffic Congestion Estimation Using an Artificial Neural Network. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION 2020. [DOI: 10.3390/ijgi9030152] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Alleviating public traffic congestion is an efficient and effective way to improve the travel time reliability and quality of public transport services. The existing public network optimization models usually ignored the essential impact of public traffic congestion on the performance of public transport service. To address this problem, this study proposes a data-based methodology to estimate the traffic congestion of road segments between bus stops (RSBs). The proposed methodology involves two steps: (1) Extracting three traffic indicators of the RSBs from smart card data and bus trajectory data; (2) The self-organizing map (SOM) is used to cluster and effectively recognize traffic patterns embedded in the RSBs. Furthermore, a congestion index for ranking the SOM clusters is developed to determine the congested RSBs. A case study using real-world datasets from a public transport system validates the proposed methodology. Based on the congested RSBs, an exploratory example of public transport network optimization is discussed and evaluated using a genetic algorithm. The clustering results showed that the SOM could suitably reflect the traffic characteristics and estimate traffic congestion of the RSBs. The results obtained in this study are expected to demonstrate the usefulness of the proposed methodology in sustainable public transport improvements.
Collapse
|
5
|
Modeling Spatio-Temporal Evolution of Urban Crowd Flows. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION 2019. [DOI: 10.3390/ijgi8120570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Metropolitan cities are facing many socio-economic problems (e.g., frequent traffic congestion, unexpected emergency events, and even human-made disasters) related to urban crowd flows, which can be described in terms of the gathering process of a flock of moving objects (e.g., vehicles, pedestrians) towards specific destinations during a given time period via different travel routes. Understanding the spatio-temporal characteristics of urban crowd flows is therefore of critical importance to traffic management and public safety, yet it is very challenging as it is affected by many complex factors, including spatial dependencies, temporal dependencies, and environmental conditions. In this research, we propose a novel matrix-computation-based method for modeling the morphological evolutionary patterns of urban crowd flows. The proposed methodology consists of four connected steps: (1) defining urban crowd levels, (2) deriving urban crowd regions, (3) quantifying their morphological changes, and (4) delineating the morphological evolution patterns. The proposed methodology integrates urban crowd visualization, identification, and correlation into a unified and efficient analytical framework. We validated the proposed methodology under both synthetic and real-world data scenarios using taxi mobility data in Wuhan, China as an example. Results confirm that the proposed methodology can enable city planners, municipal managers, and other stakeholders to identify and understand the gathering process of urban crowd flows in an informative and intuitive manner. Limitations and further directions with regard to data representativeness, data sparseness, pattern sensitivity, and spatial constraint are also discussed.
Collapse
|