1
|
Aghelpour P, Bahrami-Pichaghchi H, Varshavian V, Norooz-Valashedi R. One to twelve-month-ahead forecasting of MODIS-derived Qinghai Lake area, using neuro-fuzzy system hybridized by firefly optimization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:22900-22916. [PMID: 38418789 DOI: 10.1007/s11356-024-32620-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
Lakes, as the main sources of surface water, are of great environmental and ecological importance and largely affect the climatic conditions of the surrounding areas. Lake area fluctuations are very effective on plant and animal biodiversity in the areas covered. Hence, accurate and reliable forecasts of lake area might provide the awareness of water and climate resources and the survival of various species dependent on area fluctuations. Using machine learning methods, the current study numerically predicted area fluctuations of China's largest lake, Qinghai, over 1 to 12 months ahead of lead time. To this end, Moderate Resolution Imaging Spectroradiometer (MODIS) sensor images were used to monitor the monthly changes in the area of the lake from 2000 to 2021. Predictive inputs included the MODIS-derived lake area time latency specified by the autocorrelation function. The data was divided into two periods of the train (initial 75%) and test (final 25%), and the input combinations were arranged so that the model in the test period could be used to predict 12 scenarios, including forecast horizons for the next 1 to 12 months. The adaptive neuro-fuzzy inference system (ANFIS) was utilized as a predictive model. The firefly algorithm (FA) was also used to optimize ANFIS and improve its accuracy, as a hybrid model ANFIS-FA. Based on evaluation criteria such as root mean square error (RMSE) (477-594 km2) and R2 (88-92%), the results confirmed the acceptable accuracy of the models in all forecast horizons, even long-term horizons (10 months, 11 months, and 12 months). Based on the normalized RMSE criterion (0.095-0.125), the models' performance was reported to be appropriate. Furthermore, the firefly algorithm improved the prediction accuracy of the ANFIS model by an average of 16.9%. In the inter-month survey, the models had fewer forecast errors in the dry months (February-March) than in the wet months (October-November). Using the current method can provide remarkable information about the future state of lakes, which is very important for managers and planners of water resources, environment, and natural ecosystems. According to the results, the current approach is satisfactory in predicting MODIS-derived fluctuations of Qinghai Lake area and has research value for other lakes.
Collapse
Affiliation(s)
- Pouya Aghelpour
- Department of Water Engineering, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
| | - Hadigheh Bahrami-Pichaghchi
- Department of Water Engineering, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Vahid Varshavian
- Department of Water Engineering, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran.
| | - Reza Norooz-Valashedi
- Department of Water Engineering, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| |
Collapse
|
2
|
Swain SS, Khura TK, Sahoo PK, Chobhe KA, Al-Ansari N, Kushwaha HL, Kushwaha NL, Panda KC, Lande SD, Singh C. Proportional impact prediction model of coating material on nitrate leaching of slow-release Urea Super Granules (USG) using machine learning and RSM technique. Sci Rep 2024; 14:3053. [PMID: 38321086 PMCID: PMC10847469 DOI: 10.1038/s41598-024-53410-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 01/31/2024] [Indexed: 02/08/2024] Open
Abstract
An accurate assessment of nitrate leaching is important for efficient fertiliser utilisation and groundwater pollution reduction. However, past studies could not efficiently model nitrate leaching due to utilisation of conventional algorithms. To address the issue, the current research employed advanced machine learning algorithms, viz., Support Vector Machine, Artificial Neural Network, Random Forest, M5 Tree (M5P), Reduced Error Pruning Tree (REPTree) and Response Surface Methodology (RSM) to predict and optimize nitrate leaching. In this study, Urea Super Granules (USG) with three different coatings were used for the experiment in the soil columns, containing 1 kg soil with fertiliser placed in between. Statistical parameters, namely correlation coefficient, Mean Absolute Error, Willmott index, Root Mean Square Error and Nash-Sutcliffe efficiency were used to evaluate the performance of the ML techniques. In addition, a comparison was made in the test set among the machine learning models in which, RSM outperformed the rest of the models irrespective of coating type. Neem oil/ Acacia oil(ml): clay/sulfer (g): age (days) for minimum nitrate leaching was found to be 2.61: 1.67: 2.4 for coating of USG with bentonite clay and neem oil without heating, 2.18: 2: 1 for bentonite clay and neem oil with heating and 1.69: 1.64: 2.18 for coating USG with sulfer and acacia oil. The research would provide guidelines to researchers and policymakers to select the appropriate tool for precise prediction of nitrate leaching, which would optimise the yield and the benefit-cost ratio.
Collapse
Affiliation(s)
- Sidhartha Sekhar Swain
- Division of Agricultural Engineering, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Tapan Kumar Khura
- Division of Agricultural Engineering, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Pramod Kumar Sahoo
- Division of Agricultural Engineering, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Kapil Atmaram Chobhe
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Nadhir Al-Ansari
- Department of Civil, Environmental and Natural Resources Engineering, Lulea University of Technology, 97187, Lulea, Sweden.
| | - Hari Lal Kushwaha
- Division of Agricultural Engineering, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Nand Lal Kushwaha
- Division of Agricultural Engineering, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Kanhu Charan Panda
- Department of Soil Conservation, National PG College (Barhalganj), DDU Gorakhpur University, Gorakhpur, UP, 273402, India
| | - Satish Devram Lande
- Division of Agricultural Engineering, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Chandu Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| |
Collapse
|
3
|
Biazar SM, Shehadeh HA, Ghorbani MA, Golmohammadi G, Saha A. Soil temperature forecasting using a hybrid artificial neural network in Florida subtropical grazinglands agro-ecosystems. Sci Rep 2024; 14:1535. [PMID: 38233414 PMCID: PMC10794231 DOI: 10.1038/s41598-023-48025-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/21/2023] [Indexed: 01/19/2024] Open
Abstract
Soil temperature is a key meteorological parameter that plays an important role in determining rates of physical, chemical and biological reactions in the soil. Ground temperature can vary substantially under different land cover types and climatic conditions. Proper prediction of soil temperature is thus essential for the accurate simulation of land surface processes. In this study, two intelligent neural models-artificial neural networks (ANNs) and Sperm Swarm Optimization (SSO) were used for estimating of soil temperatures at four depths (5, 10, 20, 50 cm) using seven-year meteorological data acquired from Archbold Biological Station in South Florida. The results of this study in subtropical grazinglands of Florida showed that the integrated artificial neural network and SSO models (MLP-SSO) were more accurate tools than the original structure of artificial neural network methods for soil temperature forecasting. In conclusion, this study recommends the hybrid MLP-SSO model as a suitable tool for soil temperature prediction at different soil depths.
Collapse
Affiliation(s)
- Seyed Mostafa Biazar
- Department of Soil, Water and Ecosystem Sciences, University of Florida, IFAS/RCREC, Ona, FL, USA
| | - Hisham A Shehadeh
- Department of Artificial Intelligence and Computer Science, College of Computer Science and Informatics, Amman Arab University, Amman, Jordan
| | | | - Golmar Golmohammadi
- Department of Soil, Water and Ecosystem Sciences, University of Florida, IFAS/RCREC, Ona, FL, USA.
| | - Amartya Saha
- Archbold Biological Station, Buck Island Ranch, Lake Placid, FL, 33852, USA
| |
Collapse
|
4
|
Shi P, Jiang Q, Li Z. Hyperspectral Characteristic Band Selection and Estimation Content of Soil Petroleum Hydrocarbon Based on GARF-PLSR. J Imaging 2023; 9:jimaging9040087. [PMID: 37103238 PMCID: PMC10144958 DOI: 10.3390/jimaging9040087] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 04/28/2023] Open
Abstract
With continuous improvements in oil production, the environmental problems caused by oil exploitation are becoming increasingly serious. Rapid and accurate estimation of soil petroleum hydrocarbon content is of great significance to the investigation and restoration of environments in oil-producing areas. In this study, the content of petroleum hydrocarbon and the hyperspectral data of soil samples collected from an oil-producing area were measured. For the hyperspectral data, spectral transforms, including continuum removal (CR), first- and second-order differential (CR-FD, CR-SD), and Napierian logarithm (CR-LN), were applied to eliminate background noise. At present, there are some shortcomings in the method of feature band selection, such as large quantity, time of calculation, and unclear importance of each feature band obtained. Meanwhile, redundant bands easily exist in the feature set, which seriously affects the accuracy of the inversion algorithm. In order to solve the above problems, a new method (GARF) for hyperspectral characteristic band selection was proposed. It combined the advantage that the grouping search algorithm can effectively reduce the calculation time with the advantage that the point-by-point search algorithm can determine the importance of each band, which provided a clearer direction for further spectroscopic research. The 17 selected bands were used as the input data of partial least squares regression (PLSR) and K-nearest neighbor (KNN) algorithms to estimate soil petroleum hydrocarbon content, and the leave-one-out method was used for cross-validation. The root mean squared error (RMSE) and coefficient of determination (R2) of the estimation result were 3.52 and 0.90, which implemented a high accuracy with only 8.37% of the entire bands. The results showed that compared with the traditional characteristic band selection methods, GARF can effectively reduce the redundant bands and screen out the optimal characteristic bands in the hyperspectral data of soil petroleum hydrocarbon with the method of importance assessment, which retained the physical meaning. It provided a new idea for the research of other substances in soil.
Collapse
Affiliation(s)
- Pengfei Shi
- College of Geo-Exploration Science and Technology, Jilin University, Changchun 130026, China
| | - Qigang Jiang
- College of Geo-Exploration Science and Technology, Jilin University, Changchun 130026, China
| | - Zhilian Li
- College of Geo-Exploration Science and Technology, Jilin University, Changchun 130026, China
| |
Collapse
|
5
|
Aghelpour P, Graf R, Tomaszewski E. Coupling ANFIS with ant colony optimization (ACO) algorithm for 1-, 2-, and 3-days ahead forecasting of daily streamflow, a case study in Poland. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:56440-56463. [PMID: 36920613 PMCID: PMC10121544 DOI: 10.1007/s11356-023-26239-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Finding an efficient and reliable streamflow forecasting model has always been an important challenge for managers and planners of freshwater resources. The current study, based on an adaptive neuro-fuzzy inference system (ANFIS) model, was designed to predict the Warta river (Poland) streamflow for 1 day, 2 days, and 3 days ahead for a data set from the period of 1993-2013. The ANFIS was additionally combined with the ant colony optimization (ACO) algorithm and employed as a meta-heuristic ANFIS-ACO model, which is a novelty in streamflow prediction studies. The investigations showed that on a daily scale, precipitation had a very weak and insignificant effect on the river's flow variation, so it was not considered as a predictor input. The predictor inputs were selected by the autocorrelation function from among the daily streamflow time lags for all stations. The predictions were evaluated with the actual streamflow data, using such criteria as root mean square error (RMSE), normalized RMSE (NRMSE), and R2. According to the NRMSE values, which ranged between 0.016-0.006, 0.030-0.013, and 0.038-0.020 for the 1-day, 2-day, and 3-day lead times, respectively, all predictions were classified as excellent in terms of accuracy (prediction quality). The best RMSE value was 1.551 m3/s and the highest R2 value was equal to 0.998, forecast for 1-day lead time. The combination of ANFIS with the ACO algorithm enabled to significantly improve streamflow prediction. The use of this coupling can averagely increase the prediction accuracies of ANFIS by 12.1%, 12.91%, and 13.66%, for 1-day, 2-day, and 3-day lead times, respectively. The current satisfactory results suggest that the employed hybrid approach could be successfully applied for daily streamflow prediction in other catchment areas.
Collapse
Affiliation(s)
- Pouya Aghelpour
- Department of Water Engineering, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
| | - Renata Graf
- Department of Hydrology and Water Management, Institute of Physical Geography and Environmental Planning, Adam Mickiewicz University, Poznań, Poland
| | - Edmund Tomaszewski
- Department of Hydrology and Water Management, Institute of Climatology and Hydrology, Faculty of Geographical Sciences, University of Lodz, Łódź, Poland
| |
Collapse
|