1
|
Janković-Tomanić M, Petković B, Vranković JS, Perić-Mataruga V. Effects of high doses of zearalenone on some antioxidant enzymes and locomotion of Tenebrio molitor larvae (Coleoptera: Tenebrionidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2024; 24:6. [PMID: 38717261 PMCID: PMC11078044 DOI: 10.1093/jisesa/ieae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/04/2024] [Accepted: 04/18/2024] [Indexed: 05/12/2024]
Abstract
The mealworm Tenebrio molitor L. (Coleoptera: Tenebrionidae) feeds on wheat bran and is considered both a pest and an edible insect. Its larvae contain proteins and essential amino acids, fats, and minerals, making them suitable for animal and human consumption. Zearalenone (ZEA) is the mycotoxin most commonly associated with Fusarium spp. It is found in cereals and cereal products, so their consumption is a major risk for mycotoxin contamination. One of the most important effects of ZEA is the induction of oxidative stress, which leads to physiological and behavioral changes. This study deals with the effects of high doses of ZEA (10 and 20 mg/kg) on survival, molting, growth, weight gain, activity of antioxidant enzymes superoxide dismutase (SOD) and glutathione S-transferase (GST), and locomotion of mealworm larvae. Both doses of ZEA were found to (i) have no effect on survival, (ii) increase molting frequency, SOD, and GST activity, and (iii) decrease body weight and locomotion, with more pronounced changes at 20 mg/kg. These results indicated the susceptibility of T. molitor larvae to high doses of ZEA in feed.
Collapse
Affiliation(s)
- Milena Janković-Tomanić
- Department of Insect Physiology and Biochemistry, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Despot Stefan Blvd. 142, 11108 Belgrade, Serbia
| | - Branka Petković
- Department of Neurophysiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Despot Stefan Blvd. 142, 11108 Belgrade, Serbia
| | - Jelena S Vranković
- Department of Hydroecology and Water Protection, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Despot Stefan Blvd. 142, 11108 Belgrade, Serbia
| | - Vesna Perić-Mataruga
- Department of Insect Physiology and Biochemistry, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Despot Stefan Blvd. 142, 11108 Belgrade, Serbia
| |
Collapse
|
2
|
Zhang B, Li M, Zhou G, Gu X, Xie L, Zhao M, Xu Q, Tan G, Zhang N. ZnO-NPs alleviate aflatoxin B 1-induced hepatoxicity in ducklings by promoting hepatic metallothionein expression. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114826. [PMID: 36989561 DOI: 10.1016/j.ecoenv.2023.114826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Aflatoxin B1 (AFB1) is a mycotoxin widely present in animal feed and human food, posing a serious threat to animal and human health. This study was aim to illustrate the mechanism of the protective role of MT against AFB1-induced hepatotoxicity, as well as to explore the feasibility of enhancing the tolerance of poultry to AFB1 by upregulating the expression of hepatic MT. After being exposed to AFB1 (50 ng/kg) primary duckling hepatocytes, the cell viability, the antioxidant index (SOD and GPx) and the mRNA levels of MT downstream genes (PTGR, p53, TrxR, AR and Bcl-2) significantly (p < 0.05) decreased, while the intracellular formation of (AFBO)-DNA adduct content, apoptosis, and MDA content significantly (p < 0.05) increased. Interestingly, overexpression of MT in primary duckling hepatocytes markedly (p < 0.05) reversed the detrimental impact of AFB1 and increased the expression of MT downstream genes. HepG2 cells were applied to study the mechanism how MT works to relieve the hepatic toxicity of AFB1. The ZnO-NPs (20 μg/mL) + AFB1 (20 μg/mL) group significantly (p < 0.05) increased the cell viability, the expression of NRF2, NQO1 and SOD, and expression of MT and MTF-1, as well as significantly (p < 0.05) decreased LDH, ROS and apoptotic rate, comparing with the AFB1 group. While joint treatment with AFB1 and ZnO-NPs, the hepatic toxicity exerted by AFB1 alone was reversed, along with the translocation of MTF-1 from the cytoplasm to the nucleus and upregulated its expression. Duckling trails were further carried out. A total number of 96 1-day-old healthy Cherry Valley commercial ducklings were randomly allocated according to a 2 by 2 factorial arrangement of treatments with the main factors including oral administration of AFB1 (0 vs. 40 μg/kg) and dietary supplementation of ZnO-NPs (0 vs. 60 mg/kg) for 7 days. It showed that AFB1 exposure caused body weight loss (p < 0.05), impaired liver structure and failure in hepatic function (activity of ALT, AST and concentration of TP and GLU) (p < 0.05), and decreases in antioxidant capacity(activity of SOD, CAT and concentration of GSH) (p < 0.05), along with the decrease in hepatic concentration of Zn, increase in expression of apoptosis-related genes and protein CAS3 and mRNA Bcl-2 expression (p < 0.05), and suppressed mRNA levels of antioxidant-related genes MT, SOD1, NRF2, and NQO1 (p < 0.05). In accordance with the cell test, dietary supplementation with ZnO-NPs mitigated the toxicity exerted by AFB1. In conclusion, ZnO-NPs has the protective effects against AFB1-induced hepatocyte injury by activating the expression of MTF-1 and the ectopic induction of MT expression, providing detailed information on the detoxification ability of MT on AFB1.
Collapse
Affiliation(s)
- Beiyu Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Meiling Li
- Department of Animal Nutrition and Feed Science, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Guangteng Zhou
- Department of Animal Nutrition and Feed Science, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xin Gu
- Department of Animal Nutrition and Feed Science, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Longqiang Xie
- Department of Animal Nutrition and Feed Science, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Man Zhao
- Department of Animal Nutrition and Feed Science, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingbiao Xu
- Department of Animal Nutrition and Feed Science, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Gaoming Tan
- Department of Animal Nutrition and Feed Science, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Niya Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
3
|
Buszewska-Forajta M. Mycotoxins, invisible danger of feedstuff with toxic effect on animals. Toxicon 2020; 182:34-53. [PMID: 32423889 DOI: 10.1016/j.toxicon.2020.04.101] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/09/2020] [Accepted: 04/25/2020] [Indexed: 12/22/2022]
Abstract
Mycotoxins are low-molecular weight compounds produced mainly by fungi, with Fusarium and Aspergillus origin. Secondary, metabolites, are mostly found on plants. However, the contamination of the feed and forage has been also reported. Because of their pharmacological activity, mycotoxins can be used as chemical warfare agents, drugs or growth promotants. Additionally, mycotoxins are found as one of the most dangerous genotoxic factors which cause the damage of DNA and lead to disease development. This review includes the knowledge of mycotoxins as both, an invisible danger of forage and as food additives. Special emphasis shall be given on mycotoxins with proven cancerogenic activity; including aflatoxins, fumonisins, ochratoxins, trichothecenes, and zearalenone. Factors such as species, mechanisms/modes of action, metabolism, and defense mechanisms were taken into account. The main concern was focused on zearalenone characterization, because of its estrogenic activity, caused by structural similarity to estrogens, naturally occurring in cells. By binding to estrogenic receptors, toxins are, accumulated in organisms and long-term exposure may cause the disturbances, especially in the reproductive system. The next part of this paper contains the description of main strategies of toxins determination. Finally, in the review, several potential methods for the dioxins neutralization were discussed.
Collapse
|
4
|
Peng Z, Chen L, Nüssler AK, Liu L, Yang W. Current sights for mechanisms of deoxynivalenol-induced hepatotoxicity and prospective views for future scientific research: A mini review. J Appl Toxicol 2016; 37:518-529. [DOI: 10.1002/jat.3428] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/07/2016] [Accepted: 11/07/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Zhao Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College; Huazhong University of Science and Technology; Hangkong Road 13 430030 Wuhan China
| | - Liangkai Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College; Huazhong University of Science and Technology; Hangkong Road 13 430030 Wuhan China
| | - Andreas K. Nüssler
- Department of Traumatology, BG Trauma center; University of Tübingen; Schnarrenbergstr. 95 72076 Tübingen Germany
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College; Huazhong University of Science and Technology; Hangkong Road 13 430030 Wuhan China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College; Huazhong University of Science and Technology; Hangkong Road 13 430030 Wuhan China
| | - Wei Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College; Huazhong University of Science and Technology; Hangkong Road 13 430030 Wuhan China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College; Huazhong University of Science and Technology; Hangkong Road 13 430030 Wuhan China
| |
Collapse
|
5
|
Hodulíková L, Skládanka J, Mlejnková V, Knot P, Klusoňová I, Horký P, Konečná K, Knotová D, Nedělník J, Sláma P. Effect of Soil Contamination of Fodder and Wilting on the Occurrence of Fungi and Mycotoxins in Alfalfa Silages. ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS 2016. [DOI: 10.11118/actaun201664051529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
6
|
Microbial biotransformation of DON: molecular basis for reduced toxicity. Sci Rep 2016; 6:29105. [PMID: 27381510 PMCID: PMC4933977 DOI: 10.1038/srep29105] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/14/2016] [Indexed: 11/08/2022] Open
Abstract
Bacteria are able to de-epoxidize or epimerize deoxynivalenol (DON), a mycotoxin, to deepoxy-deoxynivalenol (deepoxy-DON or DOM-1) or 3-epi-deoxynivalenol (3-epi-DON), respectively. Using different approaches, the intestinal toxicity of 3 molecules was compared and the molecular basis for the reduced toxicity investigated. In human intestinal epithelial cells, deepoxy-DON and 3-epi-DON were not cytotoxic, did not change the oxygen consumption or impair the barrier function. In intestinal explants, exposure for 4 hours to 10 μM DON induced intestinal lesions not seen in explants treated with deepoxy-DON and 3-epi-DON. A pan-genomic transcriptomic analysis was performed on intestinal explants. 747 probes, representing 323 genes, were differentially expressed, between DON-treated and control explants. By contrast, no differentially expressed genes were observed between control, deepoxy-DON and 3-epi-DON treated explants. Both DON and its biotransformation products were able to fit into the pockets of the A-site of the ribosome peptidyl transferase center. DON forms three hydrogen bonds with the A site and activates MAPKinases (mitogen-activated protein kinases). By contrast deepoxy-DON and 3-epi-DON only form two hydrogen bonds and do not activate MAPKinases. Our data demonstrate that bacterial de-epoxidation or epimerization of DON altered their interaction with the ribosome, leading to an absence of MAPKinase activation and a reduced toxicity.
Collapse
|
7
|
Hrubošová D, Vytřasová J, Brožková I. Production of T-2 toxin and deoxynivalenol in the presence of different disinfectants. POTRAVINARSTVO 2015. [DOI: 10.5219/417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The aim of the work was to examine the effect of different disinfectants on production trichothecenes (especially of T-2 toxin and deoxynivalenol). Lipophilicity, chemical structure, the presence of bioactive groups and functional groups in their structure modifies biological activity and toxic potency of trichothecenes. For this reason, limits have been established designating maximum levels of mycotoxins in cereals while maintaining proper growing practices. Appropriate nutritive media were prepared with different concentration of tested disinfectants (Desanal A plus, ProCura spray and Guaa-Pool) and were inoculated using Fusarium strains. The density of Fusarium was 105 spores per mililitre. Nutrient media was cultivated at 15 °C and 25 °C for seven days. The strains of Fusarium graminearum CCM F-683 and Fusarium species (isolated from barley) produced quantities of deoxynivalenol. Fusarium poae CCM F-584 and Fusarium species (isolated from malthouse air) produced quantities of T-2 toxin. Desanal A plus prevented Fusarium growth and production of T-2 toxin and deoxynivalenol at the concentration 10%. It is an alkaline disinfectant on the basis of active chlorine and the surfactant that contains ˂5% of NaClO. ProCura spray at the concentration 0.6% proved to be very effective. This disinfectant contains 35% of propan-1-ol and 25% of propan-2-ol. Guaa-Pool at the concentration 0.004% proved to be very effective. It is a polymeric disinfectant with anion surface-acting agent and it contains ˂0.9% of polyhexamethylene guanidine hydrochloride and ˂0.2% of alkyl (C12-C16) dimethylbenzyl ammonium chloride. Lower contentration of disinfectants that not prevented growth of Fusarium caused higher production of T-2 toxin and deoxynivalenol. The contents of T-2 toxin and deoxynivalenol were analyzed by enzyme-linked immunosorbent assay (ELISA) using commercially produced kits (Agra Quant® Deoxynivalenol Test kit and Agra Quant® T-2 toxin Test kit). The experiment showed that the variability in the production of T-2 toxin and deoxynivalenol depended on the Fusarium strain used, concentration of disinfectants and temperature of cultivation.
Collapse
|
8
|
Ochratoxin A induced early hepatotoxicity: new mechanistic insights from microRNA, mRNA and proteomic profiling studies. Sci Rep 2014. [DOI: 10.1038/srep05163] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
9
|
Effect of selenium in organic and inorganic form on liver, kidney, brain and muscle of Wistar rats. OPEN CHEM 2012. [DOI: 10.2478/s11532-012-0064-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
AbstractSelenium is a micronutrient, localized in the active sites of enzymes such as glutathione peroxidase and thioredoxin reductase, and participating together with these enzymes in an antioxidant defence system of organisms against free radicals. Administration of selenium is necessary for maintaining oxidative homeostasis. The present experiment is aimed at investigation of selenium impact on basal metabolic processes and selected antioxidants in a Wistar rat model, fed selenium in organic and inorganic forms. Liver, kidney, brain and muscle were sampled during a month-long feeding with four different doses of selenium (0.075 mg or 1.5 mg of inorganic and/or organic selenium per kg of feed). We found a significant reduction in glutathione level in liver tissue regardless of the form of the administered selenium. On the other hand, selenium caused a decreased glutathione reductase level in the liver and metallothionein level in the liver, kidney and muscle.
Collapse
|
10
|
Pohanka M, Stetina R, Svobodova H, Ruttkay-Nedecky B, Jilkova M, Sochor J, Sobotka J, Adam V, Kizek R. Sulfur mustard causes oxidative stress and depletion of antioxidants in muscles, livers, and kidneys of Wistar rats. Drug Chem Toxicol 2012; 36:270-6. [PMID: 22947058 DOI: 10.3109/01480545.2012.710629] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Sulfur mustard (SM) is a chemical warfare agent with cytotoxic effect and a tight link to oxidative stress (OS). Depletion of antioxidants is considered as a cause of detrimental consequence and belongs to the important steps leading to cell death. The oxidative injury appearing after SM exposure is not well understood. Nevertheless, identification of the pathological processes would be a good opportunity to establish an efficient therapy. Here, we focused our effort on an estimation of reactive oxygen species homeostasis and apoptotic processes in Wistar rats exposed to 0-160 mg/kg of SM. We assayed antioxidant activity, thiobarbituric acid reactive substances, reduced glutathione/oxidized glutathione, metallothionein, glutathione reductase, glutathione peroxidase, glutathione S-transferase, caspase 3, and glucose in the livers, kidneys, and muscles of the animals. Significant OS, depletion of low-molecular-mass antioxidants, increase in caspase activity, and some other processes related to SM action were determined. Moreover, we infer a principal role of OS in the tested organs.
Collapse
Affiliation(s)
- Miroslav Pohanka
- Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Are apparent negative effects of feeding GM MON810 maize to Atlantic salmon, Salmo salar, caused by confounding factors? Br J Nutr 2011; 106:42-56. [PMID: 21418706 DOI: 10.1017/s0007114510005726] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The present study was conducted to follow up on apparent differences in growth, relative organ sizes, cellular stress and immune function in Atlantic salmon fed feed containing GM Bacillus thuringiensis maize compared with feed containing the non-modified parental maize line. Gene expression profiling on the distal intestinal segment and liver was performed by microarray, and selected genes were followed up by quantitative PCR (qPCR). In the liver, qPCR revealed some differentially regulated genes, including up-regulation of gelsolin precursor, down-regulation of ferritin heavy subunit and a tendency towards down-regulation of metallothionein (MT)-B. This, combined with the up-regulation of anti-apoptotic protein NR13 and similar tendencies for ferritin heavy chain and MT-A and -B in the distal intestine, suggests changes in cellular stress/antioxidant status. This corresponds well with and strengthens previous findings in these fish. To exclude possible confounding factors, the maize ingredients were analysed for mycotoxins and metabolites. The GM maize contained 90 μg/kg of deoxynivalenol (DON), while the non-GM maize was below the detection limit. Differences were also observed in the metabolite profiles of the two maize varieties, some of which seemed connected to the mycotoxin level. The effects on salmon observed in the present and previous studies correspond relatively well with the effects of DON as reported in the literature for other production animals, but knowledge regarding effects and harmful dose levels in fish is scarce. Thus, it is difficult to conclude whether the observed effects are caused by the DON level or by some other aspect of the GM maize ingredient.
Collapse
|
12
|
Skládanka J, Nedělník J, Adam V, Doležal P, Moravcová H, Dohnal V. Forage as a primary source of mycotoxins in animal diets. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2011; 8:37-50. [PMID: 21318013 PMCID: PMC3037059 DOI: 10.3390/ijerph8010037] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 12/17/2010] [Accepted: 12/24/2010] [Indexed: 02/06/2023]
Abstract
The issue of moulds and, thus, contamination with mycotoxins is very topical, particularly in connexion with forages from grass stands used at the end of the growing season. Deoxynivalenol (DON), zearalenone (ZEA), fumonisins (FUM) and aflatoxins (AFL) are among the most common mycotoxins. The aim of the paper was to determine concentrations of mycotoxins in selected grasses (Lolium perenne, Festulolium pabulare, Festulolium braunii) and their mixtures with Festuca rubra an/or Poa pratensis during the growing season as a marker of grass safety, which was assessed according to content of the aforementioned mycotoxins. During the growing season grass forage was contaminated with mycotoxins, most of all by DON and ZEA. The contents of AFL and FUM were zero or below the limit of quantification. Moreover, the level of the occurrence of mould was quantified as ergosterol content, which was higher at the specific date of cut. All results were statistically processed and significant changes were discussed.
Collapse
Affiliation(s)
- Jiří Skládanka
- Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; E-Mails: (V.A.), (P.D.)
| | - Jan Nedělník
- Agriculture Research, Ltd. Troubsko, Zahradní 1, CZ-664 41 Troubsko, Czech Republic; E-Mails: (J.N.), (H.M.)
| | - Vojtěch Adam
- Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; E-Mails: (V.A.), (P.D.)
| | - Petr Doležal
- Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; E-Mails: (V.A.), (P.D.)
| | - Hana Moravcová
- Agriculture Research, Ltd. Troubsko, Zahradní 1, CZ-664 41 Troubsko, Czech Republic; E-Mails: (J.N.), (H.M.)
| | - Vlastimil Dohnal
- University of Jan Evangelista Purkyně in Ústí nad Labem, Hoření Street 13, CZ-400 96 Ústí nad Labem, Czech Republic; E-Mail:
| |
Collapse
|
13
|
Krizkova S, Adam V, Eckschlager T, Kizek R. Using of chicken antibodies for metallothionein detection in human blood serum and cadmium-treated tumour cell lines after dot- and electroblotting. Electrophoresis 2009; 30:3726-35. [DOI: 10.1002/elps.200900201] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|