1
|
Gonçalves D. Rethinking life and predicting its origin. Theory Biosci 2024; 143:205-215. [PMID: 38922566 DOI: 10.1007/s12064-024-00420-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 06/24/2024] [Indexed: 06/27/2024]
Abstract
The definition, origin and recreation of life remain elusive. As others have suggested, only once we put life into reductionist physical terms will we be able to solve those questions. To that end, this work proposes the phenomenon of life to be the product of two dissipative mechanisms. From them, one characterises extant biological life and deduces a testable scenario for its origin. The proposed theory of life allows its replication, reinterprets ecological evolution and creates new constraints on the search for life.
Collapse
Affiliation(s)
- Diogo Gonçalves
- Centro de Química Estrutural and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, 1049-001, Lisbon, Portugal.
| |
Collapse
|
2
|
Singh RS. A Concept of Complementarity Between Complexity and Redundancy can Account for Kant's Biological Teleology and Unify Mechanistic and Finalistic Biology. J Mol Evol 2024; 92:258-265. [PMID: 38662236 DOI: 10.1007/s00239-024-10169-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/28/2024] [Indexed: 04/26/2024]
Abstract
Over 160 years after Darwin and 70 years after the discovery of DNA, two fundamental questions of biology remain unanswered: What differentiates the living from the nonliving? How can mechanistic and finalistic or holistic biology be unified? Niels Bohr introduced a concept of complementarity in quantum physics and based on the paradox of light as a simultaneous wave and particle, conjectured that a similar concept might exist in biology that would solve the paradox of life originating from the nonliving. Bohr proposed that two mutually exclusive-independent observations may be necessary to explain a phenomenon and provided support to Immanuel Kant's idea that the "purposive" behaviour of organisms could only be explained in teleological terms and that mechanical and teleological approaches were necessary and complementary to explain biology. We present a concept of complementarity whereby biochemical pathways or cellular channels for the flow of information are simultaneously complex and redundant and complexity and redundancy complement each other. The postulates of biological complementarity are that (1) it was an essential condition in the origin of life; (2) it provided physiological flexibility that allowed organisms to mount self-protection response and complexity to evolve in the face of deleterious mutations before the evolution of bi-parental sex; (3) it laid the foundation for the evolution of a choice of response when confronted with threat; and (4) it applies to all levels of biological organizations and, thus, can serve as a basis for the unification of mechanistic and holistic biology. It is proposed that teleology is simultaneously constitutive and heuristic: constitutive because organisms' "purposive" behaviours are adaptive and are grounded in mechanism (complexity and redundancy), and heuristic because with our finite cognition and our goal-oriented (humans alone are aware of "tomorrow") and anthropomorphic pre-disposition, teleology will remain useful as a guide to our making sense of the world, even how to ask a meaningful question.
Collapse
Affiliation(s)
- Rama S Singh
- Professor Emeritus, Department of Biology, McMaster University, 1280 Main St West, Hamilton, ON, L8S 4K1, Canada.
| |
Collapse
|
3
|
Sangchai T, Al Shehimy S, Penocchio E, Ragazzon G. Artificial Molecular Ratchets: Tools Enabling Endergonic Processes. Angew Chem Int Ed Engl 2023; 62:e202309501. [PMID: 37545196 DOI: 10.1002/anie.202309501] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/08/2023]
Abstract
Non-equilibrium chemical systems underpin multiple domains of contemporary interest, including supramolecular chemistry, molecular machines, systems chemistry, prebiotic chemistry, and energy transduction. Experimental chemists are now pioneering the realization of artificial systems that can harvest energy away from equilibrium. In this tutorial Review, we provide an overview of artificial molecular ratchets: the chemical mechanisms enabling energy absorption from the environment. By focusing on the mechanism type-rather than the application domain or energy source-we offer a unifying picture of seemingly disparate phenomena, which we hope will foster progress in this fascinating domain of science.
Collapse
Affiliation(s)
- Thitiporn Sangchai
- University of Strasbourg, CNRS, Institut de Science et d'Ingénierie Supramoléculaires (ISIS) UMR 7006, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Shaymaa Al Shehimy
- University of Strasbourg, CNRS, Institut de Science et d'Ingénierie Supramoléculaires (ISIS) UMR 7006, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Emanuele Penocchio
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Giulio Ragazzon
- University of Strasbourg, CNRS, Institut de Science et d'Ingénierie Supramoléculaires (ISIS) UMR 7006, 8 allée Gaspard Monge, 67000, Strasbourg, France
| |
Collapse
|
4
|
Gruss I, Twardowski J, Samsel-Czekała M, Beznosiuk J, Wandzel C, Twardowska K, Wiglusz RJ. The isothermal Boltzmann-Gibbs entropy reduction affects survival of the fruit fly Drosophila melanogaster. Sci Rep 2023; 13:14166. [PMID: 37644276 PMCID: PMC10465501 DOI: 10.1038/s41598-023-41482-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/28/2023] [Indexed: 08/31/2023] Open
Abstract
To the best of our knowledge, this is the first experimental evidence of the effect of isothermal changes in entropy on a living organism. In greater detail, the effect of the reduction of the total Boltzmann-Gibbs entropy (S) of the aquatic environment on the survival rate and body mass of the fruit fly Drosophila melanogaster was investigated. The tests were carried out in standard thermodynamic states at room temperature of 296.15 K and ambient atmospheric pressure of 1 bar. Two variants of entropy reduction (ΔS) were tested for ΔS = 28.49 and 51.14 J K-1 mol-1 compared to the blind and control samples. The entropy level was experimentally changed, using the quantum system for isothermal entropy reduction. This system is based on quantum bound entanglement of phonons and the phenomenon of phonon resonance (interference of phonon modes) in condensed matter (Silicon dioxide (SiO2) and single crystals of Silicon (Si0), Aluminum (Al0) plates ("chips"), glass, and water). All studied organisms were of the same age (1 day). Mortality was observed daily until the natural death of the organisms. The investigations showed that changes in the Boltzmann-Gibbs entropy affected the survival and body mass of the fruit flies. On the one hand, the reduction in entropy under isothermal conditions in the aquatic environment for ΔS = 28.49 J K-1 mol-1 resulted in an extension of the lifespan and an increase in the body mass of female fruit flies. On the other hand, the almost twofold reduction in this entropy for ΔS = 51.14 J K-1 mol-1 shortened the lives of the males. Thus, the lifespan and body mass of flies turned out to be a specific reaction of metabolism related to changes in the entropy of the aquatic environment.
Collapse
Affiliation(s)
- Iwona Gruss
- Department of Plant Protection, Wroclaw University of Environmental and Life Sciences, Grunwaldzki Sq. 24a, 50363, Wroclaw, Poland.
| | - Jacek Twardowski
- Department of Plant Protection, Wroclaw University of Environmental and Life Sciences, Grunwaldzki Sq. 24a, 50363, Wroclaw, Poland
| | - Małgorzata Samsel-Czekała
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50422, Wroclaw, Poland
| | - Jarosław Beznosiuk
- PER Poland S.A, Ul. Zygmunta Starego 9, 44100, Gliwice, Poland
- PER Switzerland AG, Landstrasse 151, 9494, Schaan, Liechtenstein
| | - Czesław Wandzel
- PER Poland S.A, Ul. Zygmunta Starego 9, 44100, Gliwice, Poland
| | - Kamila Twardowska
- Department of Plant Protection, Wroclaw University of Environmental and Life Sciences, Grunwaldzki Sq. 24a, 50363, Wroclaw, Poland
| | - Rafal J Wiglusz
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50422, Wroclaw, Poland.
| |
Collapse
|
5
|
Abstract
The consensus on the origins of life is that it involved organization of prebiotic chemicals according to the underlying principles of thermodynamics to dissipate energy derived from photochemical and/or geochemical sources. Leading theories tend to be chemistry-centric, revolving around either metabolism or information-containing polymers first. However, experimental data also suggest that bioelectricity and quantum effects play an important role in biology, which might suggest that a further factor is required to explain how life began. Intriguingly, in the early part of 20th century, the concept of the "morphogenetic field" was proposed by Gurwitsch to explain how the shape of an organism was determined, while a role for quantum mechanics in biology was suggested by Bohr and Schrödinger, among others. This raises the question as to the potential of these phenomena, especially bioelectric fields, to have been involved in the origin of life. It points to the possibility that as bioelectricity is universally prevalent in biological systems today, it represents a more complex echo of an electromagnetic skeleton which helped shape life into being. It could be argued that as a flow of ions creates an electric field, this could have been pivotal in the formation of an energy dissipating structure, for instance, in deep sea thermal vents. Moreover, a field theory might also hint at the potential involvement of nontrivial quantum effects in life. Not only might this perspective help indicate the origins of morphogenetic fields, but also perhaps suggest where life may have started, and whether metabolism or information came first. It might also help to provide an insight into aging, cancer, consciousness, and, perhaps, how we might identify life beyond our planet. In short, when thinking about life, not only do we have to consider the accepted chemistry, but also the fields that must also shape it. In effect, to fully understand life, as well as the yin of accepted particle-based chemistry, there is a yang of field-based interaction and an ethereal skeleton.
Collapse
Affiliation(s)
- Alistair V.W. Nunn
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London, United Kingdom.,Address correspondence to: Alistair V.W. Nunn, PhD, Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London W1W 6UW, United Kingdom
| | | | - Jimmy D. Bell
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London, United Kingdom
| |
Collapse
|
6
|
Seebacher F, Beaman J. Evolution of plasticity: metabolic compensation for fluctuating energy demands at the origin of life. J Exp Biol 2022; 225:274636. [PMID: 35254445 DOI: 10.1242/jeb.243214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Phenotypic plasticity of physiological functions enables rapid responses to changing environments and may thereby increase the resilience of organisms to environmental change. Here, we argue that the principal hallmarks of life itself, self-replication and maintenance, are contingent on the plasticity of metabolic processes ('metabolic plasticity'). It is likely that the Last Universal Common Ancestor (LUCA), 4 billion years ago, already possessed energy-sensing molecules that could adjust energy (ATP) production to meet demand. The earliest manifestation of metabolic plasticity, switching cells from growth and storage (anabolism) to breakdown and ATP production (catabolism), coincides with the advent of Darwinian evolution. Darwinian evolution depends on reliable translation of information from information-carrying molecules, and on cell genealogy where information is accurately passed between cell generations. Both of these processes create fluctuating energy demands that necessitate metabolic plasticity to facilitate replication of genetic material and (proto)cell division. We propose that LUCA possessed rudimentary forms of these capabilities. Since LUCA, metabolic networks have increased in complexity. Generalist founder enzymes formed the basis of many derived networks, and complexity arose partly by recruiting novel pathways from the untapped pool of reactions that are present in cells but do not have current physiological functions (the so-called 'underground metabolism'). Complexity may thereby be specific to environmental contexts and phylogenetic lineages. We suggest that a Boolean network analysis could be useful to model the transition of metabolic networks over evolutionary time. Network analyses can be effective in modelling phenotypic plasticity in metabolic functions for different phylogenetic groups because they incorporate actual biochemical regulators that can be updated as new empirical insights are gained.
Collapse
Affiliation(s)
- Frank Seebacher
- School of Life and Environmental Sciences, A08, University of Sydney, Sydney, NSW 2006, Australia
| | - Julian Beaman
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
| |
Collapse
|
7
|
Wee WA, Sugiyama H, Park S. Photoswitchable single-stranded DNA-peptide coacervate formation as a dynamic system for reaction control. iScience 2021; 24:103455. [PMID: 34877509 PMCID: PMC8633985 DOI: 10.1016/j.isci.2021.103455] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/13/2021] [Accepted: 11/11/2021] [Indexed: 12/30/2022] Open
Abstract
In cells, segregation allows for diverse biochemical reactions to take place simultaneously. Such intricate regulation of cellular processes is achieved through the dynamic formation and disassembly of membraneless organelles via liquid-liquid phase separation (LLPS). Herein, we demonstrate the light-controlled formation and disassembly of liquid droplets formed from a complex of polylysine (pLys) and arylazopyrazole (AAP)-conjugated single-stranded DNA. Photoswitchablility of droplet formation was also shown to be applicable to the control of chemical reactions; imine formation and a DNAzyme-catalyzed oxidation reaction were accelerated in the presence of droplets. These outcomes were reversed upon droplet disassembly. Our results demonstrate that the photoswitchable droplet formation system is a versatile model for the regulation of reactions through dynamic LLPS. Incorporating AAP enabled light-controlled droplet formation with ssDNA and pLys Droplets were reversibly formed or disassembled without altering sample composition Photoswitchability depended on sequence and ionic interactions but not flexibility Photoswitchable droplet formation accelerated uncatalyzed and catalyzed reactions
Collapse
Affiliation(s)
- Wen Ann Wee
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan.,Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Soyoung Park
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| |
Collapse
|
8
|
A hydrogen-dependent geochemical analogue of primordial carbon and energy metabolism. Nat Ecol Evol 2020; 4:534-542. [PMID: 32123322 DOI: 10.1038/s41559-020-1125-6] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 01/23/2020] [Indexed: 11/08/2022]
Abstract
Hydrogen gas, H2, is generated by alkaline hydrothermal vents through an ancient geochemical process called serpentinization, in which water reacts with iron-containing minerals deep within the Earth's crust. H2 is the electron donor for the most ancient and the only energy-releasing route of biological CO2 fixation, the acetyl-CoA pathway. At the origin of metabolism, CO2 fixation by hydrothermal H2 within serpentinizing systems could have preceded and patterned biotic pathways. Here we show that three hydrothermal minerals-greigite (Fe3S4), magnetite (Fe3O4) and awaruite (Ni3Fe)-catalyse the fixation of CO2 with H2 at 100 °C under alkaline aqueous conditions. The product spectrum includes formate (up to 200 mM), acetate (up to 100 µM), pyruvate (up to 10 µM), methanol (up to 100 µM) and methane. The results shed light on both the geochemical origin of microbial metabolism and the nature of abiotic formate and methane synthesis in modern hydrothermal vents.
Collapse
|
9
|
Preiner M, Asche S, Becker S, Betts HC, Boniface A, Camprubi E, Chandru K, Erastova V, Garg SG, Khawaja N, Kostyrka G, Machné R, Moggioli G, Muchowska KB, Neukirchen S, Peter B, Pichlhöfer E, Radványi Á, Rossetto D, Salditt A, Schmelling NM, Sousa FL, Tria FDK, Vörös D, Xavier JC. The Future of Origin of Life Research: Bridging Decades-Old Divisions. Life (Basel) 2020; 10:E20. [PMID: 32110893 PMCID: PMC7151616 DOI: 10.3390/life10030020] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 12/12/2022] Open
Abstract
Research on the origin of life is highly heterogeneous. After a peculiar historical development, it still includes strongly opposed views which potentially hinder progress. In the 1st Interdisciplinary Origin of Life Meeting, early-career researchers gathered to explore the commonalities between theories and approaches, critical divergence points, and expectations for the future. We find that even though classical approaches and theories-e.g. bottom-up and top-down, RNA world vs. metabolism-first-have been prevalent in origin of life research, they are ceasing to be mutually exclusive and they can and should feed integrating approaches. Here we focus on pressing questions and recent developments that bridge the classical disciplines and approaches, and highlight expectations for future endeavours in origin of life research.
Collapse
Affiliation(s)
- Martina Preiner
- Institute of Molecular Evolution, University of Düsseldorf, 40225 Düsseldorf, Germany; (S.G.G.); (F.D.K.T.)
| | - Silke Asche
- School of Chemistry, University of Glasgow, Glasgow G128QQ, UK;
| | - Sidney Becker
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK;
| | - Holly C. Betts
- School of Earth Sciences, University of Bristol, Bristol BS8 1RL, UK;
| | - Adrien Boniface
- Environmental Microbial Genomics, Laboratoire Ampère, Ecole Centrale de Lyon, Université de Lyon, 69130 Ecully, France;
| | - Eloi Camprubi
- Origins Center, Department of Earth Sciences, Utrecht University, 3584 CB Utrecht, The Netherlands;
| | - Kuhan Chandru
- Space Science Center (ANGKASA), Institute of Climate Change, Level 3, Research Complex, National University of Malaysia, UKM Bangi 43600, Selangor, Malaysia;
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technicka 5, 16628 Prague 6–Dejvice, Czech Republic
| | - Valentina Erastova
- UK Centre for Astrobiology, School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, UK;
| | - Sriram G. Garg
- Institute of Molecular Evolution, University of Düsseldorf, 40225 Düsseldorf, Germany; (S.G.G.); (F.D.K.T.)
| | - Nozair Khawaja
- Institut für Geologische Wissenschaften, Freie Universität Berlin, 12249 Berlin, Germany;
| | | | - Rainer Machné
- Institute of Synthetic Microbiology, University of Düsseldorf, 40225 Düsseldorf, Germany; (R.M.); (N.M.S.)
- Quantitative and Theoretical Biology, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Giacomo Moggioli
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4DQ, UK;
| | - Kamila B. Muchowska
- Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, 67000 Strasbourg, France;
| | - Sinje Neukirchen
- Archaea Biology and Ecogenomics Division, University of Vienna, 1090 Vienna, Austria; (S.N.); (E.P.); (F.L.S.)
| | - Benedikt Peter
- Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany;
| | - Edith Pichlhöfer
- Archaea Biology and Ecogenomics Division, University of Vienna, 1090 Vienna, Austria; (S.N.); (E.P.); (F.L.S.)
| | - Ádám Radványi
- Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary (D.V.)
- Institute of Evolution, MTA Centre for Ecological Research, Klebelsberg Kuno u. 3., H-8237 Tihany, Hungary
| | - Daniele Rossetto
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy;
| | - Annalena Salditt
- Systems Biophysics, Physics Department, Ludwig-Maximilians-Universität München, 80799 Munich, Germany;
| | - Nicolas M. Schmelling
- Institute of Synthetic Microbiology, University of Düsseldorf, 40225 Düsseldorf, Germany; (R.M.); (N.M.S.)
- Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, 50674 Cologne, Germany
| | - Filipa L. Sousa
- Archaea Biology and Ecogenomics Division, University of Vienna, 1090 Vienna, Austria; (S.N.); (E.P.); (F.L.S.)
| | - Fernando D. K. Tria
- Institute of Molecular Evolution, University of Düsseldorf, 40225 Düsseldorf, Germany; (S.G.G.); (F.D.K.T.)
| | - Dániel Vörös
- Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary (D.V.)
- Institute of Evolution, MTA Centre for Ecological Research, Klebelsberg Kuno u. 3., H-8237 Tihany, Hungary
| | - Joana C. Xavier
- Institute of Molecular Evolution, University of Düsseldorf, 40225 Düsseldorf, Germany; (S.G.G.); (F.D.K.T.)
| |
Collapse
|
10
|
Sousa FL, Martin WF. Biochemical fossils of the ancient transition from geoenergetics to bioenergetics in prokaryotic one carbon compound metabolism. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:964-81. [PMID: 24513196 DOI: 10.1016/j.bbabio.2014.02.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 01/31/2014] [Accepted: 02/03/2014] [Indexed: 12/27/2022]
Abstract
The deep dichotomy of archaea and bacteria is evident in many basic traits including ribosomal protein composition, membrane lipid synthesis, cell wall constituents, and flagellar composition. Here we explore that deep dichotomy further by examining the distribution of genes for the synthesis of the central carriers of one carbon units, tetrahydrofolate (H4F) and tetrahydromethanopterin (H4MPT), in bacteria and archaea. The enzymes underlying those distinct biosynthetic routes are broadly unrelated across the bacterial-archaeal divide, indicating that the corresponding pathways arose independently. That deep divergence in one carbon metabolism is mirrored in the structurally unrelated enzymes and different organic cofactors that methanogens (archaea) and acetogens (bacteria) use to perform methyl synthesis in their H4F- and H4MPT-dependent versions, respectively, of the acetyl-CoA pathway. By contrast, acetyl synthesis in the acetyl-CoA pathway - from a methyl group, CO2 and reduced ferredoxin - is simpler, uniform and conserved across acetogens and methanogens, and involves only transition metals as catalysts. The data suggest that the acetyl-CoA pathway, while being the most ancient of known CO2 assimilation pathways, reflects two phases in early evolution: an ancient phase in a geochemically confined and non-free-living universal common ancestor, in which acetyl thioester synthesis proceeded spontaneously with the help of geochemically supplied methyl groups, and a later phase that reflects the primordial divergence of the bacterial and archaeal stem groups, which independently invented genetically-encoded means to synthesize methyl groups via enzymatic reactions. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.
Collapse
Affiliation(s)
- Filipa L Sousa
- Institute for Molecular Evolution,University of Düsseldorf, 40225 Düsseldorf, Germany
| | - William F Martin
- Institute for Molecular Evolution,University of Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|
11
|
Hydrogen, metals, bifurcating electrons, and proton gradients: The early evolution of biological energy conservation. FEBS Lett 2011; 586:485-93. [DOI: 10.1016/j.febslet.2011.09.031] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 09/26/2011] [Accepted: 09/26/2011] [Indexed: 11/18/2022]
|
12
|
Michel D. Basic statistical recipes for the emergence of biochemical discernment. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2011; 106:498-516. [PMID: 21839109 DOI: 10.1016/j.pbiomolbio.2011.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 07/26/2011] [Accepted: 07/27/2011] [Indexed: 01/09/2023]
Abstract
An essential step towards understanding life would be to identify the very basic mechanisms responsible for the discerning behaviour of living biochemical systems, absent from randomly reacting chemical soups. One intuitively feels that this question goes beyond the particular nature of the biological molecules and should relate to general physical principles. The pre-eminent physicist Ludwig Boltzmann early envisioned life as a struggle for entropy, in concordance with the subsequent principle of self-organization out of equilibrium. Re-examination of elementary steady state biochemical systems from a statistical perspective supports this view and shows that sigmoidal responses arising from microstates elimination, are sufficient to explain innermost characteristics of life, including its capacity to convert random molecular interactions into accurate biological reactions. A primary operating strategy to achieve this goal is the introduction of time-irreversible transitions in molecular state conversion cycles by injection of free energy, which confers decisional capacity to single macromolecules. Selected examples from various fields of molecular biology such as enzymology and gene expression, are provided to show that these non-equilibrium steady state mechanisms remain important in contemporary biochemical systems. But in addition, information archiving allowed the emergence of the time-reversible counterparts of these mechanisms, mediated by evolutionary pre-organized macromolecular complexes capable of generating discernment in a non-dissipative manner.
Collapse
Affiliation(s)
- Denis Michel
- Université de Rennes1, Molecular and Cellular Interactions UMR6026, Irset. IFR140GFAS, Bat. 13, Campus de Beaulieu, 35042 Rennes Cedex, France.
| |
Collapse
|
13
|
Abstract
Life is a chemical reaction. Three major transitions in early evolution are considered without recourse to a tree of life. The origin of prokaryotes required a steady supply of energy and electrons, probably in the form of molecular hydrogen stemming from serpentinization. Microbial genome evolution is not a treelike process because of lateral gene transfer and the endosymbiotic origins of organelles. The lack of true intermediates in the prokaryote-to-eukaryote transition has a bioenergetic cause. This article was reviewed by Dan Graur, W. Ford Doolittle, Eugene V. Koonin and Christophe Malaterre.
Collapse
Affiliation(s)
- William F Martin
- Institut of Botany III, University of Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|
14
|
Trevors J. Perspective: Researching the transition from non-living to the first microorganisms: Methods and experiments are major challenges. J Microbiol Methods 2010; 81:259-63. [DOI: 10.1016/j.mimet.2010.03.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 03/19/2010] [Indexed: 11/25/2022]
|