1
|
Maiuolo L, Olivito F, Algieri V, Costanzo P, Jiritano A, Tallarida MA, Tursi A, Sposato C, Feo A, De Nino A. Synthesis, Characterization and Mechanical Properties of Novel Bio-Based Polyurethane Foams Using Cellulose-Derived Polyol for Chain Extension and Cellulose Citrate as a Thickener Additive. Polymers (Basel) 2021; 13:2802. [PMID: 34451341 PMCID: PMC8400649 DOI: 10.3390/polym13162802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/09/2021] [Accepted: 08/16/2021] [Indexed: 01/21/2023] Open
Abstract
A novel series of bio-based polyurethane composite foams was prepared, employing a cellulose-derived polyol for chain extension and cellulose-citrate as a thickener additive. The utilized polyol was obtained from the reduction reaction of cellulose-derived bio-oil through the use of sodium borohydride and iodine. Primarily, we produced both rigid and flexible polyurethane foams through chain extension of the prepolymers. Secondly, we investigated the role of cellulose citrate as a polyurethane additive to improve the mechanical properties of the realized composite materials. The products were characterized by FT-IR spectroscopy and their morphologies were analysed by SEM. Mechanical tests were evaluated to open new perspectives towards different applications.
Collapse
Affiliation(s)
- Loredana Maiuolo
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, CS, Italy; (V.A.); (P.C.); (A.J.); (M.A.T.); (A.T.)
| | - Fabrizio Olivito
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, CS, Italy; (V.A.); (P.C.); (A.J.); (M.A.T.); (A.T.)
| | - Vincenzo Algieri
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, CS, Italy; (V.A.); (P.C.); (A.J.); (M.A.T.); (A.T.)
| | - Paola Costanzo
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, CS, Italy; (V.A.); (P.C.); (A.J.); (M.A.T.); (A.T.)
| | - Antonio Jiritano
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, CS, Italy; (V.A.); (P.C.); (A.J.); (M.A.T.); (A.T.)
| | - Matteo Antonio Tallarida
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, CS, Italy; (V.A.); (P.C.); (A.J.); (M.A.T.); (A.T.)
| | - Antonio Tursi
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, CS, Italy; (V.A.); (P.C.); (A.J.); (M.A.T.); (A.T.)
| | - Corradino Sposato
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Trisaia Research Centre, S.S. 106 Ionica, km 419 + 500, 75026 Rotondella, MT, Italy; (C.S.); (A.F.)
| | - Andrea Feo
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Trisaia Research Centre, S.S. 106 Ionica, km 419 + 500, 75026 Rotondella, MT, Italy; (C.S.); (A.F.)
| | - Antonio De Nino
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, CS, Italy; (V.A.); (P.C.); (A.J.); (M.A.T.); (A.T.)
| |
Collapse
|
3
|
Wang H, Christiansen DE, Mehraeen S, Cheng G. Winning the fight against biofilms: the first six-month study showing no biofilm formation on zwitterionic polyurethanes. Chem Sci 2020; 11:4709-4721. [PMID: 34122926 PMCID: PMC8159170 DOI: 10.1039/c9sc06155j] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/13/2020] [Indexed: 12/12/2022] Open
Abstract
Biofilms have been a long-standing challenge for healthcare, water transport, and many other industries. They lead to bacterial growth and infections in animals, food products, and humans, cause premature removal of the implanted materials or devices from patients, and facilitate fouling and corrosion of metals. Despite some published and patented methods on minimizing the effects of biofilms for a short period (less than two weeks), there exists no successful means to mitigate or prevent the long-term formation of biofilms. It is even more challenging to integrate critical anti-fouling properties with other needed physical and chemical properties for a range of applications. In this study, we developed a novel approach for combining incompatible, highly polar anti-fouling groups with less polar, mechanically modifying groups into one material. A multifunctional carboxybetaine precursor was designed and introduced into polyurethane. The carboxybetaine precursors undergo rapid, self-catalyzed hydrolysis at the water/material interface and provide critical anti-fouling properties that lead to undetectable bacterial attachment and zero biofilm formation after six months of constant exposure to Pseudomonas aeruginosa and Staphylococcus epidermidis under the static condition in a nutrient-rich medium. This zwitterionic polyurethane is the first material to demonstrate both critical anti-biofilm properties and tunable mechanical properties and directly validates the unproven anti-fouling strategy and hypothesis for biofilm formation prevention. This approach of designing 'multitasking materials' will be useful for the development of next generation anti-fouling materials for a variety of applications.
Collapse
Affiliation(s)
- Huifeng Wang
- Department of Chemical Engineering, The University of Illinois at Chicago Chicago IL 60607 USA https://gancheng.people.uic.edu
| | - Daniel Edward Christiansen
- Department of Chemical Engineering, The University of Illinois at Chicago Chicago IL 60607 USA https://gancheng.people.uic.edu
| | - Shafigh Mehraeen
- Department of Chemical Engineering, The University of Illinois at Chicago Chicago IL 60607 USA https://gancheng.people.uic.edu
| | - Gang Cheng
- Department of Chemical Engineering, The University of Illinois at Chicago Chicago IL 60607 USA https://gancheng.people.uic.edu
| |
Collapse
|
4
|
Zhang J, He L, Wei G, Jiang X, Fu L, Zhao Y, Zhang L, Yang L, Li Y, Wang Y, Mo H, Shen J. Zwitterionic Polymer-Grafted Polylactic Acid Vascular Patches Based on a Decellularized Scaffold for Tissue Engineering. ACS Biomater Sci Eng 2019; 5:4366-4375. [PMID: 33438402 DOI: 10.1021/acsbiomaterials.9b00684] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
More than 10 million people suffer from cardiovascular diseases, and diseased blood vessels need to be treated with vascular patches. For a vascular patch, good affinity for endothelial progenitor cells is a key factor in promoting the formation of endothelial tissue-endothelialization. To construct such a vascular patch with good cell affnity, in this work, we first synthesized a reactive zwitterionic organophosphate containing a phosphorylcholine headgroup: 6-(acryloyloxy)hexyl-2-(N-isopropyl-N,N-dimethylammonio)ethyl phosphate (AHEP). We then grafted AHEP onto a polylactic acid (PLA)-coated decellularized scaffold to obtain a vascular patch. Its hydrophilicity and biocompatibility were investigated. Its in vivo performance was also examined in a pig model with B-ultrasonography, Doppler spectra, and computed tomography angiography. The vascular patch demonstrated a nonhemolytic property, noncytotoxicity, long in vitro coagulation times, the strong ability to resist platelet adhesion, and a good affinity for endothelial progenitor cells. The vascular patch was able to maintain the long-term patency (5 months) of surgical arteries. Hence, the zwitterionic polymer-grafted PLA vascular patch may be a promising candidate for vascular tissue engineering.
Collapse
Affiliation(s)
- Jun Zhang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road #1, Xianlin University Town, Qixia District, Nanjing 210023, Jiangsu Province, China
| | - Lei He
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road #1, Xianlin University Town, Qixia District, Nanjing 210023, Jiangsu Province, China
| | - Guo Wei
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road #1, Xianlin University Town, Qixia District, Nanjing 210023, Jiangsu Province, China
| | - Xuefeng Jiang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road #1, Xianlin University Town, Qixia District, Nanjing 210023, Jiangsu Province, China
| | - Lei Fu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road #1, Xianlin University Town, Qixia District, Nanjing 210023, Jiangsu Province, China
| | - Yue Zhao
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road #1, Xianlin University Town, Qixia District, Nanjing 210023, Jiangsu Province, China
| | - Luxia Zhang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road #1, Xianlin University Town, Qixia District, Nanjing 210023, Jiangsu Province, China
| | - Lutao Yang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road #1, Xianlin University Town, Qixia District, Nanjing 210023, Jiangsu Province, China
| | - Yajuan Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road #1, Xianlin University Town, Qixia District, Nanjing 210023, Jiangsu Province, China
| | - Yutong Wang
- College of Materials Science and Engineering, Nanjing Forestry University, Longpan Road #159, Xuanwu District, Nanjing 210037, Jiangsu Province, China
| | - Hong Mo
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road #1, Xianlin University Town, Qixia District, Nanjing 210023, Jiangsu Province, China
| | - Jian Shen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road #1, Xianlin University Town, Qixia District, Nanjing 210023, Jiangsu Province, China
| |
Collapse
|
7
|
Cao J, Yang M, Lu A, Zhai S, Chen Y, Luo X. Polyurethanes containing zwitterionic sulfobetaines and their molecular chain rearrangement in water. J Biomed Mater Res A 2012; 101:909-18. [PMID: 23255492 DOI: 10.1002/jbm.a.34384] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 07/16/2012] [Accepted: 07/17/2012] [Indexed: 11/10/2022]
Abstract
Novel polyurethanes with zwitterionic sulfobetaines, termed PUR-APS, were designed and synthesized by chain-extension of biodegradable poly(ε-caprolactone) containing N,N'-bis (2-hydroxyethyl) methylamine ammonium propane sulfonate (PCL-APS) with hexamethylene diisocyanate (HDI). The bulk properties of polymers were characterized by nuclear magnetic resonance spectrum (NMR), Fourier transform infrared spectroscopy (FTIR), gel permeation chromatograph (GPC), and differential scanning calorimetry (DSC). Results showed that the polymers were successfully synthesized. Water contact angles (WCAs) and X-ray photoelectron spectroscopy (XPS) revealed that molecular chains of the polymers rearranged after soaking in water. The amount of protein adsorption, determined by bicinchoninic acid (BCA) assay, was less than 300 ng/cm(2) and decreased after hydration. The blood compatibility of the polymers was evaluated by the degree of hemolytic and activated partial thromboplastic time (APTT) and prothrombin time (PT). Results indicated that PUR-APS polymers had good blood compatibility. Therefore, polyurethanes containing sulfobetaines have a great potential for biomedical application.
Collapse
Affiliation(s)
- Jun Cao
- College of Polymer Science and Engineering of Sichuan University, Sichuan University, Sichuan 610065, People's Republic of China
| | | | | | | | | | | |
Collapse
|
8
|
Hong Y, Ye SH, Pelinescu AL, Wagner WR. Synthesis, characterization, and paclitaxel release from a biodegradable, elastomeric, poly(ester urethane)urea bearing phosphorylcholine groups for reduced thrombogenicity. Biomacromolecules 2012; 13:3686-94. [PMID: 23035885 DOI: 10.1021/bm301158j] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Biodegradable polymers with high elasticity, low thrombogenicity, and drug loading capacity continue to be pursued for vascular engineering applications, including vascular grafts and stents. A biodegradable elastomeric polyurethane was designed as a candidate material for use as a drug-eluting stent coating, such that it was nonthrombogenic and could provide antiproliferative drug release to inhibit smooth muscle cell proliferation. A phosphorylcholine containing poly(ester urethane) urea (PEUU-PC) was synthesized by grafting aminated phosphorylcholine onto backbone carboxyl groups of a polyurethane (PEUU-COOH) synthesized from a soft segment blend of polycaprolactone and dimethylolpropionic acid, a hard segment of diisocyanatobutane and a putrescine chain extender. Poly(ester urethane) urea (PEUU) from a soft segment of polycaprolactone alone was employed as a control material. All of the synthesized polyurethanes showed high distensibility (>600%) and tensile strengths in the 20-35 MPa range. PEUU-PC experienced greater degradation than PEUU or PEUU-COOH in either a saline or lipase enzyme solution. PEUU-PC also exhibited markedly inhibited ovine blood platelet deposition compared with PEUU-COOH and PEUU. Paclitaxel loaded in all of the polymers during solvent casting continued to release for 5 d after a burst release in a 10% ethanol/PBS solution, which was utilized to increase the solubility of the releasate. Rat smooth muscle cell proliferation was significantly inhibited in 1 wk cell culture when releasate from the paclitaxel-loaded films was present. Based on these results, the synthesized PEUU-PC has promising functionality for use as a nonthrombogenic, drug eluting coating on metallic vascular stents and grafts.
Collapse
Affiliation(s)
- Yi Hong
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | | | | | | |
Collapse
|