1
|
Pradhan S, Apaydin S, Bucevičius J, Gerasimaitė R, Kostiuk G, Lukinavičius G. Sequence-specific DNA labelling for fluorescence microscopy. Biosens Bioelectron 2023; 230:115256. [PMID: 36989663 DOI: 10.1016/j.bios.2023.115256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/04/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
The preservation of nucleus structure during microscopy imaging is a top priority for understanding chromatin organization, genome dynamics, and gene expression regulation. In this review, we summarize the sequence-specific DNA labelling methods that can be used for imaging in fixed and/or living cells without harsh treatment and DNA denaturation: (i) hairpin polyamides, (ii) triplex-forming oligonucleotides, (iii) dCas9 proteins, (iv) transcription activator-like effectors (TALEs) and (v) DNA methyltransferases (MTases). All these techniques are capable of identifying repetitive DNA loci and robust probes are available for telomeres and centromeres, but visualizing single-copy sequences is still challenging. In our futuristic vision, we see gradual replacement of the historically important fluorescence in situ hybridization (FISH) by less invasive and non-destructive methods compatible with live cell imaging. Combined with super-resolution fluorescence microscopy, these methods will open the possibility to look into unperturbed structure and dynamics of chromatin in living cells, tissues and whole organisms.
Collapse
|
2
|
Boettiger A, Murphy S. Advances in Chromatin Imaging at Kilobase-Scale Resolution. Trends Genet 2020; 36:273-287. [PMID: 32007290 PMCID: PMC7197267 DOI: 10.1016/j.tig.2019.12.010] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/12/2019] [Accepted: 12/20/2019] [Indexed: 12/17/2022]
Abstract
It is now widely appreciated that the spatial organization of the genome is nonrandom, and its complex 3D folding has important consequences for many genome processes. Recent developments in multiplexed, super-resolution microscopy have enabled an unprecedented view of the polymeric structure of chromatin - from the loose folds of whole chromosomes to the detailed loops of cis-regulatory elements that regulate gene expression. Facilitated by the use of robotics, microfluidics, and improved approaches to super-resolution, thousands to hundreds of thousands of individual cells can now be analyzed in an individual experiment. This has led to new insights into the nature of genomic structural features identified by sequencing, such as topologically associated domains (TADs), and the nature of enhancer-promoter interactions underlying transcriptional regulation. We review these recent improvements.
Collapse
Affiliation(s)
- Alistair Boettiger
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA.
| | - Sedona Murphy
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
3
|
Hausmann M, Lee JH, Sievers A, Krufczik M, Hildenbrand G. COMBinatorial Oligonucleotide FISH (COMBO-FISH) with Uniquely Binding Repetitive DNA Probes. Methods Mol Biol 2020; 2175:65-77. [PMID: 32681484 DOI: 10.1007/978-1-0716-0763-3_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
During the last decade, genome sequence databases of many species have been more and more completed so that it has become possible to further develop a recently established technique of FISH (Fluorescence In Situ Hybridization) called COMBO-FISH (COMBinatorial Oligo FISH). In contrast to standard FISH techniques, COMBO-FISH makes use of a bioinformatic search in sequence databases for probe design, so that it can be done for any species so far sequenced. In the original approach, oligonucleotide stretches of typical lengths of 15-30 nucleotides were selected in such a way that they only co-localize at the given genome target. Typical probe sets of about 20-40 stretches were used to label about 50-250 kb specifically. The probes of different lengths can be composed of purines and pyrimidines, but were often restricted to homo-purine or homo-pyrimidine probe sets because of the experimental advantage of using a protocol omitting denaturation of the target strand and triple strand binding of the probes. This allows for a better conservation of the 3D folding and arrangement of the genome. With an improved, rigorous genome sequence database analysis and sequence search according to statistical frequency and uniqueness, a novel family of probes repetitively binding to characteristic genome features like SINEs (Short Interspersed Nuclear Elements, e.g., ALU elements), LINEs (Long Interspersed Nuclear Elements, e.g., L1), or centromeres has been developed. These probes can be synthesized commercially as DNA or PNA probes with high purity and labeled by fluorescent dye molecules. Here, new protocols are described for purine-pyrimidine probes omitting heat treatment for denaturation of the target so that oligonucleotide labeling can also be combined with immune-staining by specific antibodies. If the dyes linked to the oligonucleotide stretches undergo reversible photo-bleaching (laser-induced slow blinking), the labeled cell nuclei can be further subjected to super-resolution localization microscopy for complex chromatin architecture research.
Collapse
Affiliation(s)
- Michael Hausmann
- Kirchhoff Institute for Physics, University of Heidelberg, Heidelberg, Germany.
| | - Jin-Ho Lee
- Kirchhoff Institute for Physics, University of Heidelberg, Heidelberg, Germany
| | - Aaron Sievers
- Kirchhoff Institute for Physics, University of Heidelberg, Heidelberg, Germany
| | - Matthias Krufczik
- Kirchhoff Institute for Physics, University of Heidelberg, Heidelberg, Germany
| | - Georg Hildenbrand
- Kirchhoff Institute for Physics, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
4
|
Pagáčová E, Štefančíková L, Schmidt-Kaler F, Hildenbrand G, Vičar T, Depeš D, Lee JH, Bestvater F, Lacombe S, Porcel E, Roux S, Wenz F, Kopečná O, Falková I, Hausmann M, Falk M. Challenges and Contradictions of Metal Nano-Particle Applications for Radio-Sensitivity Enhancement in Cancer Therapy. Int J Mol Sci 2019; 20:ijms20030588. [PMID: 30704035 PMCID: PMC6387067 DOI: 10.3390/ijms20030588] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 01/24/2019] [Indexed: 12/12/2022] Open
Abstract
From the very beginnings of radiotherapy, a crucial question persists with how to target the radiation effectiveness into the tumor while preserving surrounding tissues as undamaged as possible. One promising approach is to selectively pre-sensitize tumor cells by metallic nanoparticles. However, though the "physics" behind nanoparticle-mediated radio-interaction has been well elaborated, practical applications in medicine remain challenging and often disappointing because of limited knowledge on biological mechanisms leading to cell damage enhancement and eventually cell death. In the present study, we analyzed the influence of different nanoparticle materials (platinum (Pt), and gold (Au)), cancer cell types (HeLa, U87, and SKBr3), and doses (up to 4 Gy) of low-Linear Energy Transfer (LET) ionizing radiation (γ- and X-rays) on the extent, complexity and reparability of radiation-induced γH2AX + 53BP1 foci, the markers of double stand breaks (DSBs). Firstly, we sensitively compared the focus presence in nuclei during a long period of time post-irradiation (24 h) in spatially (three-dimensionally, 3D) fixed cells incubated and non-incubated with Pt nanoparticles by means of high-resolution immunofluorescence confocal microscopy. The data were compared with our preliminary results obtained for Au nanoparticles and recently published results for gadolinium (Gd) nanoparticles of approximately the same size (2⁻3 nm). Next, we introduced a novel super-resolution approach-single molecule localization microscopy (SMLM)-to study the internal structure of the repair foci. In these experiments, 10 nm Au nanoparticles were used that could be also visualized by SMLM. Altogether, the data show that different nanoparticles may or may not enhance radiation damage to DNA, so multi-parameter effects have to be considered to better interpret the radiosensitization. Based on these findings, we discussed on conclusions and contradictions related to the effectiveness and presumptive mechanisms of the cell radiosensitization by nanoparticles. We also demonstrate that SMLM offers new perspectives to study internal structures of repair foci with the goal to better evaluate potential differences in DNA damage patterns.
Collapse
Affiliation(s)
- Eva Pagáčová
- Czech Academy of Sciences, Institute of Biophysics, v.v.i., Kralovopolska 135, 612 65 Brno, Czech Republic.
| | - Lenka Štefančíková
- Czech Academy of Sciences, Institute of Biophysics, v.v.i., Kralovopolska 135, 612 65 Brno, Czech Republic.
- Institute des Sciences Moléculaires d'Orsay (ISMO), Université Paris Saclay, Université Paris Sud, CNRS, 91405 Orsay Cedex, France.
| | - Franz Schmidt-Kaler
- Kirchhoff-Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany.
| | - Georg Hildenbrand
- Kirchhoff-Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany.
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany.
| | - Tomáš Vičar
- Brno University of Technology, Department of Biomedical Engineering, Technická 3082/12, 61600 Brno, Czech Republic.
| | - Daniel Depeš
- Czech Academy of Sciences, Institute of Biophysics, v.v.i., Kralovopolska 135, 612 65 Brno, Czech Republic.
| | - Jin-Ho Lee
- Kirchhoff-Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany.
| | - Felix Bestvater
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Sandrine Lacombe
- Institute des Sciences Moléculaires d'Orsay (ISMO), Université Paris Saclay, Université Paris Sud, CNRS, 91405 Orsay Cedex, France.
| | - Erika Porcel
- Institute des Sciences Moléculaires d'Orsay (ISMO), Université Paris Saclay, Université Paris Sud, CNRS, 91405 Orsay Cedex, France.
| | - Stéphane Roux
- Institute UTINAM, UMR CNRS 6213-Université de Bourgogne Franche-Comté, 25020 Besançon Cedex, France.
| | - Frederik Wenz
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany.
| | - Olga Kopečná
- Czech Academy of Sciences, Institute of Biophysics, v.v.i., Kralovopolska 135, 612 65 Brno, Czech Republic.
| | - Iva Falková
- Czech Academy of Sciences, Institute of Biophysics, v.v.i., Kralovopolska 135, 612 65 Brno, Czech Republic.
| | - Michael Hausmann
- Kirchhoff-Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany.
| | - Martin Falk
- Czech Academy of Sciences, Institute of Biophysics, v.v.i., Kralovopolska 135, 612 65 Brno, Czech Republic.
| |
Collapse
|
5
|
Kocanova S, Goiffon I, Bystricky K. 3D FISH to analyse gene domain-specific chromatin re-modeling in human cancer cell lines. Methods 2018; 142:3-15. [PMID: 29501423 DOI: 10.1016/j.ymeth.2018.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 12/19/2017] [Accepted: 02/14/2018] [Indexed: 11/28/2022] Open
Abstract
Fluorescence in situ hybridization (FISH) is a common technique used to label DNA and/or RNA for detection of a genomic region of interest. However, the technique can be challenging, in particular when applied to single genes in human cancer cells. Here, we provide a step-by-step protocol for analysis of short (35 kb-300 kb) genomic regions in three dimensions (3D). We discuss the experimental design and provide practical considerations for 3D imaging and data analysis to determine chromatin folding. We demonstrate that 3D FISH using BACs (Bacterial Artificial Chromosomes) or fosmids can provide detailed information of the architecture of gene domains. More specifically, we show that mapping of specific chromatin landscapes informs on changes associated with estrogen stimulated gene activity in human breast cancer cell lines.
Collapse
Affiliation(s)
- Silvia Kocanova
- Laboratoire de Biologie Moléculaire Eucaryote (LBME), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Toulouse, France; Institut des Technologies Avancées du Vivant (ITAV), Université de Toulouse, CNRS, UPS, INSA, France.
| | - Isabelle Goiffon
- Laboratoire de Biologie Moléculaire Eucaryote (LBME), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Toulouse, France.
| | - Kerstin Bystricky
- Laboratoire de Biologie Moléculaire Eucaryote (LBME), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Toulouse, France; Institut des Technologies Avancées du Vivant (ITAV), Université de Toulouse, CNRS, UPS, INSA, France.
| |
Collapse
|
6
|
Hausmann M, Ilić N, Pilarczyk G, Lee JH, Logeswaran A, Borroni AP, Krufczik M, Theda F, Waltrich N, Bestvater F, Hildenbrand G, Cremer C, Blank M. Challenges for Super-Resolution Localization Microscopy and Biomolecular Fluorescent Nano-Probing in Cancer Research. Int J Mol Sci 2017; 18:E2066. [PMID: 28956810 PMCID: PMC5666748 DOI: 10.3390/ijms18102066] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 09/21/2017] [Accepted: 09/23/2017] [Indexed: 11/17/2022] Open
Abstract
Understanding molecular interactions and regulatory mechanisms in tumor initiation, progression, and treatment response are key requirements towards advanced cancer diagnosis and novel treatment procedures in personalized medicine. Beyond decoding the gene expression, malfunctioning and cancer-related epigenetic pathways, investigations of the spatial receptor arrangements in membranes and genome organization in cell nuclei, on the nano-scale, contribute to elucidating complex molecular mechanisms in cells and tissues. By these means, the correlation between cell function and spatial organization of molecules or molecular complexes can be studied, with respect to carcinogenesis, tumor sensitivity or tumor resistance to anticancer therapies, like radiation or antibody treatment. Here, we present several new applications for bio-molecular nano-probes and super-resolution, laser fluorescence localization microscopy and their potential in life sciences, especially in biomedical and cancer research. By means of a tool-box of fluorescent antibodies, green fluorescent protein (GFP) tagging, or specific oligonucleotides, we present tumor relevant re-arrangements of Erb-receptors in membranes, spatial organization of Smad specific ubiquitin protein ligase 2 (Smurf2) in the cytosol, tumor cell characteristic heterochromatin organization, and molecular re-arrangements induced by radiation or antibody treatment. The main purpose of this article is to demonstrate how nano-scaled distance measurements between bio-molecules, tagged by appropriate nano-probes, can be applied to elucidate structures and conformations of molecular complexes which are characteristic of tumorigenesis and treatment responses. These applications open new avenues towards a better interpretation of the spatial organization and treatment responses of functionally relevant molecules, at the single cell level, in normal and cancer cells, offering new potentials for individualized medicine.
Collapse
Affiliation(s)
- Michael Hausmann
- Kirchhoff-Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany.
| | - Nataša Ilić
- Laboratory of Molecular and Cellular Cancer Biology, Faculty of Medicine, Bar-Ilan University, 8 Henrietta Szold ST, Safed 1311502, Israel.
| | - Götz Pilarczyk
- Kirchhoff-Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany.
| | - Jin-Ho Lee
- Kirchhoff-Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany.
| | - Abiramy Logeswaran
- Kirchhoff-Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany.
| | - Aurora Paola Borroni
- Laboratory of Molecular and Cellular Cancer Biology, Faculty of Medicine, Bar-Ilan University, 8 Henrietta Szold ST, Safed 1311502, Israel.
| | - Matthias Krufczik
- Kirchhoff-Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany.
| | - Franziska Theda
- Kirchhoff-Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany.
| | - Nadine Waltrich
- Kirchhoff-Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany.
| | - Felix Bestvater
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Georg Hildenbrand
- Kirchhoff-Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany.
- Department of Radiation Oncology, Universitätsmedizin Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 3-5, 68159 Mannheim, Germany.
| | - Christoph Cremer
- Institute of Molecular Biology, Ackermannweg 4, 55128 Mainz, Germany.
| | - Michael Blank
- Laboratory of Molecular and Cellular Cancer Biology, Faculty of Medicine, Bar-Ilan University, 8 Henrietta Szold ST, Safed 1311502, Israel.
| |
Collapse
|
7
|
Krufczik M, Sievers A, Hausmann A, Lee JH, Hildenbrand G, Schaufler W, Hausmann M. Combining Low Temperature Fluorescence DNA-Hybridization, Immunostaining, and Super-Resolution Localization Microscopy for Nano-Structure Analysis of ALU Elements and Their Influence on Chromatin Structure. Int J Mol Sci 2017; 18:ijms18051005. [PMID: 28481278 PMCID: PMC5454918 DOI: 10.3390/ijms18051005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/25/2017] [Accepted: 05/02/2017] [Indexed: 01/12/2023] Open
Abstract
Immunostaining and fluorescence in situ hybridization (FISH) are well established methods for specific labelling of chromatin in the cell nucleus. COMBO-FISH (combinatorial oligonucleotide fluorescence in situ hybridization) is a FISH method using computer designed oligonucleotide probes specifically co-localizing at given target sites. In combination with super resolution microscopy which achieves spatial resolution far beyond the Abbe Limit, it allows new insights into the nano-scaled structure and organization of the chromatin of the nucleus. To avoid nano-structural changes of the chromatin, the COMBO-FISH labelling protocol was optimized omitting heat treatment for denaturation of the target. As an example, this protocol was applied to ALU elements—dispersed short stretches of DNA which appear in different kinds in large numbers in primate genomes. These ALU elements seem to be involved in gene regulation, genomic diversity, disease induction, DNA repair, etc. By computer search, we developed a unique COMBO-FISH probe which specifically binds to ALU consensus elements and combined this DNA–DNA labelling procedure with heterochromatin immunostainings in formaldehyde-fixed cell specimens. By localization microscopy, the chromatin network-like arrangements of ALU oligonucleotide repeats and heterochromatin antibody labelling sites were simultaneously visualized and quantified. This novel approach which simultaneously combines COMBO-FISH and immunostaining was applied to chromatin analysis on the nanoscale after low-linear-energy-transfer (LET) radiation exposure at different doses. Dose-correlated curves were obtained from the amount of ALU representing signals, and the chromatin re-arrangements during DNA repair after irradiation were quantitatively studied on the nano-scale. Beyond applications in radiation research, the labelling strategy of immunostaining and COMBO-FISH with localization microscopy will also offer new potentials for analyses of subcellular elements in combination with other specific chromatin targets.
Collapse
Affiliation(s)
- Matthias Krufczik
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany.
| | - Aaron Sievers
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany.
| | - Annkathrin Hausmann
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany.
| | - Jin-Ho Lee
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany.
| | - Georg Hildenbrand
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany.
- Department of Radiation Oncology, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 3-5, 68159 Mannheim, Germany.
| | - Wladimir Schaufler
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Michael Hausmann
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany.
| |
Collapse
|
8
|
Prakash K. Investigating Chromatin Organisation Using Single Molecule Localisation Microscopy. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/978-3-319-52183-1_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
9
|
PNA-COMBO-FISH: From combinatorial probe design in silico to vitality compatible, specific labelling of gene targets in cell nuclei. Exp Cell Res 2016; 345:51-9. [PMID: 27237093 DOI: 10.1016/j.yexcr.2016.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 04/28/2016] [Accepted: 05/04/2016] [Indexed: 12/23/2022]
Abstract
Recently, advantages concerning targeting specificity of PCR constructed oligonucleotide FISH probes in contrast to established FISH probes, e.g. BAC clones, have been demonstrated. These techniques, however, are still using labelling protocols with DNA denaturing steps applying harsh heat treatment with or without further denaturing chemical agents. COMBO-FISH (COMBinatorial Oligonucleotide FISH) allows the design of specific oligonucleotide probe combinations in silico. Thus, being independent from primer libraries or PCR laboratory conditions, the probe sequences extracted by computer sequence data base search can also be synthesized as single stranded PNA-probes (Peptide Nucleic Acid probes) or TINA-DNA (Twisted Intercalating Nucleic Acids). Gene targets can be specifically labelled with at least about 20 probes obtaining visibly background free specimens. By using appropriately designed triplex forming oligonucleotides, the denaturing procedures can completely be omitted. These results reveal a significant step towards oligonucleotide-FISH maintaining the 3d-nanostructure and even the viability of the cell target. The method is demonstrated with the detection of Her2/neu and GRB7 genes, which are indicators in breast cancer diagnosis and therapy.
Collapse
|
10
|
Gao J, Yang X, Djekidel MN, Wang Y, Xi P, Zhang MQ. Developing bioimaging and quantitative methods to study 3D genome. QUANTITATIVE BIOLOGY 2016. [DOI: 10.1007/s40484-016-0065-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Stuhlmüller M, Schwarz-Finsterle J, Fey E, Lux J, Bach M, Cremer C, Hinderhofer K, Hausmann M, Hildenbrand G. In situ optical sequencing and structure analysis of a trinucleotide repeat genome region by localization microscopy after specific COMBO-FISH nano-probing. NANOSCALE 2015; 7:17938-17946. [PMID: 26463479 DOI: 10.1039/c5nr04141d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Trinucleotide repeat expansions (like (CGG)n) of chromatin in the genome of cell nuclei can cause neurological disorders such as for example the Fragile-X syndrome. Until now the mechanisms are not clearly understood as to how these expansions develop during cell proliferation. Therefore in situ investigations of chromatin structures on the nanoscale are required to better understand supra-molecular mechanisms on the single cell level. By super-resolution localization microscopy (Spectral Position Determination Microscopy; SPDM) in combination with nano-probing using COMBO-FISH (COMBinatorial Oligonucleotide FISH), novel insights into the nano-architecture of the genome will become possible. The native spatial structure of trinucleotide repeat expansion genome regions was analysed and optical sequencing of repetitive units was performed within 3D-conserved nuclei using SPDM after COMBO-FISH. We analysed a (CGG)n-expansion region inside the 5' untranslated region of the FMR1 gene. The number of CGG repeats for a full mutation causing the Fragile-X syndrome was found and also verified by Southern blot. The FMR1 promotor region was similarly condensed like a centromeric region whereas the arrangement of the probes labelling the expansion region seemed to indicate a loop-like nano-structure. These results for the first time demonstrate that in situ chromatin structure measurements on the nanoscale are feasible. Due to further methodological progress it will become possible to estimate the state of trinucleotide repeat mutations in detail and to determine the associated chromatin strand structural changes on the single cell level. In general, the application of the described approach to any genome region will lead to new insights into genome nano-architecture and open new avenues for understanding mechanisms and their relevance in the development of heredity diseases.
Collapse
Affiliation(s)
- M Stuhlmüller
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Beliveau BJ, Boettiger AN, Avendaño MS, Jungmann R, McCole RB, Joyce EF, Kim-Kiselak C, Bantignies F, Fonseka CY, Erceg J, Hannan MA, Hoang HG, Colognori D, Lee JT, Shih WM, Yin P, Zhuang X, Wu CT. Single-molecule super-resolution imaging of chromosomes and in situ haplotype visualization using Oligopaint FISH probes. Nat Commun 2015; 6:7147. [PMID: 25962338 PMCID: PMC4430122 DOI: 10.1038/ncomms8147] [Citation(s) in RCA: 238] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 04/09/2015] [Indexed: 01/06/2023] Open
Abstract
Fluorescence in situ hybridization (FISH) is a powerful single-cell technique for studying nuclear structure and organization. Here we report two advances in FISH-based imaging. We first describe the in situ visualization of single-copy regions of the genome using two single-molecule super-resolution methodologies. We then introduce a robust and reliable system that harnesses single-nucleotide polymorphisms (SNPs) to visually distinguish the maternal and paternal homologous chromosomes in mammalian and insect systems. Both of these new technologies are enabled by renewable, bioinformatically designed, oligonucleotide-based Oligopaint probes, which we augment with a strategy that uses secondary oligonucleotides (oligos) to produce and enhance fluorescent signals. These advances should substantially expand the capability to query parent-of-origin-specific chromosome positioning and gene expression on a cell-by-cell basis.
Collapse
Affiliation(s)
- Brian J. Beliveau
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Alistair N. Boettiger
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
- Howard Hughes Medical Institute, Cambridge, Massachusetts 02138, USA
| | - Maier S. Avendaño
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, USA
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Ralf Jungmann
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, USA
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Ruth B. McCole
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Eric F. Joyce
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Caroline Kim-Kiselak
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Frédéric Bantignies
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Institut de Génétique Humaine, CNRS UPR 1142, 141 rue de la Cardonille, 34396 Montpellier, France
| | - Chamith Y. Fonseka
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Jelena Erceg
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Mohammed A. Hannan
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Hien G. Hoang
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - David Colognori
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Howard Hughes Medical Institute, Boston, Massachusetts 02114, USA
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Jeannie T. Lee
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Howard Hughes Medical Institute, Boston, Massachusetts 02114, USA
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - William M. Shih
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Peng Yin
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, USA
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Xiaowei Zhuang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
- Howard Hughes Medical Institute, Cambridge, Massachusetts 02138, USA
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Chao-ting Wu
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
13
|
Detection and Automated Scoring of Dicentric Chromosomes in Nonstimulated Lymphocyte Prematurely Condensed Chromosomes After Telomere and Centromere Staining. Int J Radiat Oncol Biol Phys 2015; 91:640-9. [DOI: 10.1016/j.ijrobp.2014.10.048] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/27/2014] [Accepted: 10/24/2014] [Indexed: 12/24/2022]
|
14
|
Cui Y, Irudayaraj J. Inside single cells: quantitative analysis with advanced optics and nanomaterials. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2014; 7:387-407. [PMID: 25430077 DOI: 10.1002/wnan.1321] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/17/2014] [Accepted: 10/29/2014] [Indexed: 01/08/2023]
Abstract
Single-cell explorations offer a unique window to inspect molecules and events relevant to mechanisms and heterogeneity constituting the central dogma of biology. A large number of nucleic acids, proteins, metabolites, and small molecules are involved in determining and fine-tuning the state and function of a single cell at a given time point. Advanced optical platforms and nanotools provide tremendous opportunities to probe intracellular components with single-molecule accuracy, as well as promising tools to adjust single-cell activity. To obtain quantitative information (e.g., molecular quantity, kinetics, and stoichiometry) within an intact cell, achieving the observation with comparable spatiotemporal resolution is a challenge. For single-cell studies, both the method of detection and the biocompatibility are critical factors as they determine the feasibility, especially when considering live-cell analysis. Although a considerable proportion of single-cell methodologies depend on specialized expertise and expensive instruments, it is our expectation that the information content and implication will outweigh the costs given the impact on life science enabled by single-cell analysis.
Collapse
Affiliation(s)
- Yi Cui
- Department of Agricultural and Biological Engineering, Bindley Bioscience Center and Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA
| | | |
Collapse
|
15
|
Zhang WI, Röhse H, Rizzoli SO, Opazo F. Fluorescent in situ hybridization of synaptic proteins imaged with super-resolution STED microscopy. Microsc Res Tech 2014; 77:517-27. [DOI: 10.1002/jemt.22367] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/17/2014] [Accepted: 03/27/2014] [Indexed: 11/06/2022]
Affiliation(s)
- William I. Zhang
- Department of Neuro- and Sensory Physiology; University of Göttingen; Göttingen Germany
- STED Microscopy of Synaptic Function; European Neuroscience Institute; Göttingen Germany
- Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB); University of Göttingen; Göttingen Germany
| | - Heiko Röhse
- STED Microscopy of Synaptic Function; European Neuroscience Institute; Göttingen Germany
| | - Silvio O. Rizzoli
- Department of Neuro- and Sensory Physiology; University of Göttingen; Göttingen Germany
- STED Microscopy of Synaptic Function; European Neuroscience Institute; Göttingen Germany
- Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB); University of Göttingen; Göttingen Germany
| | - Felipe Opazo
- Department of Neuro- and Sensory Physiology; University of Göttingen; Göttingen Germany
- STED Microscopy of Synaptic Function; European Neuroscience Institute; Göttingen Germany
- Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB); University of Göttingen; Göttingen Germany
| |
Collapse
|
16
|
Application perspectives of localization microscopy in virology. Histochem Cell Biol 2014; 142:43-59. [DOI: 10.1007/s00418-014-1203-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2014] [Indexed: 01/07/2023]
|
17
|
Spatial distribution and structural arrangement of a murine cytomegalovirus glycoprotein detected by SPDM localization microscopy. Histochem Cell Biol 2014; 142:61-7. [PMID: 24504601 DOI: 10.1007/s00418-014-1185-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2014] [Indexed: 01/21/2023]
Abstract
Novel approaches of localization microscopy have opened new insights into the molecular nano-cosmos of cells. We applied a special embodiment called spectral position determination microscopy (SPDM) that has the advantage to run with standard fluorescent dyes or proteins under standard preparation conditions. Pointillist images with a resolution in the order of 10 nm can be obtained by SPDM. Therefore, vector pEYFP-m164, encoding the murine cytomegalovirus glycoprotein gp36.5/m164 fused to enhanced yellow fluorescent protein, was transiently transfected into COS-7 cells. This protein shows exceptional intracellular trafficking dynamics, moving within the endoplasmic reticulum (ER) and outer nuclear membrane. The molecular positions of gp36.5/m164 were visualized and determined by SPDM imaging. From the position point patterns of the protein molecules, their arrangements were quantified by next neighbour distance analyses. Three different structural arrangements were discriminated: (a) a linear distribution along the membrane, (b) a highly structured distribution in the ER, and (c) a homogenous distribution in the cellular cytoplasm. The results indicate that the analysis of next neighbour distances on the nano-scale allows the identification and discrimination of different structural arrangements of molecules within their natural cellular environment.
Collapse
|
18
|
Han R, Li Z, Fan Y, Jiang Y. Recent Advances in Super-Resolution Fluorescence Imaging and Its Applications in Biology. J Genet Genomics 2013; 40:583-95. [DOI: 10.1016/j.jgg.2013.11.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 11/11/2013] [Accepted: 11/11/2013] [Indexed: 11/16/2022]
|
19
|
Fürstenberg A, Heilemann M. Single-molecule localization microscopy – near-molecular spatial resolution in light microscopy with photoswitchable fluorophores. Phys Chem Chem Phys 2013; 15:14919-30. [DOI: 10.1039/c3cp52289j] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Versatile design and synthesis platform for visualizing genomes with Oligopaint FISH probes. Proc Natl Acad Sci U S A 2012; 109:21301-6. [PMID: 23236188 DOI: 10.1073/pnas.1213818110] [Citation(s) in RCA: 299] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
A host of observations demonstrating the relationship between nuclear architecture and processes such as gene expression have led to a number of new technologies for interrogating chromosome positioning. Whereas some of these technologies reconstruct intermolecular interactions, others have enhanced our ability to visualize chromosomes in situ. Here, we describe an oligonucleotide- and PCR-based strategy for fluorescence in situ hybridization (FISH) and a bioinformatic platform that enables this technology to be extended to any organism whose genome has been sequenced. The oligonucleotide probes are renewable, highly efficient, and able to robustly label chromosomes in cell culture, fixed tissues, and metaphase spreads. Our method gives researchers precise control over the sequences they target and allows for single and multicolor imaging of regions ranging from tens of kilobases to megabases with the same basic protocol. We anticipate this technology will lead to an enhanced ability to visualize interphase and metaphase chromosomes.
Collapse
|
21
|
Shi L, Fujioka K, Sun J, Kinomura A, Inaba T, Ikura T, Ohtaki M, Yoshida M, Kodama Y, Livingston GK, Kamiya K, Tashiro S. A modified system for analyzing ionizing radiation-induced chromosome abnormalities. Radiat Res 2012; 177:533-8. [PMID: 22509803 DOI: 10.1667/rr2849.1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The analysis of dicentric chromosomes in human peripheral blood lymphocytes (PBLs) by Giemsa staining is the most established method for biological dosimetry. However, this method requires a well-trained person because of the difficulty in detecting aberrations rapidly and accurately. Here, we applied a fluorescence in situ hybridization (FISH) technique, using telomere and centromere peptide nucleic acid (PNA) probes, to solve the problem of biological dosimetry in radiation emergency medicine. A comparison by a well-trained observer found that FISH analysis of PBLs for the dose estimation was more accurate than the conventional Giemsa analysis, especially in samples irradiated at high doses. These results show that FISH analysis with centromeric/telomeric PNA probes could become the standard method for biological dosimetry in radiation emergency medicine.
Collapse
Affiliation(s)
- Lin Shi
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Super-resolution fluorescence imaging of chromosomal DNA. J Struct Biol 2011; 177:344-8. [PMID: 22226957 DOI: 10.1016/j.jsb.2011.12.015] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 11/04/2011] [Accepted: 12/21/2011] [Indexed: 12/14/2022]
Abstract
Super-resolution microscopy is a powerful tool for understanding cellular function. However one of the most important biomolecules - DNA - remains somewhat inaccessible because it cannot be effectively and appropriately labeled. Here, we demonstrate that robust and detailed super-resolution images of DNA can be produced by combining 5-ethynyl-2'-deoxyuridine (EdU) labeling using the 'click chemistry' approach and direct stochastic optical reconstruction microscopy (dSTORM). This method can resolve fine chromatin structure, and - when used in conjunction with pulse labeling - can reveal the paths taken by individual fibers through the nucleus. This technique should provide a useful tool for the study of nuclear structure and function.
Collapse
|
23
|
Flors C, Earnshaw WC. Super-resolution fluorescence microscopy as a tool to study the nanoscale organization of chromosomes. Curr Opin Chem Biol 2011; 15:838-44. [DOI: 10.1016/j.cbpa.2011.10.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 09/27/2011] [Accepted: 10/17/2011] [Indexed: 01/26/2023]
|