1
|
Hernández-Pérez T, Paredes-López O. Selected Mesoamerican Crops - Anti-Obesity Potential and Health Promotion. A Review. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:563-570. [PMID: 39105985 PMCID: PMC11410843 DOI: 10.1007/s11130-024-01211-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 08/07/2024]
Abstract
Mesoamerica is the center of origin of a great number of food crops that nowadays are part of a healthy diet. Pre-Columbian civilizations utilized more than 90% of these foods as ingredient or in main dishes, as well as for remedies and religious ceremonies. Since several years ago, Mesoamerican foods have been recognized by their outstanding concentration of bioactive compounds, including, phenolic compounds, pigments, essential fatty acids, amino acids, peptides, carbohydrates and vitamins, which provide a great number of health benefits. As a result of their unique composition, these ancient crops have several positive effects, such as hypoglycemic, antioxidant, anti-obesity, anti-inflammatory, anti-ageing, neuroprotective, anti-diarrheal, and anti-hypercholesterolemic capacity. Hence, this review is focused mainly in the anti-obesity and antioxidant potential of some of the most cultivated, harvested, as well as commercialized and consumed, food crops native of Mesoamerica, like, nopal and its fruit (Opuntia ficus indica spp.), chia (Salvia hispanica L.), pumpkin (Cucurbita spp.) and cacao (Theobroma cacao).
Collapse
Affiliation(s)
- Talía Hernández-Pérez
- Centro de Investigación y de Estudios Avanzados del IPN (Instituto Politécnico Nacional), Irapuato, Guanajuato, 36824, México
| | - Octavio Paredes-López
- Centro de Investigación y de Estudios Avanzados del IPN (Instituto Politécnico Nacional), Irapuato, Guanajuato, 36824, México.
| |
Collapse
|
2
|
Rajabi S, Shakib H, Safari-Alighiarloo N, Maresca M, Hamzeloo-Moghadam M. Targeting autophagy for breast cancer prevention and therapy: From classical methods to phytochemical agents. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:1475-1491. [PMID: 39539439 PMCID: PMC11556757 DOI: 10.22038/ijbms.2024.79405.17201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/02/2024] [Indexed: 11/16/2024]
Abstract
Breast cancer is a heterogeneous illness comprising diverse biological subtypes, each of which differs in incidence, response to therapies, and prognosis. Despite the presence of novel medications that effectively target vital cellular signaling pathways and their application in clinical practice, breast cancer can still develop resistance to therapies by various mechanisms. Autophagy is a conserved catabolic cellular process that maintains intracellular metabolic homeostasis by removing dysfunctional or unnecessary cellular materials to recycle cytosolic components. This process serves as an adaptive survival response to diverse stress stimuli, thereby contributing to tumor initiation, progression, and drug resistance, leading to restriction of the effectiveness of chemotherapeutic treatments. Regarding this potential role of autophagy, molecular regulation and signal transduction of this process represent an attractive approach to combat cancer development and drug resistance. Among various therapeutic agents, bioactive plant-derived compounds have received significant interest as promising anticancer drugs. A plethora of evidence has shown that phytochemicals with the capacity to modulate autophagy may have the potential to be used as inhibitors of breast cancer growth. In this review, we describe recent findings on autophagy targeting along with conventional methods for breast cancer therapy. Subsequently, we introduce phytochemical compounds with the capacity to modulate autophagy for breast cancer treatment.
Collapse
Affiliation(s)
- Sadegh Rajabi
- Traditional Medicine and Materia Medica Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Heewa Shakib
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nahid Safari-Alighiarloo
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Marc Maresca
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, 13013 Marseille, France
| | - Maryam Hamzeloo-Moghadam
- Traditional Medicine and Materia Medica Research Center and Department of Traditional Pharmacy, School of Traditional Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Shuvalov O, Kirdeeva Y, Daks A, Fedorova O, Parfenyev S, Simon HU, Barlev NA. Phytochemicals Target Multiple Metabolic Pathways in Cancer. Antioxidants (Basel) 2023; 12:2012. [PMID: 38001865 PMCID: PMC10669507 DOI: 10.3390/antiox12112012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Cancer metabolic reprogramming is a complex process that provides malignant cells with selective advantages to grow and propagate in the hostile environment created by the immune surveillance of the human organism. This process underpins cancer proliferation, invasion, antioxidant defense, and resistance to anticancer immunity and therapeutics. Perhaps not surprisingly, metabolic rewiring is considered to be one of the "Hallmarks of cancer". Notably, this process often comprises various complementary and overlapping pathways. Today, it is well known that highly selective inhibition of only one of the pathways in a tumor cell often leads to a limited response and, subsequently, to the emergence of resistance. Therefore, to increase the overall effectiveness of antitumor drugs, it is advisable to use multitarget agents that can simultaneously suppress several key processes in the tumor cell. This review is focused on a group of plant-derived natural compounds that simultaneously target different pathways of cancer-associated metabolism, including aerobic glycolysis, respiration, glutaminolysis, one-carbon metabolism, de novo lipogenesis, and β-oxidation of fatty acids. We discuss only those compounds that display inhibitory activity against several metabolic pathways as well as a number of important signaling pathways in cancer. Information about their pharmacokinetics in animals and humans is also presented. Taken together, a number of known plant-derived compounds may target multiple metabolic and signaling pathways in various malignancies, something that bears great potential for the further improvement of antineoplastic therapy.
Collapse
Affiliation(s)
- Oleg Shuvalov
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (A.D.); (O.F.)
| | - Yulia Kirdeeva
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (A.D.); (O.F.)
| | - Alexandra Daks
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (A.D.); (O.F.)
| | - Olga Fedorova
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (A.D.); (O.F.)
| | - Sergey Parfenyev
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (A.D.); (O.F.)
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland;
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Nickolai A. Barlev
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (A.D.); (O.F.)
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana 20000, Kazakhstan
| |
Collapse
|
4
|
Yu X, Chen W, Zhang J, Gao X, Cui Q, Song Z, Du J, Lv W. Antitumor activity and mechanism of cucurbitacin B in A549/DDP cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1095-1103. [PMID: 36642716 DOI: 10.1007/s00210-023-02386-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/03/2023] [Indexed: 01/17/2023]
Abstract
Cucurbitacin B (CuB) is a class of tetracyclic triterpenoids isolated from Cucurbitaceae with a wide range of anti-inflammatory and anti-tumor activities, mainly used in hepatitis and hepatocellular carcinoma, while there is relatively little research and application of this drug for lung cancer. In this study, CuB was administered on A549/DDP cells to observe how it affected the cells and their mechanism of action. CuB demonstrated good anti-tumor activity against A549/DDP cells in a dose-dependent manner and caused changes in the hedgehog (Hh) pathway. The results showed that CuB greatly inhibits the proliferation and the invasion of A549/DDP cells, and promoted apoptosis of A549/DDP cells. Meanwhile, it changed the expression of p53-related genes at the RNA and protein level. In conclusion, this experiment provides a theoretical basis for new applications of CuB and new thoughts on the mechanism of its anti-tumor activity, and provides a direction for deep research.
Collapse
Affiliation(s)
- Xinyuan Yu
- Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Weiwei Chen
- Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Jinjie Zhang
- Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Xinfu Gao
- Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Qidi Cui
- Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Zheng Song
- Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Jing Du
- Binzhou Medical University Hospital, Binzhou, Shandong, China.
| | - Wenwen Lv
- Binzhou Medical University Hospital, Binzhou, Shandong, China.
| |
Collapse
|
5
|
Kiani BH, Ajmal Q, Akhtar N, Haq IU, Abdel-Maksoud MA, Malik A, Aufy M, Ullah N. Biogenic Synthesis of Zinc Oxide Nanoparticles Using Citrullus colocynthis for Potential Biomedical Applications. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12020362. [PMID: 36679076 PMCID: PMC9865101 DOI: 10.3390/plants12020362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/20/2022] [Accepted: 12/26/2022] [Indexed: 05/29/2023]
Abstract
Green nanoparticle synthesis is considered the most efficient and safe nanoparticle synthesis method, both economically and environmentally. The current research was focused on synthesizing zinc oxide nanoparticles (ZnONPs) from fruit and leaf extracts of Citrullus colocynthis. Four solvents (n-hexane, methanol, ethyl acetate, and aqueous) were used to prepare the extracts from both plant parts by maceration and extraction. Zinc acetate was used to synthesize the nanoparticles (NPs), and color change indicated the synthesis of ZnONPs. X-ray diffraction, UV spectroscopy, and scanning electron microscopy were used to study the ZnONPs. UV-visible spectroscopy revealed an absorbance peak in the 350-400 nm range. XRD patterns revealed the face-centered cubic structure of the ZnONPs. SEM confirmed a spherical morphology and a size range between 64 and 82 nm. Phytochemical assays confirmed that the complete flavonoid, phenolic, and alkaloid concentrations were higher in unrefined solvent extracts than in nanoparticles. Nanoparticles of C. colocynthis fruit aqueous extracts showed stronger antioxidant activity compared with the crude extracts. Strong antifungal activity was exhibited by the leaves, crude extracts, and nanoparticles of the n-hexane solvent. In a protein kinase inhibition assay, the maximum bald zone was revealed by nanoparticles of ethyl acetate extracts from leaves. The crude extracts and nanoparticles of leaves showed high cytotoxic activities of the n-hexane solvent, with LC50 values of 42.08 and 46.35, respectively. Potential antidiabetic activity was shown by the n-hexane (93.42%) and aqueous (82.54%) nanoparticles of the fruit. The bioactivity of the plant showed that it is a good candidate for therapeutic use. The biosynthesized ZnONPs showed promising antimicrobial, cytotoxic, antidiabetic, and antioxidant properties. Additionally, the in vivo assessment of a nano-directed drug delivery system for future therapeutic use can be conducted based on this study.
Collapse
Affiliation(s)
- Bushra Hafeez Kiani
- Department of Biological Sciences, International Islamic University, Islamabad 44000, Pakistan
| | - Qudsia Ajmal
- Department of Biological Sciences, International Islamic University, Islamabad 44000, Pakistan
| | - Nosheen Akhtar
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan
| | - Ihsan-ul Haq
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Mostafa A. Abdel-Maksoud
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdul Malik
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11149, Saudi Arabia
| | - Mohammed Aufy
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, 1010 Vienna, Austria
| | - Nazif Ullah
- Department of Biotechnology, Faculty of Chemical and Life Sciences, Abdul Wali Khan University, Mardan 23200, Pakistan
| |
Collapse
|
6
|
Dai S, Wang C, Zhao X, Ma C, Fu K, Liu Y, Peng C, Li Y. Cucurbitacin B: A review of its pharmacology, toxicity, and pharmacokinetics. Pharmacol Res 2023; 187:106587. [PMID: 36460279 DOI: 10.1016/j.phrs.2022.106587] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/18/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022]
Abstract
Cucurbitacin B (CuB, C32H46O8), the most abundant and active member of cucurbitacins, which are highly oxidized tetracyclic triterpenoids. Cucurbitacins are widely distributed in a variety of plants and mainly isolated from plants in the Cucurbitaceae family. CuB is mostly obtained from the pedicel of Cucumis melo L. Modern pharmacological studies have confirmed that CuB has a broad range of pharmacological activities, with significant therapeutic effects on a variety of diseases including inflammatory diseases, neurodegenerative diseases, diabetes mellitus, and cancers. In this study the PubMed, Web of Science, Science Direct, and China National Knowledge Infrastructure (CNKI) databases were searched from 1986 to 2022. After inclusion and exclusion criteria were applied, 98 out of 2484 articles were selected for a systematic review to comprehensively summarize the pharmacological activity, toxicity, and pharmacokinetic properties of CuB. The results showed that CuB exhibits potent anti-inflammatory, antioxidant, antiviral, hypoglycemic, hepatoprotective, neuroprotective, and anti-cancer activities mainly via regulating various signaling pathways, such as the Janus kinase/signal transducer and activator of transcription-3 (JAK/STAT3), nuclear factor erythroid 2-related factor-2/antioxidant responsive element (Nrf2/ARE), nuclear factor (NF)-κB, AMP-activated protein kinase (AMPK), mitogen-activated protein kinase (MAPK), phosphoinositide 3-kinase (PI3K)/Akt, cancerous inhibitor of protein phosphatase-2A/protein phosphatase-2A (CIP2A/PP2A), Wnt, focal adhesion kinase (FAK), Notch, and Hippo-Yes-associated protein (YAP) pathways. Studies of its toxicity and pharmacokinetic properties showed that CuB has non-specific toxicity and low bioavailability. In addition, derivatives and clinical applications of CuB are discussed in this paper.
Collapse
Affiliation(s)
- Shu Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - XingTao Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ke Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yanfang Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
7
|
Antiproliferative Effects of Ferulic, Coumaric, and Caffeic Acids in HepG2 Cells by hTERT Downregulation. Adv Pharmacol Pharm Sci 2022; 2022:1850732. [PMID: 36341080 PMCID: PMC9635977 DOI: 10.1155/2022/1850732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 08/16/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022] Open
Abstract
Objective Phenolic acids are well-known phytochemicals that are detected in a wide variety of medicinal plants, and their antiproliferative effects on cancer cells are known, but their mechanisms are poorly revealed. In most of cancer cells, telomerase reverse transcriptase (hTERT) is a dominant factor of telomere length regulation. The hTERT expression promotes invasiveness in tumor cells and is a hallmark of cancer. Therefore, in this study, the probable inhibitory effects of caffeic (Caf), coumaric (Cum), and ferulic acids (Fer) are investigated on the hTERT expression pattern in HepG2 cells. Methods The MTT, apoptosis assays, and real-time PCR analysis were applied to evaluate viability, cytotoxicity, and hTERT gene expression level, respectively. Results All of the studied phenolic acids showed cytotoxic effects on HepG2 cells in a timely manner and presented a time-dependent inhibitory effect on the growth of HepG2 cells. They reduced percentage of viable cells and induced apoptosis. Also, these phenolic acids had significant inhibitory effects on hTERT gene expression. Conclusion These findings suggest that cell viability along with hTERT gene expression in HepG2 cells could be reduced by Cum, Caf, and Fer. As different cancer cells are resistant to conventional chemotherapeutics, this type of results proposes the telomerase as a proper target of cancer therapy development by natural products.
Collapse
|
8
|
Delgado-Tiburcio EE, Cadena-Iñiguez J, Santiago-Osorio E, Ruiz-Posadas LDM, Castillo-Juárez I, Aguiñiga-Sánchez I, Soto-Hernández M. Pharmacokinetics and Biological Activity of Cucurbitacins. Pharmaceuticals (Basel) 2022; 15:1325. [PMID: 36355498 PMCID: PMC9696414 DOI: 10.3390/ph15111325] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/01/2022] [Accepted: 10/20/2022] [Indexed: 11/04/2023] Open
Abstract
Cucurbitacins are a class of secondary metabolites initially isolated from the Cucurbitaceae family. They are important for their analgesic, anti-inflammatory, antimicrobial, antiviral, and anticancer biological actions. This review addresses pharmacokinetic parameters recently reported, including absorption, metabolism, distribution, and elimination phases of cucurbitacins. It includes recent studies of the molecular mechanisms of the biological activity of the most studied cucurbitacins and some derivatives, especially their anticancer capacity, to propose the integration of the pharmacokinetic profiles of cucurbitacins and the possibilities of their use. The main botanical genera and species of American origin that have been studied, and others whose chemo taxonomy makes them essential sources for the extraction of these metabolites, are summarized.
Collapse
Affiliation(s)
| | - Jorge Cadena-Iñiguez
- Innovation in Natural Resource Management, Postgraduate College, Campus San Luis Potosí, Salinas de Hidalgo, San Luis Potosí 78622, Mexico
| | - Edelmiro Santiago-Osorio
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico
| | - Lucero Del Mar Ruiz-Posadas
- Botany Department, Postgraduate College, Campus Montecillo, km 36.5 Carretera México-Texcoco, Texcoco 56230, Mexico
| | - Israel Castillo-Juárez
- Botany Department, Postgraduate College, Campus Montecillo, km 36.5 Carretera México-Texcoco, Texcoco 56230, Mexico
| | - Itzen Aguiñiga-Sánchez
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico
- Department of Biomedical Sciences, School of Medicine, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico
| | - Marcos Soto-Hernández
- Botany Department, Postgraduate College, Campus Montecillo, km 36.5 Carretera México-Texcoco, Texcoco 56230, Mexico
| |
Collapse
|
9
|
Kanani SH, Pandya DJ. Cucurbitacins: Nature’s Wonder Molecules. CURRENT TRADITIONAL MEDICINE 2022. [DOI: 10.2174/2215083808666220107104220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
Over the past decades, several natural constituents belonging to different classes have been isolated from plants for medicinal purposes. Cucurbitacins is one such type of natural compound. Cucurbitacin is any of a class of biochemical compounds that some plants notably members of the pumpkin and gourd family, Cucurbitaceae produce and which function as a defense against herbivores. They and their derivatives have been found in many plant families (including Brassicaceae, Cucurbitaceae, Scrophulariaceae, Begoniaceae, Elaeocarpaceae, Datiscaceae, Desfontainiaceae, Polemoniaceae, Primulaceae, Rubiaceae, Sterculiaceae, Rosaceae, and Thymelaeaceae), in some mushrooms (including Russula and Hebeloma) and even in some marine mollusks. They have been isolated from various plant species, chiefly belonging to the Cucurbitaceae family which comprises around 130 genera and 800 species. Cucurbitacins are a group of tetracyclic triterpenoid substances that are highly oxygenated and contain a cucurbitane skeleton characterized by 9β-methyl−19-norlanosta-5-ene. Cucurbitacins can be categorized into twelve main groups according to variations in their side-chains. Cucurbitacins A, B, C, D, E, F, I, J, K, L, O, P, Q, R, S, and their glycosides are mainly found in Cucurbitaceae family members. These plants have been used as folk medicines in some countries because of their broad spectrum of crucial pharmacological activities such as anti-inflammatory, anti-cancer, anti-diabetic, and anti-atherosclerotic effects. The present review explores the possibility of a correlation between the chemistry of various Cucurbitacins and the uses of the plants which contain them, thereby opening avenues for further phytochemical, ethnomedicinal, and modern pharmacological research on these important molecules.
Collapse
Affiliation(s)
- Sonal H. Kanani
- RK University, Rajkot, Gujarat; Faculty of Pharmacy, Marwadi University, Rajkot, Gujarat
| | | |
Collapse
|
10
|
Alotaibi AA, Bepari A, Assiri RA, Niazi SK, Nayaka S, Rudrappa M, Nagaraja SK, Bhat MP. Saussurea lappa Exhibits Anti-Oncogenic Effect in Hepatocellular Carcinoma, HepG2 Cancer Cell Line by Bcl-2 Mediated Apoptotic Pathway and Mitochondrial Cytochrome C Release. Curr Issues Mol Biol 2021; 43:1114-1132. [PMID: 34563048 PMCID: PMC8929068 DOI: 10.3390/cimb43020079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/28/2022] Open
Abstract
Background and Objectives: Saussurea lappa (S. lappa) is an important species of the Asteraceae family with several purposes in traditional medicine. This study intended to explore the cytotoxic effect of S. lappa on HepG2 cancer cell proliferation. Materials and Methods: The effects of an S. lappa n-butanol extract on the induction of apoptosis were investigated by flow cytometry and mitochondrial cytochrome C-releasing apoptosis assay. Additionally, real-time PCR was employed to confirm apoptosis initiation. Further, qualitative estimation of the active constituent of S. lappa was done by gas chromatography–mass spectroscopy (GC–MS). Results: The cell viability study revealed that the n-butanol extract of S. lappa demonstrated potent cytotoxicity against HepG2 cancer cells, with an IC50 value of 56.76 μg/mL. Cell morphology with dual staining of acridine orange (AO)-ethidium bromide (EB) showed an increase in orange/red nuclei due to cell death by S. lappa n-butanol extract compared to control cells. Apoptosis, as the mode of cell death, was also confirmed by the higher release of cytochrome C from mitochondria, the increased expression of caspase-3 and bax, along with down regulation of Bcl-2. Conclusion: These findings conclude that S. lappa is a cause of hepatic cancer cell death through apoptosis and a potential natural source suggesting furthermore investigation of its active compounds that are responsible for these observed activities.
Collapse
Affiliation(s)
- Amal A. Alotaibi
- Department of Basic Health Sciences, College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia; (A.A.A.); (R.A.A.)
| | - Asmatanzeem Bepari
- Department of Basic Health Sciences, College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia; (A.A.A.); (R.A.A.)
- Correspondence: (A.B.); (S.K.N.)
| | - Rasha Assad Assiri
- Department of Basic Health Sciences, College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia; (A.A.A.); (R.A.A.)
| | - Shaik Kalimulla Niazi
- Department of Preparatory Health Sciences, Riyadh Elm University, Riyadh 12611, Saudi Arabia
- Correspondence: (A.B.); (S.K.N.)
| | - Sreenivasa Nayaka
- Department of Studies in Botany, Karnatak University, Dharwad 580003, India; (S.N.); (M.R.); (S.K.N.); (M.P.B.)
| | - Muthuraj Rudrappa
- Department of Studies in Botany, Karnatak University, Dharwad 580003, India; (S.N.); (M.R.); (S.K.N.); (M.P.B.)
| | | | - Meghashyama Prabhakara Bhat
- Department of Studies in Botany, Karnatak University, Dharwad 580003, India; (S.N.); (M.R.); (S.K.N.); (M.P.B.)
| |
Collapse
|
11
|
Haque A, Brazeau D, Amin AR. Perspectives on natural compounds in chemoprevention and treatment of cancer: an update with new promising compounds. Eur J Cancer 2021; 149:165-183. [PMID: 33865202 PMCID: PMC8113151 DOI: 10.1016/j.ejca.2021.03.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/04/2021] [Accepted: 03/13/2021] [Indexed: 12/21/2022]
Abstract
Cancer is the second deadliest disease worldwide. Although recent advances applying precision treatments with targeted (molecular and immune) agents are promising, the histological and molecular heterogeneity of cancer cells and huge mutational burdens (intrinsic or acquired after therapy) leading to drug resistance and treatment failure are posing continuous challenges. These recent advances do not negate the need for alternative approaches such as chemoprevention, the pharmacological approach to reverse, suppress or prevent the initial phases of carcinogenesis or the progression of premalignant cells to invasive disease by using non-toxic agents. Although data are limited, the success of several clinical trials in preventing cancer in high-risk populations suggests that chemoprevention is a rational, appealing and viable strategy to prevent carcinogenesis. Particularly among higher-risk groups, the use of safe, non-toxic agents is the utmost consideration because these individuals have not yet developed invasive disease. Natural dietary compounds present in fruits, vegetables and spices are especially attractive for chemoprevention and treatment because of their easy availability, high margin of safety, relatively low cost and widespread human consumption. Hundreds of such compounds have been widely investigated for chemoprevention and treatment in the last few decades. Previously, we reviewed the most widely studied natural compounds and their molecular mechanisms, which were highly exploited by the cancer research community. In the time since our initial review, many promising new compounds have been identified. In this review, we critically review these promising new natural compounds, their molecular targets and mechanisms of anticancer activity that may create novel opportunities for further design and conduct of preclinical and clinical studies.
Collapse
Affiliation(s)
- Abedul Haque
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Daniel Brazeau
- Department of Pharmacy Practice, Administration and Research, School of Pharmacy, Marshall University, Huntington, WV, 25701, USA
| | - Arm R Amin
- Department of Pharmaceutical Sciences and Research, School of Pharmacy, Marshall University, Huntington, WV, 25701, USA.
| |
Collapse
|
12
|
Yang W, Chen X, Li Y, Guo S, Wang Z, Yu X. Advances in Pharmacological Activities of Terpenoids. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20903555] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Terpenoids, the most abundant compounds in natural products, are a set of important secondary metabolites in plants with diverse structures. Terpenoids play key roles in plant growth and development, response to the environment, and physiological processes. As raw materials, terpenoids were also widely used in pharmaceuticals, food, and cosmetics industries. Terpenoids possess antitumor, anti-inflammatory, antibacterial, antiviral, antimalarial effects, promote transdermal absorption, prevent and treat cardiovascular diseases, and have hypoglycemic activities. In addition, previous studies have also found that terpenoids have many potential applications, such as insect resistance, immunoregulation, antioxidation, antiaging, and neuroprotection. Terpenoids have a complex structure with diverse effects and different mechanisms of action. Activities and mechanisms of terpenoids were reviewed in this paper. The development and application prospect of terpenoid compounds were also prospected, which provides a useful reference for new drug discovery and drug design based on terpenoids.
Collapse
Affiliation(s)
| | - Xu Chen
- School of Pharmacy, Linyi University, P. R. China
| | - Yanli Li
- School of Pharmacy, Linyi University, P. R. China
| | - Shaofen Guo
- School of Pharmacy, Linyi University, P. R. China
| | - Zhen Wang
- School of Pharmacy, Linyi University, P. R. China
| | - Xiuling Yu
- School of Pharmacy, Linyi University, P. R. China
| |
Collapse
|
13
|
Hunsakunachai N, Nuengchamnong N, Jiratchariyakul W, Kummalue T, Khemawoot P. Pharmacokinetics of cucurbitacin B from Trichosanthes cucumerina L. in rats. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:157. [PMID: 31272429 PMCID: PMC6609384 DOI: 10.1186/s12906-019-2568-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 06/19/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Cucurbitacin B is the major bioactive constituent in Trichosanthes cucumerina L. fruits, which the pharmacological properties have been studied for decades particularly an anti-tumor activity. The pharmacokinetic profile of this compound is still limited and investigation is needed for further phytopharmaceutical product development. This study aimed to investigate the pharmacokinetic profile of cucurbitacin B after administering the compound at different doses and routes to rats. METHODS Male Wistar rats (n = 6) were treated by cucurbitacin B extracted from Trichosanthes cucumerina L. The cucurbitacin B was administered at 0.1 mg/kg intravenously or by oral gavage at 2-4 mg/kg. Blood samples and internal organs were collected serially within 24 h after administration. Urine and feces were collected from time 0 to 48 h. The level of cucurbitacin B in biological samples was determined by liquid chromatography-tandem mass spectrometry. RESULTS The absolute oral bioavailability of cucurbitacin B was approximately 10%. The maximum concentration in plasma after normalization by dose ranged from 4.85-7.81 μg/L and the time to reach maximum value was approximately within 30 min after oral dosing. The level of cucurbitacin B in plasma increased proportionally to the given dose. After intravenous administration, cucurbitacin B had a large volume of distribution of about 51.65 L/kg and exhibited a high tissue to plasma concentration ratio, approximately 60 to 280-fold in several organs. Negligible amount of unchanged cucurbitacin B could be detected in urine and feces and accounted less than 1% of administered dose. CONCLUSION Cucurbitacin B had low oral bioavailability, but could be distributed extensively into internal organs with a high volume of distribution and tissue to plasma ratio. Only negligible amounts of unchanged cucurbitacin B were excreted via urine and feces suggesting that the compound might be biotransformed before undergoing an excretion. Further studies of the metabolic pathway and tissue uptake mechanism are required to strategize the future development of cucurbitacin B into clinical studies.
Collapse
|
14
|
Shin PK, Zoh Y, Choi J, Kim MS, Kim Y, Choi SW. Walnut phenolic extracts reduce telomere length and telomerase activity in a colon cancer stem cell model. Nutr Res Pract 2019; 13:58-63. [PMID: 30788057 PMCID: PMC6369112 DOI: 10.4162/nrp.2019.13.1.58] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/28/2018] [Accepted: 09/19/2018] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND/OBJECTIVES Telomeres are located at the chromosomal ends and progressively shortened during each cell cycle. Telomerase, which is regulated by hTERT and c-MYC, maintains telomeric DNA sequences. Especially, telomerase is active in cancer and stem cells to maintain telomere length for replicative immortality. Recently we reported that walnut phenolic extract (WPE) can reduce cell viability in a colon cancer stem cell (CSC) model. We, therefore, investigated the effect of WPE on telomere maintenance in the same model. MATERIALS/METHODS CD133+CD44+ cells from HCT116, a human colon cancer cell line, were sorted by Fluorescence-activated cell sorting (FACS) and treated with WPE at the concentrations of 0, 10, 20, and 40 µg/mL for 6 days. Telomere lengths were assessed by quantitative real-time PCR (qRT-PCR) using telomere specific primers and DNA extracted from the cells, which was further adjusted with single-copy gene and reference DNA (ddCt). Telomerase activity was also measured by qRT-PCR after incubating the PCR mixture with cell protein extracts, which was adjusted with reference DNA (dCt). Transcriptions of hTERT and c-MYC were determined using conventional RT-PCR. RESULTS Telomere length of WPE-treated cells was significantly decreased in a dose-dependent manner (5.16 ± 0.13 at 0 µg/mL, 4.79 ± 0.12 at 10 µg/mL, 3.24 ± 0.08 at 20 µg/mL and 3.99 ± 0.09 at 40 µg/mL; P = 0.0276). Telomerase activities concurrently decreased with telomere length (1.47 ± 0.04, 1.09 ± 0.01, 0.76 ± 0.08, and 0.88 ± 0.06; P = 0.0067). There was a positive correlation between telomere length and telomerase activity (r = 0.9090; P < 0.0001). Transcriptions of both hTERT and c-MYC were also significantly decreased in the same manner. CONCLUSION In the present cell culture model, WPE reduced telomere maintenance, which may provide a mechanistic link to the effect of walnuts on the viability of colon CSCs.
Collapse
Affiliation(s)
- Phil-Kyung Shin
- CHA University School of Medicine, 120, Haeryong-ro, Pocheon-si, Gyeonggi 13488, Korea
| | - Yoonchae Zoh
- CHA University School of Medicine, 120, Haeryong-ro, Pocheon-si, Gyeonggi 13488, Korea
| | - Jina Choi
- CHA University School of Medicine, 120, Haeryong-ro, Pocheon-si, Gyeonggi 13488, Korea
| | - Myung-Sunny Kim
- Division of Nutrition and Metabolism, Korea Food Research Institute, Jeonju, Jeonbuk 55365, Korea
| | - Yuri Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, 03760, Korea
| | - Sang-Woon Choi
- CHA University School of Medicine, 120, Haeryong-ro, Pocheon-si, Gyeonggi 13488, Korea
- Chaum Life Center CHA University, 442, Dosan-daero, Gangnam-gu, Seoul, 06062, Korea
| |
Collapse
|
15
|
Feng Wang H, Xuan He H. Regulation of Yamanaka factors during H5N1 virus infection in A549 cells and HEK293T cells. BIOTECHNOL BIOTEC EQ 2018. [DOI: 10.1080/13102818.2018.1541760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Hai Feng Wang
- School of Environmental Engineering, Central Plains Specialty Food Engineering & Technology Research Center, Yellow River Conservancy Technical Institute, Kaifeng, PR China
| | - Hong Xuan He
- National Research Center for Wildlife-Borne Diseases, Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, PR China
| |
Collapse
|
16
|
Zhou J, Liu M, Chen Y, Xu S, Guo Y, Zhao L. Cucurbitacin B suppresses proliferation of pancreatic cancer cells by ceRNA: Effect of miR-146b-5p and lncRNA-AFAP1-AS1. J Cell Physiol 2018; 234:4655-4667. [PMID: 30206930 DOI: 10.1002/jcp.27264] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 07/24/2018] [Indexed: 12/22/2022]
Abstract
Cucurbitacin B (CuB) is a natural tetracyclic triterpene product that displays antitumor activity against a wide variety of cancers. In this study, we explored the antipancreatic cancer activity of CuB via the inhibition of expression of the cancer-related long noncoding RNA, actin filament-associated protein 1-antisense RNA 1 (AFAP1-AS1). CuB arrested pancreatic cancer (PC) cells in the G2/M cell cycle phase by suppressing the expression of AFAP1-AS1. Insights into the mechanisms of competing endogenous RNAs (ceRNAs) gained from bioinformatics analysis and luciferase activity assays showed that the epidermal growth factor receptor (EGFR) and AFAP1-AS1 directly compete for miR-146b-5p binding. CuB-induced high miR-146b-5p expression and inhibited the expression of AFAP1-AS1. In summary, reducing the expression of endogenous AFAP1-AS1 effectively increased the available concentration of miR-146b-5p in PC, whereas miR-146b-5p overexpression prevented the expression of endogenous AFAP1-AS1. In particular, we hypothesized that AFAP1-AS1 might act as a ceRNA, effectively becoming a sponge for miR-146b-5p, thereby activating the expression of the EGFR. Thus, CuB suppresses the proliferation, in vitro and in vivo, of PC cells through the ceRNA effect of AFAP1-AS1 on miR-146b-5p.
Collapse
Affiliation(s)
- Jingkai Zhou
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
| | - Mei Liu
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Yanan Chen
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shansen Xu
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yingjie Guo
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin
| | - Limei Zhao
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
17
|
Ganesan K, Xu B. Telomerase Inhibitors from Natural Products and Their Anticancer Potential. Int J Mol Sci 2017; 19:ijms19010013. [PMID: 29267203 PMCID: PMC5795965 DOI: 10.3390/ijms19010013] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 12/10/2017] [Accepted: 12/19/2017] [Indexed: 12/25/2022] Open
Abstract
Telomeres and telomerase are nowadays exploring traits on targets for anticancer therapy. Telomerase is a unique reverse transcriptase enzyme, considered as a primary factor in almost all cancer cells, which is mainly responsible to regulate the telomere length. Hence, telomerase ensures the indefinite cell proliferation during malignancy—a hallmark of cancer—and this distinctive feature has provided telomerase as the preferred target for drug development in cancer therapy. Deactivation of telomerase and telomere destabilization by natural products provides an opening to succeed new targets for cancer therapy. This review aims to provide a fundamental knowledge for research on telomere, working regulation of telomerase and its various binding proteins to inhibit the telomere/telomerase complex. In addition, the review summarizes the inhibitors of the enzyme catalytic subunit and RNA component, natural products that target telomeres, and suppression of transcriptional and post-transcriptional levels. This extensive understanding of telomerase biology will provide indispensable information for enhancing the efficiency of rational anti-cancer drug design.
Collapse
Affiliation(s)
- Kumar Ganesan
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China.
| | - Baojun Xu
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China.
| |
Collapse
|
18
|
Garg S, Kaul SC, Wadhwa R. Cucurbitacin B and cancer intervention: Chemistry, biology and mechanisms (Review). Int J Oncol 2017; 52:19-37. [PMID: 29138804 DOI: 10.3892/ijo.2017.4203] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/23/2017] [Indexed: 11/06/2022] Open
Abstract
Cancer is one of the most important healthcare matters, with the worst prognosis but the best possibilities for scientific development. It is likely to increase in the future and cause global havoc designating it as an epidemic. Cancer development requires urgent intervention. Past few decades have witnessed extensive research to challenge carcinogenesis. Treatment involving synthetic discipline is often associated with severe adverse effects, or even worsened prognosis. Accordingly, newer economic and patient friendly molecules are warranted. Many natural substances have proved their potential so far. Cucurbitacin B against cancer and other diseases has achieved towering popularity among the researchers around the world, as detailed in the below sections with summarized tables. In line with the fascinating role of cucurbitacin B against various types of cancers, through various molecular signaling pathways, it is justifiable to propose cucurbitacin B as a mainline chemotherapy before the onset and after the diagnosis of cancer.
Collapse
Affiliation(s)
- Sukant Garg
- Drug Discovery and Assets Innovation Lab, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan
| | - Sunil C Kaul
- Drug Discovery and Assets Innovation Lab, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan
| | - Renu Wadhwa
- Drug Discovery and Assets Innovation Lab, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan
| |
Collapse
|
19
|
Zhou J, Zhao T, Ma L, Liang M, Guo YJ, Zhao LM. Cucurbitacin B and SCH772984 exhibit synergistic anti-pancreatic cancer activities by suppressing EGFR, PI3K/Akt/mTOR, STAT3 and ERK signaling. Oncotarget 2017; 8:103167-103181. [PMID: 29262554 PMCID: PMC5732720 DOI: 10.18632/oncotarget.21704] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/21/2017] [Indexed: 01/05/2023] Open
Abstract
Cucurbitacin B (CuB) is a natural tetracyclic triterpene product and displays antitumor activity across a wide array of cancers. In this study, we explored the anti-pancreatic cancer activity of CuB alone and in combination with SCH772984, an ERK inhibitor, in vitro and in vivo. CuB inhibited proliferation of pancreatic cancer cells by arresting them in the G2/M cell cycle phase. This was associated with inhibition of EGFR expression and activity and downstream signaling, including PI3K/Akt/mTOR and STAT3. Interestingly, ERK activity was markedly enhanced by activating AMPK signaling after 12 h of CuB treatment. SCH772984 potentiates the cytotoxic effect of CuB on pancreatic cancer cells through complementary inhibition of EGFR, PI3K/Akt/mTOR, STAT3 and ERK signaling, followed by an increase in the pro-apoptotic protein Bim and a decrease in the anti-apoptotic proteins Mcl-1, Bcl-2, Bcl-xl and survivin. Furthermore, combined therapy with CuB and SCH772984 resulted in highly significant growth inhibition of pancreatic cancer xenografts. These results may provide a basis for further development of combining CuB and ERK inhibitors to treat pancreatic cancer.
Collapse
Affiliation(s)
- Jingkai Zhou
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tiangang Zhao
- School of Life Sciences, Jilin University, Changchun, China
| | - Linfeng Ma
- School of Life Sciences, Jilin University, Changchun, China
| | - Min Liang
- School of Life Sciences, Jilin University, Changchun, China
| | - Ying-Jie Guo
- School of Life Sciences, Jilin University, Changchun, China
| | - Li-Mei Zhao
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
20
|
An Oxidoreductase AioE is Responsible for Bacterial Arsenite Oxidation and Resistance. Sci Rep 2017; 7:41536. [PMID: 28128323 PMCID: PMC5270249 DOI: 10.1038/srep41536] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 12/19/2016] [Indexed: 11/08/2022] Open
Abstract
Previously, we found that arsenite (AsIII) oxidation could improve the generation of ATP/NADH to support the growth of Agrobacterium tumefaciens GW4. In this study, we found that aioE is induced by AsIII and located in the arsenic island near the AsIII oxidase genes aioBA and co-transcripted with the arsenic resistant genes arsR1-arsC1-arsC2-acr3-1. AioE belongs to TrkA family corresponding the electron transport function with the generation of NADH and H+. An aioE in-frame deletion strain showed a null AsIII oxidation and a reduced AsIII resistance, while a cytC mutant only reduced AsIII oxidation efficiency. With AsIII, aioE was directly related to the increase of NADH, while cytC was essential for ATP generation. In addition, cyclic voltammetry analysis showed that the redox potential (ORP) of AioBA and AioE were +0.297 mV vs. NHE and +0.255 mV vs. NHE, respectively. The ORP gradient is AioBA > AioE > CytC (+0.217 ~ +0.251 mV vs. NHE), which infers that electron may transfer from AioBA to CytC via AioE. The results indicate that AioE may act as a novel AsIII oxidation electron transporter associated with NADH generation. Since AsIII oxidation contributes AsIII detoxification, the essential of AioE for AsIII resistance is also reasonable.
Collapse
|
21
|
Cucurbitacin B inhibits breast cancer metastasis and angiogenesis through VEGF-mediated suppression of FAK/MMP-9 signaling axis. Int J Biochem Cell Biol 2016; 77:41-56. [DOI: 10.1016/j.biocel.2016.05.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 04/28/2016] [Accepted: 05/17/2016] [Indexed: 12/19/2022]
|
22
|
Ranjan A, Fofaria NM, Kim SH, Srivastava SK. Modulation of signal transduction pathways by natural compounds in cancer. Chin J Nat Med 2016; 13:730-42. [PMID: 26481373 DOI: 10.1016/s1875-5364(15)30073-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Indexed: 02/07/2023]
Abstract
Cancer is generally regarded as the result of abnormal growth of cells. According to World Health Organization, cancer is the leading cause of mortality worldwide. Mother nature provides a large source of bioactive compounds with excellent therapeutic efficacy. Numerous phytochemicals from nature have been investigated for anticancer properties. In this review article, we discuss several natural compounds, which have shown anti-cancer activity. Natural compounds induce cell cycle arrest, activate intrinsic and extrinsic apoptosis pathways, generate Reactive Oxygen Species (ROS), and down-regulate activated signaling pathways, resulting in inhibition of cell proliferation, progression and metastasis of cancer. Several preclinical studies have suggested that natural compounds can also increase the sensitivity of resistant cancers to available chemotherapy agents. Furthermore, combining FDA approved anti-cancer drugs with natural compounds results in improved efficacy. On the basis of these exciting outcomes of natural compounds against several cancer types, several agents have already advanced to clinical trials. In conclusion, preclinical results and clinical outcomes against cancer suggest promising anticancer efficacy of agents from natural sources.
Collapse
Affiliation(s)
- Alok Ranjan
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Neel M Fofaria
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Sung-Hoon Kim
- Cancer Preventive Material Development Research Center, College of Korean Medicine, Department of Pathology, Kyunghee University, Seoul 131-701, South Korea.
| | - Sanjay K Srivastava
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; Cancer Preventive Material Development Research Center, College of Korean Medicine, Department of Pathology, Kyunghee University, Seoul 131-701, South Korea.
| |
Collapse
|
23
|
Cai Y, Fang X, He C, Li P, Xiao F, Wang Y, Chen M. Cucurbitacins: A Systematic Review of the Phytochemistry and Anticancer Activity. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2015; 43:1331-50. [PMID: 26503558 DOI: 10.1142/s0192415x15500755] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Cucurbitacins are highly oxidized tetracyclic triterpenoids that are widely present in traditional Chinese medicines (Cucurbitaceae family), possess strong anticancer activity, and are divided into 12 classes from A to T with over 200 derivatives. The eight most active cucurbitacin components against cancer are cucurbitacin B, D, E, I, IIa, L glucoside, Q, and R. Their mechanisms of action include antiproliferation, inhibition of migration and invasion, proapoptosis, and cell cycle arrest promotion. Cucurbitacins are also found to be the inhibitors of JAK-STAT3, Wnt, PI3K/Akt, and MAPK signaling pathways, which play important roles in the apoptosis and survival of cancer cells. Recently, new studies have discovered synergistic anticancer effects by using cucurbitacins together with clinically approved chemotherapeutic drugs, such as docetaxel and methotrexate. This paper provides a summary of recent research progress on the anticancer property of cucurbitacins and the various intracellular signaling pathways involved in the regulation of cancer cell proliferation, death, invasion, and migration. Therefore, cucurbitacins are a class of promising anticancer drugs to be used alone or be intergraded in current chemotherapies and radiotherapies to treat many types of cancers.
Collapse
Affiliation(s)
- Yuee Cai
- * State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, P.R. China
| | - Xiefan Fang
- † Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Chengwei He
- * State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, P.R. China
| | - Peng Li
- * State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, P.R. China
| | - Fei Xiao
- * State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, P.R. China.,‡ Department of Pharmacology, School of Medicine, Jinan University, Guangzhou 510632, P.R. China
| | - Yitao Wang
- * State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, P.R. China
| | - Meiwan Chen
- * State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, P.R. China
| |
Collapse
|
24
|
Yar Saglam AS, Alp E, Elmazoglu Z, Menevse S. Treatment with cucurbitacin B alone and in combination with gefitinib induces cell cycle inhibition and apoptosis via EGFR and JAK/STAT pathway in human colorectal cancer cell lines. Hum Exp Toxicol 2015; 35:526-43. [PMID: 26183715 DOI: 10.1177/0960327115595686] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The epidermal growth factor receptor (EGFR) associated with signaling pathways, such as Janus kinase (JAK)/signal transducer and activator of transcription (STAT), plays an important role in colorectal cancers (CRCs). Gefitinib (Gef) is an orally active inhibitor targeting the adenosine tri phosphate-binding domain of EGFR, and cucurbitacin B (CuB) is a selective inhibitor of JAK/STAT signaling with potent antitumor activity via suppression of STAT3 phosphorylation, but the underlying mechanism is not clear. We aimed to investigate the apoptotic and antiproliferative effects of CuB as a single agent and in combination with Gef on both HT-29 and HCT-116 cell lines. Cell proliferation, cell cycle distribution, and apoptosis were evaluated using viability assay, fluorescent microscopy, cytotoxicity assay, proliferation, DNA fragmentation, and cleaved caspase 3 levels. Real-time polymerase chain reaction and Western blot analyses were performed to determine the expression of relevant genes and proteins including antiapoptotic, proapoptotic, and cell cycle regulation. EGFR, phosphorylated EGFR (pEGFR), STAT3, and pSTAT3 proteins were evalutaed with Western blot analysis. Our results showed that, compared to CuB alone, CuB plus Gef treatment caused a significant growth and cell cycle inhibition and induced apoptosis in both cell lines. Also CuB plus Gef treatment decreased DNA synthesis rate more effectively than CuB alone. Treatment with CuB alone and in combination with Gef decreased the expression levels of B-Cell CLL/Lymphoma 2 (Bcl-2), BCL2-like 1 (BCL2L1), cyclin D1, pSTAT3, and pEGFR and increased the expression levels of Bcl-2-like protein 4, Bcl-2 homologous antagonist/killer, Bcl-2-associated death promoter, Bcl-2-like protein 11, and p27kip1 levels. Our results suggest that treatment with CuB alone and more likely in combination with Gef may be a considerable alternative therapeutic approach for CRC, at least in vitro.
Collapse
Affiliation(s)
- A S Yar Saglam
- Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Besevler, Ankara, Turkey
| | - E Alp
- Department of Medical Biology, Faculty of Medicine, Giresun University, Giresun, Turkey
| | - Z Elmazoglu
- Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Besevler, Ankara, Turkey
| | - S Menevse
- Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Besevler, Ankara, Turkey
| |
Collapse
|
25
|
Chen J, Zhou M, Zhang Q, Xu J, Ouyang J. Anticancer Effect and Apoptosis Induction of Gambogic Acid in Human Leukemia Cell Line K562 In Vitro. Med Sci Monit 2015; 21:1604-10. [PMID: 26049398 PMCID: PMC4463775 DOI: 10.12659/msm.893004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The aim of this study was to investigate the anticancer effect and related mechanisms of gambogic acid (GA), a traditional Chinese medicine, on human leukemia cell line K562, together with the effect on bone marrow mononuclear cells (MNCs). MATERIAL AND METHODS K562 cells and MNCs were treated with various concentrations and treatment times of GA. Inhibitory rate was detected by use of the Cell Counting Kit-8 (CCK-8) assay. Apoptosis was analyzed by morphological detection, Annexin-V/PI doubling staining, and TUNEL assays. The expression changes of pivotal proteins were evaluated by Western blotting. RESULTS GA not only suppressed cell proliferation, but also induced apoptosis of K562 cells in a dose-dependent manner. While it did not significantly inhibit cell proliferation of MNCs, it did induce apoptosis in a dose-dependent manner. CCK-8 assay revealed that the proliferation of K562 cells was significantly inhibited when the concentration of GA was more than 0.5 μM. Morphological detection showed the nuclei became denser and more intense orange in K562 cells after GA treatment compared with the untreated group. The expression levels of BCL-2, nuclear factor-κB (NF-κB), c-myc, phosphatidylinositol3-kinase (PI3K), and phosphorylation of serine-threonine kinase (p-AKT) were down-regulated by GA. CONCLUSIONS GA significantly suppressed the proliferation of K562 cells, but has less effect on MNCs. The inhibition of K562 cells proliferation and apoptosis induced by GA might be related to the down-regulation of BCL-2, NF-κB, c-myc, PI3K, and p-AKT.
Collapse
Affiliation(s)
- Jinhao Chen
- Department of Hematology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China (mainland)
| | - Min Zhou
- Department of Hematology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China (mainland)
| | - Qian Zhang
- Department of Hematology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China (mainland)
| | - Jingyan Xu
- Department of Hematology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China (mainland)
| | - Jian Ouyang
- Department of Hematology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China (mainland)
| |
Collapse
|
26
|
Ren G, Sha T, Guo J, Li W, Lu J, Chen X. Cucurbitacin B induces DNA damage and autophagy mediated by reactive oxygen species (ROS) in MCF-7 breast cancer cells. J Nat Med 2015; 69:522-30. [PMID: 26018422 DOI: 10.1007/s11418-015-0918-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 05/06/2015] [Indexed: 01/11/2023]
Abstract
Cucurbitacin B (Cuc B), a natural compound extracted from cucurbitaceous plants, demonstrated potent anticancer activities, while the underlying mechanisms remain unclear. We investigated the anticancer effect of Cuc B on MCF-7 breast cancer cells. Cuc B drastically decreased cell viability in a concentration-dependent manner. Cuc B treatment caused DNA damage, as shown by long tails in the comet assay and increased γH2AX protein expression. Immunofluorescence staining showed that Cuc B treatment induced nuclear γH2AX foci. Cuc B activated DNA damage pathways by phosphorylation of ATM/ATR [two large phosphatidylinositol-3-kinase-like kinase family (PIKKs) members]. Furthermore, it also induced autophagy, as evidenced by monodansylcadaverine (MDC) staining and autophagic protein expression. In addition, Cuc B treatment led to increased reactive oxygen species (ROS) formation, which was inhibited by N-acetyl-L-cysteine (NAC) pretreatment. NAC pretreatment inhibited Cuc-B-induced DNA damage and autophagy. Taken together, these results suggest that ROS-mediated Cuc-B-induced DNA damage and autophagy in MCF-7 cells, which provides new insights into the anticancer molecular mechanism of Cuc B.
Collapse
Affiliation(s)
- Guowen Ren
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | | | | | | | | | | |
Collapse
|
27
|
Kaushik U, Aeri V, Mir SR. Cucurbitacins - An insight into medicinal leads from nature. Pharmacogn Rev 2015; 9:12-8. [PMID: 26009687 PMCID: PMC4441156 DOI: 10.4103/0973-7847.156314] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 03/27/2014] [Accepted: 05/05/2015] [Indexed: 12/29/2022] Open
Abstract
Cucurbitacins which are structurally diverse triterpenes found in the members of Cucurbitaceae and several other plant families possess immense pharmacological potential. This diverse group of compounds may prove to be important lead molecules for future research. Research focused on these unattended medicinal leads from the nature can prove to be of immense significance in generating scientifically validated data with regard to their efficacy and possible role in various diseases. This review is aimed to provide an insight into the chemical nature and medicinal potential of these compounds exploring their proposed mode of action, probable molecular targets and to have an outlook on future directions of their use as medicinal agents.
Collapse
Affiliation(s)
- Ujjwal Kaushik
- Department of Pharmacognosy and Phytochemistry, Phytochemistry Research Laboratory, Faculty of Pharmacy, New Delhi, India
| | - Vidhu Aeri
- Department of Pharmacognosy and Phytochemistry, Phytochemistry Research Laboratory, Faculty of Pharmacy, New Delhi, India
| | - Showkat R Mir
- Department of Pharmacognosy and Phytochemistry, Phytochemistry Research Laboratory, Faculty of Pharmacy, New Delhi, India
| |
Collapse
|
28
|
Li J, Wang Q, Li M, Yang B, Shi M, Guo W, McDermott TR, Rensing C, Wang G. Proteomics and Genetics for Identification of a Bacterial Antimonite Oxidase in Agrobacterium tumefaciens. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:5980-5989. [PMID: 25909855 DOI: 10.1021/es506318b] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Antimony (Sb) and its compounds are listed by the United States Environmental Protection Agency (USEPA, 1979) and the European Union (CEC, 1976) as a priority pollutant. Microbial redox transformations are presumed to be an important part of antimony cycling in nature; however, regulation of these processes and the enzymology involved are unknown. In this study, comparative proteomics and reverse transcriptase-PCR analysis of Sb(III)-oxidizing bacterium Agrobacterium tumefaciens GW4 revealed an oxidoreductase (anoA) is widely distributed in microorganisms, including at least some documented to be able to oxidize Sb(III). Deletion of the anoA gene reduced Sb(III) resistance and decreased Sb(III) oxidation by ∼27%, whereas the anoA complemented strain was similar to the wild type GW4 and a GW4 anoA overexpressing strain increased Sb(III) oxidation by ∼34%. Addition of Sb(III) up-regulated anoA expression and cloning anoA to Escherichia coli demonstrated direct transferability of this activity. A His-tag purified AnoA was found to require NADP(+) as cofactor, and exhibited a K(m) for Sb(III) of 64 ± 10 μM and a V(max) of 150 ± 7 nmol min(-1) mg(-1). This study contributes important initial steps toward a mechanistic understanding of microbe-antimony interactions and enhances our understanding of how microorganisms participate in antimony biogeochemical cycling in nature.
Collapse
Affiliation(s)
- Jingxin Li
- †State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Qian Wang
- †State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Mingshun Li
- †State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Birong Yang
- †State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Manman Shi
- †State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Wei Guo
- †State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Timothy R McDermott
- ‡Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana 59717, United States
| | - Christopher Rensing
- §Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, DK-1871, Denmark
| | - Gejiao Wang
- †State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| |
Collapse
|
29
|
Chung SO, Kim YJ, Park SU. An updated review of Cucurbitacins and their biological and pharmacological activities. EXCLI JOURNAL 2015; 14:562-6. [PMID: 26648815 PMCID: PMC4669946 DOI: 10.17179/excli2015-283] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 04/27/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Sun Ok Chung
- Department of Biosystems Machinery Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Korea
| | - Yong Joo Kim
- Department of Biosystems Machinery Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Korea
| | - Sang Un Park
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Korea
| |
Collapse
|
30
|
Gupta P, Srivastava SK. Inhibition of Integrin-HER2 signaling by Cucurbitacin B leads to in vitro and in vivo breast tumor growth suppression. Oncotarget 2015; 5:1812-28. [PMID: 24729020 PMCID: PMC4039119 DOI: 10.18632/oncotarget.1743] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
HER2, an oncogenic receptor is overexpressed in about 25-30% of breast cancer patients. HER2 has been shown to play role in tumor promotion by having cross-talk with multiple oncogenic pathways in cancer cells. Our results show that Cucurbitacin B (CuB), a triterpenoid steroidal compound inhibited the growth of various breast cancer cells with an IC50 ranging from 18-50nM after 48 and 72 h of treatment. Our study also revealed the significant inhibitory effects of CuB on HER2 and integrin signaling in breast cancer. Notably, CuB inhibited ITGA6 and ITGB4 (integrin α6 & integrin β4), which are overexpressed in breast cancer. Furthermore, CuB also induced the expression of major ITGB1and ITGB3, which are known to cause integrin-mediated cell death. In addition, we observed that TGFβ treatment resulted in the increased association of HER2 with ITGA6 and this association was inhibited by CuB treatment. Efficacy of CuB was tested in vivo using two different orthotopic models of breast cancer. MDA-MB-231 and 4T-1 cells were injected orthotopically in the mammary fat pad of female athymic nude mice or BALB/c mice respectively. Our results showed that CuB administration inhibited MDA-MB-231 orthotopic tumors by 55%, and 4T-1 tumors by 40%. The 4T-1 cells represent stage IV breast cancer and form very aggressive tumors. CuB mediated breast tumor growth suppression was associated with the inhibition of HER2/integrin signaling. Our results suggest novel targets of CuB in breast cancer in vitro and in vivo.
Collapse
Affiliation(s)
- Parul Gupta
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | | |
Collapse
|
31
|
Su K, Huang L, Li W, Yan X, Li X, Zhang Z, Jin F, Lei J, Ba G, Liu B, Wang X, Wang Y. TC-1 (c8orf4) enhances aggressive biologic behavior in lung cancer through the Wnt/β-catenin pathway. J Surg Res 2013; 185:255-63. [PMID: 23880650 DOI: 10.1016/j.jss.2013.05.075] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 05/06/2013] [Accepted: 05/16/2013] [Indexed: 01/26/2023]
Abstract
BACKGROUND The thyroid cancer-1 (TC-1) or c8orf4 gene encodes a 106-residue naturally disordered protein that has been found to be associated with thyroid, gastric, and breast cancer. A recent study has indicated that the protein functions as a positive regulator in the Wnt/β-catenin signaling pathway in human breast cancer. However, no research has been done in the area of lung cancer. Therefore, the goal of the present study was to confirm the relationship among TC-1, lung cancer, and the Wnt/β-catenin signaling pathway. MATERIALS AND METHODS The expression of TC-1 was immunohistochemically examined in 147 patients with non-small-cell lung cancer. TC-1-overexpressed and silenced A549 cells were infected using lentivirus and MTT cell proliferation analysis, and Matrigel invasion assays and scratch-wound assays were performed to confirm the biologic behavioral changes in different A549 cell subsets. The Wnt/β-catenin signaling pathway, key gene β-catenin, target genes of vascular endothelial growth factor, cyclin D1, matrix metalloproteinase-7, c-myc, and survivin were tested at the mRNA and protein level. RESULTS TC-1 was detected in 97 of the 147 non-small-cell lung cancer primary tumor specimens, and its expression correlated with the TNM stage and regional lymph node metastasis (P < 0.01). In vitro experiments demonstrated that TC-1 expression affected both proliferation and invasion in the A549 cell line. Furthermore, expression of TC-1 protein affected the Wnt/β-catenin signaling pathway's downstream genes, such as vascular endothelial growth factor and matrix metalloproteinase-7, at the mRNA and protein level. CONCLUSIONS TC-1 expression is associated with aggressive biologic behavior in lung cancer and might coordinate with the Wnt/β-catenin pathway as a positive upstream regulator that induces these behaviors.
Collapse
Affiliation(s)
- Kai Su
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
The effectiveness of cucurbitacin B in BRCA1 defective breast cancer cells. PLoS One 2013; 8:e55732. [PMID: 23393598 PMCID: PMC3564916 DOI: 10.1371/journal.pone.0055732] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 12/30/2012] [Indexed: 11/26/2022] Open
Abstract
Cucurbitacin B (CuB) is one of the potential agents for long term anticancer chemoprevention. Cumulative evidences has shown that cucurbitacin B provides potent cellular biological activities such as hepatoprotective, anti-inflammatory and antimicrobial effects, but the precise mechanism of this agent is not clearly understood. We examine the biological effects on cancer cells of cucurbitacin B extracted from a Thai herb, Trichosanthes cucumerina L. The wild type (wt) BRCA1, mutant BRCA1, BRCA1 knocked-down and BRCA1 overexpressed breast cancer cells were treated with the cucurbitacin B and determined for the inhibitory effects on the cell proliferation, migration, invasion, anchorage-independent growth. The gene expressions in the treated cells were analyzed for p21/Waf1, p27Kip1 and survivin. Our previous study revealed that loss of BRCA1 expression leads to an increase in survivin expression, which is responsible for a reduction in sensitivity to paclitaxel. In this work, we showed that cucurbitacin B obviously inhibited knocked-down and mutant BRCA1 breast cancer cells rather than the wild type BRCA1 breast cancer cells in regards to the cellular proliferation, migration, invasion and anchorage-independent growth. Furthermore, forcing the cells to overexpress wild type BRCA1 significantly reduced effectiveness of cucurbitacin B on growth inhibition of the endogenous mutant BRCA1 cells. Interestingly, cucurbitacin B promotes the expression of p21/Waf1 and p27Kip1 but inhibit the expression of survivin. We suggest that survivin could be an important target of cucurbitacin B in BRCA1 defective breast cancer cells.
Collapse
|
33
|
Aribi A, Gery S, Lee DH, Thoennissen NH, Thoennissen GB, Alvarez R, Ho Q, Lee K, Doan NB, Chan KT, Toh M, Said JW, Koeffler HP. The triterpenoid cucurbitacin B augments the antiproliferative activity of chemotherapy in human breast cancer. Int J Cancer 2012; 132:2730-7. [PMID: 23165325 DOI: 10.1002/ijc.27950] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 10/29/2012] [Indexed: 01/11/2023]
Abstract
Despite recent advances in therapy, breast cancer remains the second most common cause of death from malignancy in women. Chemotherapy plays a major role in breast cancer management, and combining chemotherapeutic agents with nonchemotherapeutic agents is of considerable clinical interest. Cucurbitacins are triterpenes compounds found in plants of the Cucurbitaceae family, reported to have anticancer and anti-inflammatory activities. Previously, we have shown antiproliferative activity of cucurbitacin B (CuB) in breast cancer, and we hypothesized that combining CuB with chemotherapeutic agents can augment their antitumor effect. Here, we show that a combination of CuB with either docetaxel (DOC) or gemcitabine (GEM) synergistically inhibited the proliferation of MDA-MB-231 breast cancer cells in vitro. This antiproliferative effect was accompanied by an increase in apoptosis rates. Furthermore, in vivo treatment of human breast cancer orthotopic xenografts in immunodeficient mice with CuB at either low (0.5 mg/kg) or high (1 mg/kg) doses in combination with either DOC (20 mg/kg) or GEM (12.5mg/kg) significantly reduced tumor volume as compared with monotherapy of each drug. Importantly, no significant toxicity was noted with low-dose CuB in combination with either DOC or GEM. In conclusion, combination of CuB at a relatively low concentration with either of the chemotherapeutic agents, DOC or GEM, shows prominent antiproliferative activity against breast cancer cells without increased toxicity. This promising combination should be examined in therapeutic trials of breast cancer.
Collapse
Affiliation(s)
- Ahmed Aribi
- Division of Hematology and Oncology, Cedars-Sinai Medical Center, UCLA School of Medicine, Los Angeles, CA 90048, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Duangmano S, Sae-lim P, Suksamrarn A, Domann FE, Patmasiriwat P. Cucurbitacin B inhibits human breast cancer cell proliferation through disruption of microtubule polymerization and nucleophosmin/B23 translocation. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 12:185. [PMID: 23062075 PMCID: PMC3527297 DOI: 10.1186/1472-6882-12-185] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 10/09/2012] [Indexed: 12/21/2022]
Abstract
Background Cucurbitacin B, an oxygenated tetracyclic triterpenoid compound extracted from the Thai medicinal plant Trichosanthes cucumerina L., has been reported to have several biological activities including anti-inflammatory, antimicrobial and anticancer. Cucurbitacin B is great of interest because of its biological activity. This agent inhibits growth of various types of human cancer cells lines. Methods In this study, we explored the novel molecular response of cucurbitacin B in human breast cancer cells, MCF-7 and MDA-MB-231. The growth inhibitory effect of cucurbitacin B on breast cancer cells was assessed by MTT assay. The effects of cucurbitacin B on microtubules morphological structure and tubulin polymerization were analyzed using immunofluorescence technique and tubulin polymerization assay kit, respectively. Proteomic analysis was used to identify the target-specific proteins that involved in cucurbitacin B treatment. Some of the differentially expressed genes and protein products were validated by real-time RT-PCR and western blot analysis. Cell cycle distributions and apoptosis were investigated using flow cytometry. Results Cucurbitacin B exhibited strong antiproliferative effects against breast cancer cells in a dose-dependent manner. We show that cucurbitacin B prominently alters the cytoskeletal network of breast cancer cells, inducing rapid morphologic changes and improper polymerization of the microtubule network. Moreover, the results of 2D-PAGE, real-time RT-PCR, and western blot analysis revealed that the expression of nucleophosmin/B23 and c-Myc decreased markedly after cucurbitacin B treatment. Immunofluorescence microscopy showed that cucurbitacin B induced translocation of nucleophosmin/B23 from the nucleolus to nucleoplasm. Treatment with cucurbitacin B resulted in cell cycle arrest at G2/M phase and the enhancement of apoptosis. Conclusions Our findings suggest that cucurbitacin B may inhibit the proliferation of human breast cancer cells through disruption of the microtubule network and down-regulation of c-Myc and nucleophosmin/B23 as well as the perturbation in nucleophosmin/B23 trafficking from the nucleolus to nucleoplasm, resulting in G2/M arrest.
Collapse
|
35
|
Dakeng S, Duangmano S, Jiratchariyakul W, U-Pratya Y, Bögler O, Patmasiriwat P. Inhibition of Wnt signaling by cucurbitacin B in breast cancer cells: reduction of Wnt-associated proteins and reduced translocation of galectin-3-mediated β-catenin to the nucleus. J Cell Biochem 2012; 113:49-60. [PMID: 21866566 DOI: 10.1002/jcb.23326] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The cucurbitacins are tetracyclic triterpenes found in plants of the family Cucurbitaceae. Cucurbitacins have been shown to have anti-cancer and anti-inflamatory activities. We investigated the anti-cancer activity of cucurbitacin B extracted from Thai medicinal plant Trichosanthes cucumerina Linn. Cell viability was assessed by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Results indicated that cucurbitacin B from T. cucumerina Linn. has a cytotoxic effect on breast cancer cell lines SKBR-3 and MCF-7 with an IC50 of 4.60 and 88.75 µg/ml, respectively. Growth inhibition was attributed to G2/M phase arrest and apoptosis. Cyclin D1, c-Myc, and β-catenin expression levels were reduced. Western blot analysis showed increased PARP cleavage and decreased Wnt-associated signaling molecules β-catenin, galectin-3, cyclin D1 and c-Myc, and corresponding changes in phosphorylated GSK-3β levels. Cucurbitacin B treatment inhibited translocation to the nucleus of β-catenin and galectin-3. The depletion of β-catenin and galectin-3 in the nucleus was confirmed by cellular protein fractionation. T-cell factor (TCF)/lymphoid enhancer factor (LEF)-dependent transcriptional activity was disrupted in cucurbitacin B treated cells as tested by a TCF reporter assay. The relative luciferase activity was reduced when we treated cells with cucurbitacin B compound for 24 h. Our data suggest that cucurbitacin B may in part induce apoptosis and exert growth inhibitory effect via interruption the Wnt signaling.
Collapse
|
36
|
Cucurbitacin B Causes Increased Radiation Sensitivity of Human Breast Cancer Cells via G2/M Cell Cycle Arrest. JOURNAL OF ONCOLOGY 2012; 2012:601682. [PMID: 22690217 PMCID: PMC3368438 DOI: 10.1155/2012/601682] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 03/27/2012] [Indexed: 01/11/2023]
Abstract
Purpose. To explore the effects of cucurbitacin B on the radiation survival of human breast cancer cells and to elucidate the cellular mechanism of radiosensitization if any. Materials and Methods. Human breast carcinoma cell lines were treated with cucurbitacin B before irradiation with 0–10 Gy of 137Cs gamma rays. The effect of cucurbitacin B on cell-survival following irradiation was evaluated by colony-forming assay. Cell cycle distributions were investigated using flow cytometry. Real-time PCR and western blots were performed to investigate the expression of cell cycle checkpoints. Results. Cucurbitacin B inhibited breast cancer cell proliferation in a dose-dependent manner. Only MDA-MB-231 and MCF7:5C cells but not SKBR-3 cells were radiosensitized by cucurbitacin B. Flow cytometric analysis for DNA content indicated that cucurbitacin B resulted in G2/M arrest in MDA-MB-231 and MCF7:5C but not SKBR-3 cells. Moreover, Real-time PCR and western blot analysis demonstrated upregulated p21 expression before irradiation, a likely cause of the cell cycle arrest. Conclusion. Taken together, these findings suggest that cucurbitacin B causes radiosensitization of some breast cancer cells, and that cucurbitacin B induced G2/M arrest is an important mechanism. Therefore, combinations of cucurbitacin B with radiotherapy may be appropriate for experimental breast cancer treatment.
Collapse
|
37
|
Lang KL, Silva IT, Zimmermann LA, Machado VR, Teixeira MR, Lapuh MI, Galetti MA, Palermo JA, Cabrera GM, Bernardes LSC, Simões CMO, Schenkel EP, Caro MSB, Durán FJ. Synthesis and cytotoxic activity evaluation of dihydrocucurbitacin B and cucurbitacin B derivatives. Bioorg Med Chem 2012; 20:3016-30. [DOI: 10.1016/j.bmc.2012.03.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 02/23/2012] [Accepted: 03/01/2012] [Indexed: 01/11/2023]
|
38
|
NF-kappaB p65 modulates the telomerase reverse transcriptase in the HepG₂ hepatoma cell line. Eur J Pharmacol 2011; 672:113-20. [PMID: 22008847 DOI: 10.1016/j.ejphar.2011.09.187] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 09/19/2011] [Accepted: 09/24/2011] [Indexed: 01/11/2023]
Abstract
Nuclear factor-kappa B (NF-kappaB) regulates the expression of various genes, several genes involved in inflammation and tumorigenesis, including those of the liver. A role for NF-kappaB has been implicated in the pathogenesis of hepatocellular carcinoma. This transcription factor can regulate hTERT gene transcription. Expression of hTERT was found to be at high levels in hepatocellular carcinoma. However, positive effects of NF-kappaB on hTERT protein synthesis in HepG(2) cells are unknown. In this study, we show that LPS (specific binding to TLR4 to activate NF-kappaB) was positive for NF-kappaB p65 mRNA expression and activation, and also up-regulated hTERT mRNA and protein expressions at 36h in a dose-dependent manner. In contrast, MG-132 (blocking the activity of 26S proteasome and thereby preventing nuclear translocation of NF-kappaB) significantly inhibited activation of NF-kappaB and mRNA expression. And also reduced the expression of hTERT at both mRNA and protein levels at 36h in a dose-dependent manner. Furthermore, dexamethasone inhibited LPS-induced activation of NF-kappaB and expression of the hTERT in HepG(2) cells. These findings suggest that NF-kappaB may modulate hTERT mRNA level, importantly, in protein level in HepG(2) cells and dexamethasone inhibits LPS-induced hTERT via blocking NF-kappaB.
Collapse
|
39
|
Sahab ZJ, Man YG, Byers SW, Sang QXA. Putative biomarkers and targets of estrogen receptor negative human breast cancer. Int J Mol Sci 2011; 12:4504-21. [PMID: 21845093 PMCID: PMC3155366 DOI: 10.3390/ijms12074504] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 06/27/2011] [Accepted: 07/04/2011] [Indexed: 11/26/2022] Open
Abstract
Breast cancer is a progressive and potentially fatal disease that affects women of all ages. Like all progressive diseases, early and reliable diagnosis is the key for successful treatment and annihilation. Biomarkers serve as indicators of pathological, physiological, or pharmacological processes. Her2/neu, CA15.3, estrogen receptor (ER), progesterone receptor (PR), and cytokeratins are biomarkers that have been approved by the Food and Drug Administration for disease diagnosis, prognosis, and therapy selection. The structural and functional complexity of protein biomarkers and the heterogeneity of the breast cancer pathology present challenges to the scientific community. Here we review estrogen receptor-related putative breast cancer biomarkers, including those of putative breast cancer stem cells, a minor population of estrogen receptor negative tumor cells that retain the stem cell property of self-renewal. We also review a few promising cytoskeleton targets for ER alpha negative breast cancer.
Collapse
Affiliation(s)
- Ziad J. Sahab
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA; E-Mail:
| | - Yan-Gao Man
- Diagnostic and Translational Research Center, Henry Jackson Foundation for the Advancement of Military Medicine, Gaithersburg, MD 20789, USA; E-Mail:
- Jilin University, Changchun 130012, China
| | - Stephen W. Byers
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA; E-Mail:
| | - Qing-Xiang A. Sang
- Department of Chemistry and Biochemistry and Institute of Molecular Biophysics, Florida State University, 102 Varsity Way, Tallahassee, FL 32306, USA; E-Mail:
| |
Collapse
|
40
|
Stankovic MS, Curcic MG, Zizic JB, Topuzovic MD, Solujic SR, Markovic SD. Teucrium plant species as natural sources of novel anticancer compounds: antiproliferative, proapoptotic and antioxidant properties. Int J Mol Sci 2011; 12:4190-205. [PMID: 21845072 PMCID: PMC3155345 DOI: 10.3390/ijms12074190] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 06/03/2011] [Accepted: 06/14/2011] [Indexed: 12/11/2022] Open
Abstract
This study deals with total phenolic content, antiproliferative and proapoptotic activity of methanolic extracts from different Teucrium species and the effect on the prooxidant/antioxidant status in HCT-116 cells. The total phenolic content of the extracts was measured spectrophotometricaly and the obtained results ranged from 56.62 mg/g to 172.50 mg GA/g. The antiproliferative activity of methanolic extracts from different Teucrium species was determined using MTT cell viability assay, where IC50 value was used as a parameter for cytotoxicity. The type of cell death was explored by fluorescence microscopy using the acridin orange/ethidium bromide method. MTT assay showed that all extracts significantly reduced cell viability in a dose-dependent manner, with very low IC50 values. The highest content of phenolic compounds and the best cytotoxic activity on HCT-116 cells after 24 h of exposure was in T. chamaedrys extract, with IC50 values of 5.48 × 10−9 μg/mL. After 72 h, methanolic extract of T. arduini appeared to have the best cytotoxic activity on HCT-116, with IC50 values of 0.37 μg/mL. Treatments caused typical apoptotic morphological changes in HCT-116 cells and showed a high percentage of apoptotic cells. The results of the presented research indicate that some Teucrium extracts are a very rich source of phenols, which may directly contribute to high antiproliferative and proapoptotic activity.
Collapse
Affiliation(s)
- Milan S. Stankovic
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Str. Radoja Domanovića No. 12, 34000 Kragujevac, Republic of Serbia; E-Mails: (M.G.C.); (J.B.Z.); (M.D.T.); (S.D.M.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +381-34-336-223; Fax: +381-34-335-040
| | - Milena G. Curcic
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Str. Radoja Domanovića No. 12, 34000 Kragujevac, Republic of Serbia; E-Mails: (M.G.C.); (J.B.Z.); (M.D.T.); (S.D.M.)
| | - Jovana B. Zizic
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Str. Radoja Domanovića No. 12, 34000 Kragujevac, Republic of Serbia; E-Mails: (M.G.C.); (J.B.Z.); (M.D.T.); (S.D.M.)
| | - Marina D. Topuzovic
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Str. Radoja Domanovića No. 12, 34000 Kragujevac, Republic of Serbia; E-Mails: (M.G.C.); (J.B.Z.); (M.D.T.); (S.D.M.)
| | - Slavica R. Solujic
- Department of Chemistry, Faculty of Science, University of Kragujevac, Str. Radoja Domanovića No. 12, 34000 Kragujevac, Republic of Serbia; E-Mail:
| | - Snezana D. Markovic
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Str. Radoja Domanovića No. 12, 34000 Kragujevac, Republic of Serbia; E-Mails: (M.G.C.); (J.B.Z.); (M.D.T.); (S.D.M.)
| |
Collapse
|