Cai Y, Ren B, Peng C, Zhang C, Wei X. Highly Sensitive and Selective Fluorescence "Turn-On" Detection of Pb (II) Based on Fe
3O
4@Au-FITC Nanocomposite.
Molecules 2021;
26:molecules26113180. [PMID:
34073353 PMCID:
PMC8198146 DOI:
10.3390/molecules26113180]
[Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/11/2021] [Accepted: 05/18/2021] [Indexed: 11/16/2022] Open
Abstract
New nanocomposites, Fe3O4@Au-FITC, were prepared and explored to develop a fluorescent detection of Pb2+. The Fe3O4@AuNPs-FITC nanocomposites could be etched by Pb2+ in the presence of Na2S2O3, leading to fluorescence recovery of FITC quenched by Fe3O4@Au nanocomposites. With the increase of Pb2+ concentration, the fluorescence recovery of Fe3O4@AuNPs-FITC increased gradually. Under optimized conditions, a detection limit of 5.2 nmol/L of Pb2+ with a linear range of 0.02-2.0 µmol/L were obtained. The assay demonstrated negligible response to common metal ions. Recoveries of 98.2-106.4% were obtained when this fluorescent method was applied in detecting Pb2+ spiked in a lake-water sample. The above results demonstrated the high potential of ion-induced nanomaterial etching in developing robust fluorescent assays.
Collapse