1
|
Misiukevičius E, Mažeikienė I, Stanys V. Ploidy's Role in Daylily Plant Resilience to Drought Stress Challenges. BIOLOGY 2024; 13:289. [PMID: 38785771 PMCID: PMC11117801 DOI: 10.3390/biology13050289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024]
Abstract
This study aimed to understand the differences in the performance of diploid and tetraploid daylily cultivars under water deficit conditions, which are essential indicators of drought tolerance. This research revealed that tetraploid daylilies performed better than diploid varieties in arid conditions due to their enhanced adaptability and resilience to water deficit conditions. The analysis of the results highlighted the need to clarify the specific physiological and molecular mechanisms underlying the enhanced drought tolerance observed in tetraploid plants compared to diploids. This research offers valuable knowledge for improving crop resilience and sustainable floricultural practices in changing environmental conditions. The morphological and physiological parameters were analyzed in 19 diploid and 21 tetraploid daylily cultivars under controlled water deficit conditions, and three drought resistance groups were formed based on the clustering of these parameters. In a high drought resistance cluster, 93.3% tetraploid cultivars were exhibited. This study demonstrates the significance of ploidy in shaping plant responses to drought stress. It emphasizes the importance of studying plant responses to water deficit in landscape horticulture to develop drought-tolerant plants and ensure aspects of climate change.
Collapse
Affiliation(s)
- Edvinas Misiukevičius
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Kaunas Street 30, 54333 Babtai, Lithuania; (I.M.); (V.S.)
| | | | | |
Collapse
|
2
|
Small CD, Davis JP, Crawford BD, Benfey TJ. Early, nonlethal ploidy and genome size quantification using confocal microscopy in zebrafish embryos. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2021; 336:496-510. [PMID: 34254444 DOI: 10.1002/jez.b.23069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/12/2021] [Accepted: 06/17/2021] [Indexed: 11/07/2022]
Abstract
Ploidy transitions through whole genome duplication have shaped evolution by allowing the sub- and neo-functionalization of redundant copies of highly conserved genes to express novel traits. The nuclear:cytoplasmic (n:c) ratio is maintained in polyploid vertebrates resulting in larger cells, but body size is maintained by a concomitant reduction in cell number. Ploidy can be manipulated easily in most teleosts, and the zebrafish, already well established as a model system for biomedical research, is therefore an excellent system in which to study the effects of increased cell size and reduced cell numbers in polyploids on development and physiology. Here we describe a novel technique using confocal microscopy to measure genome size and determine ploidy non-lethally at 48 h post-fertilization (hpf) in transgenic zebrafish expressing fluorescent histones. Volumetric analysis of myofiber nuclei using open-source software can reliably distinguish diploids and triploids from a mixed-ploidy pool of embryos for subsequent experimentation. We present an example of this by comparing heart rate between confirmed diploid and triploid embryos at 54 hpf.
Collapse
Affiliation(s)
| | - James P Davis
- Department of Biology, University of New Brunswick, Fredericton, NB, Canada
| | - Bryan D Crawford
- Department of Biology, University of New Brunswick, Fredericton, NB, Canada
| | - Tillmann J Benfey
- Department of Biology, University of New Brunswick, Fredericton, NB, Canada
| |
Collapse
|
3
|
Dhakshinamoorthy R, Singh SP. Evolution of Reproductive Division of Labor - Lessons Learned From the Social Amoeba Dictyostelium discoideum During Its Multicellular Development. Front Cell Dev Biol 2021; 9:599525. [PMID: 33748102 PMCID: PMC7969725 DOI: 10.3389/fcell.2021.599525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 02/12/2021] [Indexed: 11/13/2022] Open
Abstract
The origin of multicellular life from unicellular beings is an epochal step in the evolution of eukaryotes. There are several factors influencing cell fate choices during differentiation and morphogenesis of an organism. Genetic make-up of two cells that unite and fertilize is the key factor to signal the formation of various cell-types in due course of development. Although ploidy of the cell-types determines the genetics of an individual, the role of ploidy in cell fate decisions remains unclear. Dictyostelium serves as a versatile model to study the emergence of multicellular life from unicellular life forms. In this work, we investigate the role played by ploidy status of a cell on cell fate commitments during Dictyostelium development. To answer this question, we created Dictyostelium cells of different ploidy: haploid parents and derived isogenic diploids, allowing them to undergo development. The diploid strains used in this study were generated using parasexual genetics. The ploidy status of the haploids and diploids were confirmed by microscopy, flow cytometry, and karyotyping. Prior to reconstitution, we labeled the cells by two methods. First, intragenic expression of red fluorescent protein (RFP) and second, staining the amoebae with a vital, fluorescent dye carboxyfluorescein succinimidyl ester (CFSE). RFP labeled haploid cells allowed us to track the haploids in the chimeric aggregates, slugs, and fruiting bodies. The CFSE labeling method allowed us to track both the haploids and the diploids in the chimeric developmental structures. Our findings illustrate that the haploids demonstrate sturdy cell fate commitment starting from the aggregation stage. The haploids remain crowded at the aggregation centers of the haploid-diploid chimeric aggregates. At the slug stage haploids are predominantly occupying the slug posterior, and are visible in the spore population in the fruiting bodies. Our findings show that cell fate decisions during D. discoideum development are highly influenced by the ploidy status of a cell, adding a new aspect to already known factors Here, we report that ploidy status of a cell could also play a crucial role in regulating the cell fate commitments.
Collapse
Affiliation(s)
- Ranjani Dhakshinamoorthy
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Shashi P Singh
- Cell Migration and Chemotaxis Group, Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| |
Collapse
|
4
|
Podwyszyńska M, Markiewicz M, Broniarek-Niemiec A, Matysiak B, Marasek-Ciolakowska A. Apple Autotetraploids with Enhanced Resistance to Apple Scab ( Venturia inaequalis) Due to Genome Duplication-Phenotypic and Genetic Evaluation. Int J Mol Sci 2021; 22:E527. [PMID: 33430246 PMCID: PMC7825683 DOI: 10.3390/ijms22020527] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 11/16/2022] Open
Abstract
Among the fungal diseases of apple trees, serious yield losses are due to an apple scab caused by Venturia inaequalis. Protection against this disease is based mainly on chemical treatments, which are currently very limited. Therefore, it is extremely important to introduce cultivars with reduced susceptibility to this pathogen. One of the important sources of variability for breeding is the process of polyploidization. Newly obtained polyploids may acquire new features, including increased resistance to diseases. In our earlier studies, numerous tetraploids have been obtained for several apple cultivars with 'Free Redstar' tetraploids manifesting enhanced resistance to apple scab. In the present study, tetraploids of 'Free Redstar' were assessed in terms of phenotype and genotype with particular emphasis on the genetic background of their increased resistance to apple scab. Compared to diploid plants, tetraploids (own-rooted plants) were characterized with poor growth, especially during first growing season. They had considerably shorter shoots, fewer branches, smaller stem diameter, and reshaped leaves. In contrast to own-rooted plants, in M9-grafted three-year old trees, no significant differences between diplo- and tetraploids were observed, either in morphological or physiological parameters, with the exceptions of the increased leaf thickness and chlorophyll content recorded in tetraploids. Significant differences between sibling tetraploid clones were recorded, particularly in leaf shape and some physiological parameters. The amplified fragment length polymorphism (AFLP) analysis confirmed genetic polymorphism of tetraploid clones. Methylation-sensitive amplification polymorphism (MSAP) analysis showed that the level of DNA methylation was twice as high in young tetraploid plants as in a diploid donor tree, which may explain the weaker vigour of neotetraploids in the early period of their growth in the juvenile phase. Molecular analysis showed that 'Free Redstar' cultivar and their tetraploids bear six Rvi genes (Rvi5, Rvi6, Rvi8, Rvi11, Rvi14 and Rvi17). Transcriptome analysis confirmed enhanced resistance to apple scab of 'Free Redstar' tetraploids since the expression levels of genes related to resistance were strongly enhanced in tetraploids compared to their diploid counterparts.
Collapse
Affiliation(s)
- Małgorzata Podwyszyńska
- Department of Applied Biology, Research Institute of Horticulture, Konstytucji 3 Maja 1/3 Street, 96-100 Skierniewice, Poland; (M.M.); (B.M.); (A.M.-C.)
| | - Monika Markiewicz
- Department of Applied Biology, Research Institute of Horticulture, Konstytucji 3 Maja 1/3 Street, 96-100 Skierniewice, Poland; (M.M.); (B.M.); (A.M.-C.)
| | - Agata Broniarek-Niemiec
- Department of Phytopathology, Research Institute of Horticulture, Konstytucji 3 Maja 1/3 Street, 96-100 Skierniewice, Poland;
| | - Bożena Matysiak
- Department of Applied Biology, Research Institute of Horticulture, Konstytucji 3 Maja 1/3 Street, 96-100 Skierniewice, Poland; (M.M.); (B.M.); (A.M.-C.)
| | - Agnieszka Marasek-Ciolakowska
- Department of Applied Biology, Research Institute of Horticulture, Konstytucji 3 Maja 1/3 Street, 96-100 Skierniewice, Poland; (M.M.); (B.M.); (A.M.-C.)
| |
Collapse
|
5
|
Julião SA, Ribeiro CDV, Lopes JML, de Matos EM, Reis AC, Peixoto PHP, Machado MA, Azevedo ALS, Grazul RM, de Campos JMS, Viccini LF. Induction of Synthetic Polyploids and Assessment of Genomic Stability in Lippia alba. FRONTIERS IN PLANT SCIENCE 2020; 11:292. [PMID: 32273876 PMCID: PMC7113378 DOI: 10.3389/fpls.2020.00292] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/26/2020] [Indexed: 05/14/2023]
Abstract
Polyploidy is widely recognized as a major evolutionary force in plants and has been reported in the genus Lippia (Verbenaceae). Lippia alba, the most studied species, has been documented as a polyploid complex involving at least four ploidal levels. L. alba presents remarkable chemical and genetic variation and represents a model for understanding genome organization. Although the economic and medicinal importance of the species has been widely described, no established polyploid induction protocol has been reported so far. Here, we describe the production of synthetic polyploid plants of L. alba using colchicine. The ploidal levels were estimated by flow cytometry and chromosome counting. In addition, FISH and molecular markers approaches were used to confirm the stability of the synthetic polyploids. The major component of the essential oils was estimated by GCMS to compare with the natural individuals. Tetraploids and triploids were produced providing new opportunities for investigating medicinal, pharmacological, and economic applications as well as addressing intrinsic questions involved in the polyploidization process in tropical plants.
Collapse
Affiliation(s)
| | | | | | | | - Aryane Campos Reis
- Department of Biology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | | | | | | | | | | | | |
Collapse
|
6
|
Cappetta E, Andolfo G, Di Matteo A, Ercolano MR. Empowering crop resilience to environmental multiple stress through the modulation of key response components. JOURNAL OF PLANT PHYSIOLOGY 2020; 246-247:153134. [PMID: 32070802 DOI: 10.1016/j.jplph.2020.153134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/13/2019] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
Crop plants have developed a multitude of defense and adaptation responses to protect themselves against invading pathogens and challenging environmental stresses, mostly operating jointly. The plant perception of overall stress induces a coordinated response mediated by complex signaling networks. Experimental evidences proved that plant response to combined biotic and abiotic stresses substantially diverge from the responses to individual stresses. Moreover, the cross-talk of signaling pathways involved in responding to biotic and abiotic stresses is pivoted on several converging elements able to simultaneously modulate the timing and amplitude of the overall plant response. Comprehensively, the interaction between biotic and abiotic stresses can dramatically changes the plant response to the individual stress and the phenotypical outcome of each stress factor. System biology and data mining can synergistically help biologists in finding out regulative mechanisms and key genes controlling the response to biotic and abiotic stresses. Deploying new genetic engineering solutions can rely on the modification of genes involved in resistance/tolerance processes and/or in the modulation of regulatory elements. Finally, a model of the engineered crop for enhanced tolerance to pressures resulting from invasive pathogens and abiotic constraints in semiarid and warm environment is discussed.
Collapse
Affiliation(s)
- E Cappetta
- Department of Agricultural Sciences, University of Naples "Federico II", Via Università 100, 80055 Portici (Naples), Italy.
| | - G Andolfo
- Department of Agricultural Sciences, University of Naples "Federico II", Via Università 100, 80055 Portici (Naples), Italy.
| | - A Di Matteo
- Department of Agricultural Sciences, University of Naples "Federico II", Via Università 100, 80055 Portici (Naples), Italy.
| | - M R Ercolano
- Department of Agricultural Sciences, University of Naples "Federico II", Via Università 100, 80055 Portici (Naples), Italy.
| |
Collapse
|
7
|
Karyo-morphological consistency and heterochromatin distribution pattern in diploid and colchitetraploids of Vigna radiata and V. mungo. Meta Gene 2019. [DOI: 10.1016/j.mgene.2019.100569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
8
|
Review: Molecular techniques to assess genetic variation within and between Panax ginseng and Panax quinquefolius. Fitoterapia 2019; 138:104343. [PMID: 31472181 DOI: 10.1016/j.fitote.2019.104343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/19/2019] [Accepted: 08/25/2019] [Indexed: 11/23/2022]
Abstract
A variety of methods have been used to examine genetic differences in P. ginseng and P. quinquefolius. They have shown genetic differences within populations of P. ginseng (within and between elite cultivars, landraces and wild accessions), within populations of P. quinquefolius (within and between wild and cultivated accessions) and between P. ginseng and P. quinquefolius as well as other Panax species. Some examples of their applications have been to show that some elite cultivars are not uniform, there are possible founder effects in certain populations, there has been the spread of cultivated types into wild populations, relative diversity differs between different populations and identification of the source and purity of commercial samples. More work in the use of molecular markers for ginseng are needed, however, particularly the use of Next Generation Sequencing. Potential applications are the use of sequence analysis for genetic selection, breeding to develop new cultivars and providing traceability from field to consumer. Research on molecular markers in ginseng has lagged compared to other crops probably because of less of an emphasis on breeding for cultivar development and relatively small areas of production. The many potential benefits for ginseng production have yet to be realized.
Collapse
|
9
|
Wang R, Zou J, Meng J, Wang J. Integrative analysis of genome-wide lncRNA and mRNA expression in newly synthesized Brassica hexaploids. Ecol Evol 2018; 8:6034-6052. [PMID: 29988444 PMCID: PMC6024132 DOI: 10.1002/ece3.4152] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/29/2018] [Accepted: 04/09/2018] [Indexed: 01/02/2023] Open
Abstract
Polyploidization, as a significant evolution force, has been considered to facilitate plant diversity. The expression levels of lncRNAs and how they control the expression of protein-coding genes in allopolyploids remain largely unknown. In this study, lncRNA expression profiles were compared between Brassica hexaploid and its parents using a high-throughput sequencing approach. A total of 2,725, 1,672, and 2,810 lncRNAs were discovered in Brassica rapa, Brassica carinata, and Brassica hexaploid, respectively. It was also discovered that 725 lncRNAs were differentially expressed between Brassica hexaploid and its parents, and 379 lncRNAs were nonadditively expressed in this hexaploid. LncRNAs have multiple expression patterns between Brassica hexaploid and its parents and show paternal parent-biased expression. These lncRNAs were found to implement regulatory functions directly in the long-chain form, and acted as precursors or targets of miRNAs. According to the prediction of the targets of differentially expressed lncRNAs, 109 lncRNAs were annotated, and their target genes were involved in the metabolic process, pigmentation, reproduction, exposure to stimulus, biological regulation, and so on. Compared with the paternal parent, differentially expressed lncRNAs between Brassica hexaploid and its maternal parent participated in more regulation pathways. Additionally, 61 lncRNAs were identified as putative targets of known miRNAs, and 15 other lncRNAs worked as precursors of miRNAs. Some conservative motifs of lncRNAs from different groups were detected, which indicated that these motifs could be responsible for their regulatory roles. Our findings may provide a reference for the further study of the function and action mechanisms of lncRNAs during plant evolution.
Collapse
Affiliation(s)
- Ruihua Wang
- State Key Laboratory of Hybrid RiceDepartment of Plant ScienceCollege of Life SciencesWuhan UniversityWuhanChina
| | - Jun Zou
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Jinling Meng
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Jianbo Wang
- State Key Laboratory of Hybrid RiceDepartment of Plant ScienceCollege of Life SciencesWuhan UniversityWuhanChina
| |
Collapse
|
10
|
Kumar R, Mukherjee S, Ayele BT. Molecular aspects of sucrose transport and its metabolism to starch during seed development in wheat: A comprehensive review. Biotechnol Adv 2018; 36:954-967. [PMID: 29499342 DOI: 10.1016/j.biotechadv.2018.02.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/27/2018] [Accepted: 02/24/2018] [Indexed: 10/17/2022]
Abstract
Wheat is one of the most important crops globally, and its grain is mainly used for human food, accounting for 20% of the total dietary calories. It is also used as animal feed and as a raw material for a variety of non-food and non-feed industrial products such as a feedstock for the production of bioethanol. Starch is the major constituent of a wheat grain, as a result, it is considered as a critical determinant of wheat yield and quality. The amount and composition of starch deposited in wheat grains is controlled primarily by sucrose transport from source tissues to the grain and its conversion to starch. Therefore, elucidation of the molecular mechanisms regulating these physiological processes provides important opportunities to improve wheat starch yield and quality through biotechnological approaches. This review comprehensively discusses the current understanding of the molecular aspects of sucrose transport and sucrose-to-starch metabolism in wheat grains. It also highlights the advances and prospects of starch biotechnology in wheat.
Collapse
Affiliation(s)
- Rohit Kumar
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, Manitoba R3T 2N2, Canada
| | - Shalini Mukherjee
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, Manitoba R3T 2N2, Canada
| | - Belay T Ayele
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, Manitoba R3T 2N2, Canada.
| |
Collapse
|
11
|
Liu Y, Erséus C. New specific primers for amplification of the Internal Transcribed Spacer region in Clitellata (Annelida). Ecol Evol 2017; 7:10421-10439. [PMID: 29238565 PMCID: PMC5723599 DOI: 10.1002/ece3.3212] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 06/05/2017] [Accepted: 06/06/2017] [Indexed: 11/11/2022] Open
Abstract
Nuclear molecular evidence, for example, the rapidly evolving Internal Transcribed Spacer region (ITS), integrated with maternally inherited (mitochondrial) COI barcodes, has provided new insights into the diversity of clitellate annelids. PCR amplification and sequencing of ITS, however, are often hampered by poor specificity of primers used. Therefore, new clitellate‐specific primers for amplifying the whole ITS region (ITS: 29F/1084R) and a part of it (ITS2: 606F/1082R) were developed on the basis of a collection of previously published ITS sequences with flanking rDNA coding regions. The specificity of these and other ITS primers used for clitellates were then tested in silico by evaluating their mismatches with all assembled and annotated sequences (STD, version r127) from EMBL, and the new primers were also tested in vitro for a taxonomically broad sample of clitellate species (71 specimens representing 11 families). The in silico analyses showed that the newly designed primers have a better performance than the universal ones when amplifying clitellate ITS sequences. In vitro PCR and sequencing using the new primers were successful, in particular, for the 606F/1082R pair, which worked well for 65 of the 71 specimens. Thus, using this pair for amplifying the ITS2 will facilitate further molecular systematic investigation of various clitellates. The other pair (29F/1084R), will be a useful complement to existing ITS primers, when amplifying ITS as a whole.
Collapse
Affiliation(s)
- Yingkui Liu
- Department of Biological and Environmental Sciences University of Gothenburg Göteborg Sweden
| | - Christer Erséus
- Department of Biological and Environmental Sciences University of Gothenburg Göteborg Sweden
| |
Collapse
|
12
|
Richards CL, Alonso C, Becker C, Bossdorf O, Bucher E, Colomé-Tatché M, Durka W, Engelhardt J, Gaspar B, Gogol-Döring A, Grosse I, van Gurp TP, Heer K, Kronholm I, Lampei C, Latzel V, Mirouze M, Opgenoorth L, Paun O, Prohaska SJ, Rensing SA, Stadler PF, Trucchi E, Ullrich K, Verhoeven KJF. Ecological plant epigenetics: Evidence from model and non-model species, and the way forward. Ecol Lett 2017; 20:1576-1590. [PMID: 29027325 DOI: 10.1111/ele.12858] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/15/2017] [Accepted: 09/04/2017] [Indexed: 12/15/2022]
Abstract
Growing evidence shows that epigenetic mechanisms contribute to complex traits, with implications across many fields of biology. In plant ecology, recent studies have attempted to merge ecological experiments with epigenetic analyses to elucidate the contribution of epigenetics to plant phenotypes, stress responses, adaptation to habitat, and range distributions. While there has been some progress in revealing the role of epigenetics in ecological processes, studies with non-model species have so far been limited to describing broad patterns based on anonymous markers of DNA methylation. In contrast, studies with model species have benefited from powerful genomic resources, which contribute to a more mechanistic understanding but have limited ecological realism. Understanding the significance of epigenetics for plant ecology requires increased transfer of knowledge and methods from model species research to genomes of evolutionarily divergent species, and examination of responses to complex natural environments at a more mechanistic level. This requires transforming genomics tools specifically for studying non-model species, which is challenging given the large and often polyploid genomes of plants. Collaboration among molecular geneticists, ecologists and bioinformaticians promises to enhance our understanding of the mutual links between genome function and ecological processes.
Collapse
Affiliation(s)
- Christina L Richards
- Department of Integrative Biology, University of South Florida, Tampa, FL, 33620, USA
| | | | - Claude Becker
- Gregor Mendel Institute of Molecular Plant Biology, 1030, Vienna, Austrian Academy of Sciences, Vienna Biocenter (VBC), Austria
| | - Oliver Bossdorf
- Plant Evolutionary Ecology, University of Tübingen, 72076, Tübingen, Germany
| | - Etienne Bucher
- Institut de Recherche en Horticulture et Semences, 49071, Beaucouzé Cedex, France
| | - Maria Colomé-Tatché
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, 9713, Groningen, The Netherlands.,Institute of Computational Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany.,School of Life Sciences Weihenstephan, Technical University of Munich, 85354, Freising, Germany
| | - Walter Durka
- Department of Community Ecology, Helmholtz Centre for Environmental Research - UFZ, 06120, Halle, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany
| | - Jan Engelhardt
- Institut für Informatik, University of Leipzig, 04107, Leipzig, Germany
| | - Bence Gaspar
- Plant Evolutionary Ecology, University of Tübingen, 72076, Tübingen, Germany
| | - Andreas Gogol-Döring
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany.,Institute of Computer Science, University of Halle, 06120, Halle, Germany
| | - Ivo Grosse
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany.,Institute of Computer Science, University of Halle, 06120, Halle, Germany
| | - Thomas P van Gurp
- Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Katrin Heer
- Conservation Biology, Philipps-University of Marburg, 35037, Marburg, Germany
| | - Ilkka Kronholm
- Department of Biological and Environmental Sciences, Center of Excellence in Biological Interactions, University of Jyväskylä, 40014, Jyväskylän yliopisto, Finland
| | - Christian Lampei
- Institute of Plant Breeding, Seed Science and Population Genetics, 70599, Stuttgart, Germany
| | - Vít Latzel
- Institute of Botany, The Czech Academy of Sciences, 25243, Průhonice, Czech Republic
| | - Marie Mirouze
- Institut de Recherche pour le Développement, Laboratoire Génome et Développement des Plantes, 66860, Perpignan, France
| | - Lars Opgenoorth
- Department of Ecology, Philipps-University Marburg, 35037, Marburg, Germany
| | - Ovidiu Paun
- Plant Ecological Genomics, University of Vienna, 1030, Vienna, Austria
| | - Sonja J Prohaska
- Institut für Informatik, University of Leipzig, 04107, Leipzig, Germany.,The Santa Fe Institute, Santa Fe NM, 87501, USA
| | - Stefan A Rensing
- Plant Cell Biology, Philipps-University Marburg, 35037, Marburg, Germany.,BIOSS Centre for Biological Signaling Studies, University of Freiburg, 79098, Freiburg, Germany
| | - Peter F Stadler
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany.,Institut für Informatik, University of Leipzig, 04107, Leipzig, Germany.,The Santa Fe Institute, Santa Fe NM, 87501, USA.,Max Planck Institute for Mathematics in the Sciences, 04103, Leipzig, Germany
| | - Emiliano Trucchi
- Plant Ecological Genomics, University of Vienna, 1030, Vienna, Austria
| | - Kristian Ullrich
- Plant Cell Biology, Philipps-University Marburg, 35037, Marburg, Germany
| | - Koen J F Verhoeven
- Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| |
Collapse
|
13
|
Rubio-Piña J, Quiroz-Moreno A, Sánchez-Teyer LF. A quantitative PCR approach for determining the ribosomal DNA copy number in the genome of Agave tequila Weber. ELECTRON J BIOTECHN 2016. [DOI: 10.1016/j.ejbt.2016.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
14
|
Fasano C, Diretto G, Aversano R, D'Agostino N, Di Matteo A, Frusciante L, Giuliano G, Carputo D. Transcriptome and metabolome of synthetic Solanum autotetraploids reveal key genomic stress events following polyploidization. THE NEW PHYTOLOGIST 2016; 210:1382-94. [PMID: 26915816 DOI: 10.1111/nph.13878] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 12/06/2015] [Indexed: 05/19/2023]
Abstract
Polyploids are generally classified as autopolyploids, derived from a single species, and allopolyploids, arising from interspecific hybridization. The former represent ideal materials with which to study the consequences of genome doubling and ascertain whether there are molecular and functional rules operating following polyploidization events. To investigate whether the effects of autopolyploidization are common to different species, or if species-specific or stochastic events are prevalent, we performed a comprehensive transcriptomic and metabolomic characterization of diploids and autotetraploids of Solanum commersonii and Solanum bulbocastanum. Autopolyploidization remodelled the transcriptome and the metabolome of both species. In S. commersonii, differentially expressed genes (DEGs) were highly enriched in pericentromeric regions. Most changes were stochastic, suggesting a strong genotypic response. However, a set of robustly regulated transcripts and metabolites was also detected, including purine bases and nucleosides, which are likely to underlie a common response to polyploidization. We hypothesize that autopolyploidization results in nucleotide pool imbalance, which in turn triggers a genomic shock responsible for the stochastic events observed. The more extensive genomic stress and the higher number of stochastic events observed in S. commersonii with respect to S. bulbocastanum could be the result of the higher nucleoside depletion observed in this species.
Collapse
Affiliation(s)
- Carlo Fasano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055, Italy
| | - Gianfranco Diretto
- Italian National Agency for New Technologies, Energy, and Sustainable Development, Casaccia Research Centre, Rome, 00123, Italy
| | - Riccardo Aversano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055, Italy
| | - Nunzio D'Agostino
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria - Centro di ricerca per l'orticoltura (CRA-ORT), via dei Cavalleggeri 25, Pontecagnano, Salerno, 84098, Italy
| | - Antonio Di Matteo
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055, Italy
| | - Luigi Frusciante
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055, Italy
| | - Giovanni Giuliano
- Italian National Agency for New Technologies, Energy, and Sustainable Development, Casaccia Research Centre, Rome, 00123, Italy
| | - Domenico Carputo
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055, Italy
| |
Collapse
|
15
|
Limborg MT, Seeb LW, Seeb JE. Sorting duplicated loci disentangles complexities of polyploid genomes masked by genotyping by sequencing. Mol Ecol 2016; 25:2117-29. [PMID: 26939067 DOI: 10.1111/mec.13601] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 02/19/2016] [Accepted: 02/24/2016] [Indexed: 01/04/2023]
Abstract
Many plants and animals of polyploid origin are currently enjoying a genomics explosion enabled by modern sequencing and genotyping technologies. However, routine filtering of duplicated loci in most studies using genotyping by sequencing introduces an unacceptable, but often overlooked, bias when detecting selection. Retained duplicates from ancient whole-genome duplications (WGDs) may be found throughout genomes, whereas retained duplicates from recent WGDs are concentrated at distal ends of some chromosome arms. Additionally, segmental duplicates can be found at distal ends or nearly anywhere in a genome. Evidence shows that these duplications facilitate adaptation through one of two pathways: neo-functionalization or increased gene expression. Filtering duplicates removes distal ends of some chromosomes, and distal ends are especially known to harbour adaptively important genes. Thus, filtering of duplicated loci impoverishes the interpretation of genomic data as signals from contiguous duplicated genes are ignored. We review existing strategies to genotype and map duplicated loci; we focus in detail on an overlooked strategy of using gynogenetic haploids (1N) as a part of new genotyping by sequencing studies. We provide guidelines on how to use this haploid strategy for studies on polyploid-origin vertebrates including how it can be used to screen duplicated loci in natural populations. We conclude by discussing areas of research that will benefit from better inclusion of polyploid loci; we particularly stress the sometimes overlooked fact that basing genomic studies on dense maps provides value added in the form of locating and annotating outlier loci or colocating outliers into islands of divergence.
Collapse
Affiliation(s)
- Morten T Limborg
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat Street, Box 355020, Seattle, WA, 98195, USA.,National Institute of Aquatic Resources, Technical University of Denmark, Vejlsøvej 39, 8600 Silkeborg, Denmark
| | - Lisa W Seeb
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat Street, Box 355020, Seattle, WA, 98195, USA
| | - James E Seeb
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat Street, Box 355020, Seattle, WA, 98195, USA
| |
Collapse
|
16
|
Sexual Polyploidization in Medicago sativa L.: Impact on the Phenotype, Gene Transcription, and Genome Methylation. G3-GENES GENOMES GENETICS 2016; 6:925-38. [PMID: 26858330 PMCID: PMC4825662 DOI: 10.1534/g3.115.026021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Polyploidization as the consequence of 2n gamete formation is a prominent mechanism in plant evolution. Studying its effects on the genome, and on genome expression, has both basic and applied interest. We crossed two diploid (2n = 2x = 16) Medicago sativa plants, a subsp. falcata seed parent, and a coerulea × falcata pollen parent that form a mixture of n and 2n eggs and pollen, respectively. Such a cross produced full-sib diploid and tetraploid (2n = 4x = 32) hybrids, the latter being the result of bilateral sexual polyploidization (BSP). These unique materials allowed us to investigate the effects of BSP, and to separate the effect of intraspecific hybridization from those of polyploidization by comparing 2x with 4x full sib progeny plants. Simple sequence repeat marker segregation demonstrated tetrasomic inheritance for all chromosomes but one, demonstrating that these neotetraploids are true autotetraploids. BSP brought about increased biomass, earlier flowering, higher seed set and weight, and larger leaves with larger cells. Microarray analyses with M. truncatula gene chips showed that several hundred genes, related to diverse metabolic functions, changed their expression level as a consequence of polyploidization. In addition, cytosine methylation increased in 2x, but not in 4x, hybrids. Our results indicate that sexual polyploidization induces significant transcriptional novelty, possibly mediated in part by DNA methylation, and phenotypic novelty that could underpin improved adaptation and reproductive success of tetraploid M. sativa with respect to its diploid progenitor. These polyploidy-induced changes may have promoted the adoption of tetraploid alfalfa in agriculture.
Collapse
|
17
|
Wei L, Xiao M, Hayward A, Fu D. Applications and challenges of next-generation sequencing in Brassica species. PLANTA 2013; 238:1005-24. [PMID: 24062086 DOI: 10.1007/s00425-013-1961-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 09/12/2013] [Indexed: 05/09/2023]
Abstract
Next-generation sequencing (NGS) produces numerous (often millions) short DNA sequence reads, typically varying between 25 and 400 bp in length, at a relatively low cost and in a short time. This revolutionary technology is being increasingly applied in whole-genome, transcriptome, epigenome and small RNA sequencing, molecular marker and gene discovery, comparative and evolutionary genomics, and association studies. The Brassica genus comprises some of the most agro-economically important crops, providing abundant vegetables, condiments, fodder, oil and medicinal products. Many Brassica species have undergone the process of polyploidization, which makes their genomes exceptionally complex and can create difficulties in genomics research. NGS injects new vigor into Brassica research, yet also faces specific challenges in the analysis of complex crop genomes and traits. In this article, we review the advantages and limitations of different NGS technologies and their applications and challenges, using Brassica as an advanced model system for agronomically important, polyploid crops. Specifically, we focus on the use of NGS for genome resequencing, transcriptome sequencing, development of single-nucleotide polymorphism markers, and identification of novel microRNAs and their targets. We present trends and advances in NGS technology in relation to Brassica crop improvement, with wide application for sophisticated genomics research into agronomically important polyploid crops.
Collapse
Affiliation(s)
- Lijuan Wei
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang, 330045, China
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Meili Xiao
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Alice Hayward
- Centre for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, 4072, Australia
| | - Donghui Fu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
18
|
Dufresne F, Stift M, Vergilino R, Mable BK. Recent progress and challenges in population genetics of polyploid organisms: an overview of current state-of-the-art molecular and statistical tools. Mol Ecol 2013; 23:40-69. [DOI: 10.1111/mec.12581] [Citation(s) in RCA: 248] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 10/29/2013] [Accepted: 10/30/2013] [Indexed: 12/19/2022]
Affiliation(s)
- France Dufresne
- Département de Biologie; Université du Québec à Rimouski; Québec QC Canada G5L 3A1
| | - Marc Stift
- Department of Biology; University of Konstanz; Konstanz D 78457 Germany
| | - Roland Vergilino
- Department of Integrative Biology; University of Guelph; Guelph ON Canada N1G 2W1
| | - Barbara K. Mable
- Institute of Biodiversity; Animal Health and Comparative Medicine; College of Medical, Veterinary and Life Sciences; University of Glasgow; Glasgow UK
| |
Collapse
|
19
|
Impact of Ploidy Change on Secondary Metabolites and Photochemical Efficiency in Solanum Bulbocastanum. Nat Prod Commun 2013. [DOI: 10.1177/1934578x1300801011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Plants are well known for producing a wide diversity of natural compounds and several strategies have been proposed to enhance their production. Among them, somatic chromosome doubling may represent an effective and inexpensive method. The objective of the current study was to investigate the effect of polyploidization on the leaf metabolic profile and content of tetraploids produced from a wild diploid (2n=2x=24) potato species, Solanum bulbocastanum Dun. Photochemical efficiency of tetraploids was also analyzed. Results from HPLC-DAD and LC/MS analyses provided evidence that tetraploid genotypes displayed either a similar or a lower phenylpropanoids, tryptophan, tyrosine and α-chaconine content compared with the diploid parent. Similarly, no significant differences were found among genotypes both for measures of gas and for chlorophyll fluorescence, except for non-photochemical quenching (NPQ). Steroidal saponins content revealed superiority of some tetraploids with respect to the diploid parent, suggesting perturbations in the mechanism regulating the biosynthesis of such compounds following polyploidization. Lack of superiority may be attributed to the time required for adjustment, adaptation and evolution after the genomic shock induced by polyploidization, as well as the fact that an optimum ploidy level for each species may be crucial. Our results suggest that polyploidization as a strategy to enhance metabolite production cannot be generalized.
Collapse
|