1
|
Riahi C, Urbaneja A, Fernández-Muñoz R, Fortes IM, Moriones E, Pérez-Hedo M. Induction of Glandular Trichomes to Control Bemisia tabaci in Tomato Crops: Modulation by the Natural Enemy Nesidiocoris tenuis. PHYTOPATHOLOGY 2023; 113:1677-1685. [PMID: 36998120 DOI: 10.1094/phyto-11-22-0440-v] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Whitefly-transmitted viruses are one of the biggest threats to tomato (Solanum lycopersicum) growing worldwide. Strategies based on the introgression of resistance traits from wild relatives are promoted to control tomato pests and diseases. Recently, a trichome-based resistance characterizing the wild species Solanum pimpinellifolium was introgressed into a cultivated tomato. An advanced backcross line (BC5S2) exhibiting the presence of acylsugar-associated type IV trichomes, which are lacking in cultivated tomatoes, was effective at controlling whiteflies (Hemiptera: Aleyrodidae) and limiting the spread of whitefly-transmitted viruses. However, at early growth stages, type IV trichome density and acylsugar production are limited; thus, protection against whiteflies and whitefly-transmitted viruses remains irrelevant. In this work, we demonstrate that young BC5S2 tomato plants feeding-punctured by the zoophytophagous predator Nesidiocoris tenuis (Hemiptera: Miridae) displayed an increase (above 50%) in type IV trichome density. Acylsugar production was consistently increased in N. tenuis-punctured BC5S2 plants, which was more likely associated with upregulated expression of the BCKD-E2 gene related to acylsugar biosynthesis. In addition, the infestation of BC5S2 plants with N. tenuis effectively induced the expression of defensive genes involved in the jasmonic acid signaling pathway, resulting in strong repellence to Bemisia tabaci and attractiveness to N. tenuis. Thus, through preplant release of N. tenuis in tomato nurseries carried out in some integrated pest management programs, type IV trichome-expressing plants can be prepared to control whiteflies and whitefly-transmitted viruses at early growth stages. This study emphasizes the advantage of reinforcing constitutive resistance using defense inducers to guarantee robust protection against pests and transmitted viruses.
Collapse
Affiliation(s)
- Chaymaa Riahi
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, (IVIA), 46113 Moncada, Valencia, Spain
| | - Alberto Urbaneja
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, (IVIA), 46113 Moncada, Valencia, Spain
| | - Rafael Fernández-Muñoz
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, 29750 Algarrobo-Costa, Málaga, Spain
| | - Isabel M Fortes
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, 29750 Algarrobo-Costa, Málaga, Spain
| | - Enrique Moriones
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, 29750 Algarrobo-Costa, Málaga, Spain
| | - Meritxell Pérez-Hedo
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, (IVIA), 46113 Moncada, Valencia, Spain
| |
Collapse
|
2
|
Pandey A, Yadav R, Sanyal I. Evaluating the pesticidal impact of plant protease inhibitors: lethal weaponry in the co-evolutionary battle. PEST MANAGEMENT SCIENCE 2022; 78:855-868. [PMID: 34570437 DOI: 10.1002/ps.6659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
In the arsenal of plant defense, protease inhibitors (PIs) are well-designed defensive products to counter field pests. PIs are produced in plant tissues by means of 'stable defense metabolite' and triggered on demand as the perception of the signal and well established as a part of plant active defense. PIs have been utilized for approximately four decades, initially as a gene-alone approach that was later replaced by multiple gene pyramiding/gene stacking due to insect adaptability towards the PI alone. By considering the adaptive responses of the pest to the single insecticidal gene, the concept of gene pyramiding gained continuous appreciation for the development of transgenic crops to deal with co-evolving pests. Gene pyramiding approaches are executed to bypass the insect's adaptive responses against PIs. Stacking PIs with additional insecticidal proteins, plastid engineering, recombinant proteinase inhibitors, RNAi-based methods and CRISPR/Cas9-mediated genome editing are the advanced tools and methods for next-generation pest management. Undoubtedly, the domain associated with the mechanism of PIs in the course of plant-pest interactions will occupy a central role for the advancement of more efficient and sustainable pest control strategies. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ankesh Pandey
- CSIR-National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Reena Yadav
- CSIR-National Botanical Research Institute, Lucknow, India
- Department of Biotechnology, Kumaun University, Nainital, India
| | - Indraneel Sanyal
- CSIR-National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
3
|
Clemente M, Corigliano MG, Pariani SA, Sánchez-López EF, Sander VA, Ramos-Duarte VA. Plant Serine Protease Inhibitors: Biotechnology Application in Agriculture and Molecular Farming. Int J Mol Sci 2019; 20:E1345. [PMID: 30884891 PMCID: PMC6471620 DOI: 10.3390/ijms20061345] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/14/2019] [Accepted: 02/18/2019] [Indexed: 11/12/2022] Open
Abstract
The serine protease inhibitors (SPIs) are widely distributed in living organisms like bacteria, fungi, plants, and humans. The main function of SPIs as protease enzymes is to regulate the proteolytic activity. In plants, most of the studies of SPIs have been focused on their physiological role. The initial studies carried out in plants showed that SPIs participate in the regulation of endogenous proteolytic processes, as the regulation of proteases in seeds. Besides, it was observed that SPIs also participate in the regulation of cell death during plant development and senescence. On the other hand, plant SPIs have an important role in plant defense against pests and phytopathogenic microorganisms. In the last 20 years, several transgenic plants over-expressing SPIs have been produced and tested in order to achieve the increase of the resistance against pathogenic insects. Finally, in molecular farming, SPIs have been employed to minimize the proteolysis of recombinant proteins expressed in plants. The present review discusses the potential biotechnological applications of plant SPIs in the agriculture field.
Collapse
Affiliation(s)
- Marina Clemente
- Instituto Tecnológico Chascomús (INTECH), UNSAM-CONICET, Chascomús, Provincia de Buenos Aires B7130, Argentina.
| | - Mariana G Corigliano
- Instituto Tecnológico Chascomús (INTECH), UNSAM-CONICET, Chascomús, Provincia de Buenos Aires B7130, Argentina.
| | - Sebastián A Pariani
- Instituto Tecnológico Chascomús (INTECH), UNSAM-CONICET, Chascomús, Provincia de Buenos Aires B7130, Argentina.
| | - Edwin F Sánchez-López
- Instituto Tecnológico Chascomús (INTECH), UNSAM-CONICET, Chascomús, Provincia de Buenos Aires B7130, Argentina.
| | - Valeria A Sander
- Instituto Tecnológico Chascomús (INTECH), UNSAM-CONICET, Chascomús, Provincia de Buenos Aires B7130, Argentina.
| | - Víctor A Ramos-Duarte
- Instituto Tecnológico Chascomús (INTECH), UNSAM-CONICET, Chascomús, Provincia de Buenos Aires B7130, Argentina.
| |
Collapse
|
4
|
Navaei-Bonab R, Kazzazi M, Saber M, Vatanparast M. Differential Inhibition of Helicoverpa armigera (Lep.: Noctuidae) Gut Digestive Trypsin by Extracted and Purified Inhibitor of Datura metel (Solanales: Solanaceae). JOURNAL OF ECONOMIC ENTOMOLOGY 2018; 111:178-186. [PMID: 29240906 DOI: 10.1093/jee/tox209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Indexed: 06/07/2023]
Abstract
The cotton bollworm, Helicoverpa armigera Hubner (Lep: Noctuidae), is an economically important pest of numerous major food crops worldwide. Protease inhibitors from plants, expressed constitutively in transgenic crops, have potential for pest management as an alternative to chemical pesticides. In this study, a protease inhibitor was isolated, purified, and characterized from Datura metel L. seeds. The purity of the isolated inhibitor was confirmed by reverse-phase high-performance liquid chromatography, and activity staining showed one major peak and one clear activity band for the protein. Electrophoretic studies following gel filtration and ion-exchange chromatography revealed two and one bands for purified proteins, respectively. Partial biochemical characterizations of the purified inhibitor were determined. Maximum inhibitory activity was observed at 40-45°C (optimal temperature) when tested against gut extracts of fourth to sixth instar H. armigera larvae. Thermo-stability of the trypsin inhibitor against sixth instar larval midgut trypsin was observed up to 50°C when incubated for 30 min and 2 h. Among metal ions tested, Fe2+, Cu2+, and Mn2+ were found to decrease the trypsin inhibitory activity, whereas Hg2+, Mg2+, K+, Zn2+, Na+, Ca2+, and Cd2+ were found to significantly increase the inhibitory effect. This trypsin inhibitor showed competitive inhibition where the apparent value of Michaelis-Menten Km increased, but the value of Vmax remained unchanged.
Collapse
Affiliation(s)
- Reza Navaei-Bonab
- Department of Plant Protection, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, I. R. Iran
| | - Majid Kazzazi
- Department of Plant Protection, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, I. R. Iran
| | - Moosa Saber
- Department of Plant Protection, Faculty of Agriculture, University of Tabriz, Tabriz, I. R. Iran
| | - Mohammad Vatanparast
- Department of Plant Protection, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, I. R. Iran
| |
Collapse
|
5
|
Hamza R, Pérez-Hedo M, Urbaneja A, Rambla JL, Granell A, Gaddour K, Beltrán JP, Cañas LA. Expression of two barley proteinase inhibitors in tomato promotes endogenous defensive response and enhances resistance to Tuta absoluta. BMC PLANT BIOLOGY 2018; 18:24. [PMID: 29370757 PMCID: PMC5785808 DOI: 10.1186/s12870-018-1240-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 01/17/2018] [Indexed: 05/26/2023]
Abstract
BACKGROUND Plants and insects have coexisted for million years and evolved a set of interactions which affect both organisms at different levels. Plants have developed various morphological and biochemical adaptations to cope with herbivores attacks. However, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) has become the major pest threatening tomato crops worldwide and without the appropriated management it can cause production losses between 80 to 100%. RESULTS The aim of this study was to investigate the in vivo effect of a serine proteinase inhibitor (BTI-CMe) and a cysteine proteinase inhibitor (Hv-CPI2) from barley on this insect and to examine the effect their expression has on tomato defensive responses. We found that larvae fed on tomato transgenic plants co-expressing both proteinase inhibitors showed a notable reduction in weight. Moreover, only 56% of these larvae reached the adult stage. The emerged adults showed wings deformities and reduced fertility. We also investigated the effect of proteinase inhibitors ingestion on the insect digestive enzymes. Our results showed a decrease in larval trypsin activity. Transgenes expression had no harmful effect on Nesidiocoris tenuis (Reuter) (Heteroptera: Miridae), a predator of Tuta absoluta, despite transgenic tomato plants attracted the mirid. We also found that barley cystatin expression promoted plant defense by inducing the expression of the tomato endogenous wound inducible Proteinase inhibitor 2 (Pin2) gene, increasing the production of glandular trichomes and altering the emission of volatile organic compounds. CONCLUSION Our results demonstrate the usefulness of the co-expression of different proteinase inhibitors for the enhancement of plant resistance to Tuta absoluta.
Collapse
Affiliation(s)
- Rim Hamza
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV). Ciudad Politécnica de la Innovación Edf, 8E. Av. Ingeniero Fausto Elio sn, 46022, Valencia, Spain
| | - Meritxell Pérez-Hedo
- Universitat Jaume I (UJI). Departament de Ciències Agràries i del Medi Natural, Unitat Associada d'Entomologia UJI-IVIA, Campus del Riu Sec, E-12071, Castelló de la Plana, Spain
- Instituto Valenciano de Investigaciones Agrarias (IVIA). Centro de Protección Vegetal y Biotecnología, Unidad Asociada de Entomología UJI-IVIA, Carretera CV-315, Km 10,7, 46113, Moncada Valencia, Spain
| | - Alberto Urbaneja
- Instituto Valenciano de Investigaciones Agrarias (IVIA). Centro de Protección Vegetal y Biotecnología, Unidad Asociada de Entomología UJI-IVIA, Carretera CV-315, Km 10,7, 46113, Moncada Valencia, Spain
| | - José L Rambla
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV). Ciudad Politécnica de la Innovación Edf, 8E. Av. Ingeniero Fausto Elio sn, 46022, Valencia, Spain
| | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV). Ciudad Politécnica de la Innovación Edf, 8E. Av. Ingeniero Fausto Elio sn, 46022, Valencia, Spain
| | - Kamel Gaddour
- Research Unit of Genome, Immunodiagnostics and Valorization, ISBM, University of Monastir, Monastir, Tunisia
| | - José P Beltrán
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV). Ciudad Politécnica de la Innovación Edf, 8E. Av. Ingeniero Fausto Elio sn, 46022, Valencia, Spain
| | - Luis A Cañas
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV). Ciudad Politécnica de la Innovación Edf, 8E. Av. Ingeniero Fausto Elio sn, 46022, Valencia, Spain.
| |
Collapse
|
6
|
Tian N, Liu F, Wang P, Zhang X, Li X, Wu G. The molecular basis of glandular trichome development and secondary metabolism in plants. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.plgene.2017.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
7
|
Meenu Krishnan V, Murugan K. Purification, characterization and kinetics of protease inhibitor from fruits of Solanum aculeatissimum Jacq. FOOD SCIENCE AND HUMAN WELLNESS 2015. [DOI: 10.1016/j.fshw.2015.06.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|