1
|
Goyal R, Gupta S, Sharma P, Sharma M. Insights into Prospects of Novel NSAID Prodrugs in the Management of Gastrointestinal Toxicity: A Perspective Review. RECENT ADVANCES IN INFLAMMATION & ALLERGY DRUG DISCOVERY 2024; 18:2-10. [PMID: 38275026 DOI: 10.2174/0127722708278736231205055035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 01/27/2024]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) have a long history in the healthcare system due to their therapeutic potential. These NSAIDs cause ulcerogenicity, stomach pains, gastrointestinal hemorrhage, mucosa bleeding, and pancreatitis when used moderately and consistently. With researchers, managing the aforementioned adverse effects therapeutically is getting increasingly difficult. One method for creating NSAID moieties with low penetration as well as ulcerogenic properties is the prodrug technique. During the oral consumption of NSAID-prodrugs, ulcerations, intestinal hemorrhage, and mucosa hemorrhage have significantly decreased. Considering this background, this review focussed on NSAID prodrugs as well as their justifications, the pathogenesis of NSAIDs inducing gastrointestinal toxicity, and the role of different antioxidants and spacer groups. Prodrug moieties have more advantages over parent medicines concerning both solubility and lipophilicity. In general, NSAID-class prodrugs can successfully treat both acute and long-term inflammation and aches without causing ulcerotoxicity and related gastrointestinal side effects, which reduces their burden from the pharmacoeconomic perspective.
Collapse
Affiliation(s)
- Rajat Goyal
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
| | - Sumeet Gupta
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
| | - Prabodh Sharma
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), Government of NCT of Delhi, New Delhi, 110017, India
| | - Manu Sharma
- Department of Pharmaceutical Sciences, National Forensic Science Laboratory, New Delhi, India
| |
Collapse
|
2
|
Galisteo A, Jannus F, García-García A, Aheget H, Rojas S, Lupiañez JA, Rodríguez-Diéguez A, Reyes-Zurita FJ, Quílez del Moral JF. Diclofenac N-Derivatives as Therapeutic Agents with Anti-Inflammatory and Anti-Cancer Effect. Int J Mol Sci 2021; 22:ijms22105067. [PMID: 34064702 PMCID: PMC8151993 DOI: 10.3390/ijms22105067] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 12/20/2022] Open
Abstract
A series of diclofenac N-derivatives (2, 4, 6, 8c, 9c, 10a-c) were synthesized in order to test their anti-cancer and anti-inflammatory effects. The anticarcinogen activity has been assayed against three cancer cell lines: HT29, human colon cancer cells; Hep-G2, human hepatic cells; and B16-F10, murine melanoma cells. First, we determined the cytotoxicity of the different compounds, finding that the most effective compound was compound 8c against all cell lines and both compounds 4 and 6 in human Hep-G2 and HT29 cell lines. Compounds 4 and 8c were selected for the percentage of apoptosis determination, cell cycle distribution, and mitochondrial membrane potential measure because these products presented the lowest IC50 values in two of the three cancer cell lines assayed (B16-F10 and HepG2), and were two of the three products with lowest IC50 in HT29 cell line. Moreover, the percentages of apoptosis induction were determined for compounds 4 and 8c, showing that the highest values were between 30 to 60%. Next, the effects of these two compounds were observed on the cellular cycle, resulting in an increase in the cell population in G2/M cell cycle phase after treatment with product 8c, whereas compound 4 increased the cells in phase G0/G1, by possible differentiation process induction. Finally, to determine the possible apoptosis mechanism triggered by these compounds, mitochondrial potential was evaluated, indicating the possible activation of extrinsic apoptotic mechanism. On the other hand, we studied the anti-inflammatory effects of these diclofenac (DCF) derivatives on lipopolysaccharide (LPS) activated RAW 264.7 macrophages-monocytes murine cells by inhibition of nitric oxide (NO) production. As a first step, we determined the cytotoxicity of the synthesized compounds, as well as DCF, against these cells. Then, sub-cytotoxic concentrations were used to determine NO release at different incubation times. The greatest anti-inflammatory effect was observed for products 2, 4, 8c, 10a, 10b, and 9c at 20 µg·mL-1 concentration after 48 h of treatment, with inhibition of produced NO between 60 to 75%, and a concentration that reduces to the 50% the production of NO (IC50 NO) between 2.5 to 25 times lower than that of DCF. In this work, we synthesized and determined for the first time the anti-cancer and anti-inflammatory potential of eight diclofenac N-derivatives. In agreement with the recent evidences suggesting that inflammation may contribute to all states of tumorigenesis, the development of these new derivatives capable of inducing apoptosis and anti-inflammatory effects at very low concentrations represent new effective therapeutic strategies against these diseases.
Collapse
Affiliation(s)
- Alberto Galisteo
- Department of Organic Chemistry, Institute of Biotechnology, University of Granada, 18071 Granada, Spain;
| | - Fatin Jannus
- Department of Biochemistry and Molecular Biology, University of Granada, C/Severo Ochoa s/n, 18071 Granada, Spain; (F.J.); (J.A.L.)
| | - Amalia García-García
- Department of Inorganic Chemistry, University of Granada, C/Severo Ochoa s/n, 18071 Granada, Spain; (A.G.-G.); (S.R.); (A.R.-D.)
| | - Houssam Aheget
- Centre for Genomics and Oncological Research, GENYO, C/Health Sciences Technology Park, Av. de la Illustration 114, 18016 Granada, Spain;
| | - Sara Rojas
- Department of Inorganic Chemistry, University of Granada, C/Severo Ochoa s/n, 18071 Granada, Spain; (A.G.-G.); (S.R.); (A.R.-D.)
| | - José A. Lupiañez
- Department of Biochemistry and Molecular Biology, University of Granada, C/Severo Ochoa s/n, 18071 Granada, Spain; (F.J.); (J.A.L.)
| | - Antonio Rodríguez-Diéguez
- Department of Inorganic Chemistry, University of Granada, C/Severo Ochoa s/n, 18071 Granada, Spain; (A.G.-G.); (S.R.); (A.R.-D.)
| | - Fernando J. Reyes-Zurita
- Department of Biochemistry and Molecular Biology, University of Granada, C/Severo Ochoa s/n, 18071 Granada, Spain; (F.J.); (J.A.L.)
- Correspondence: (F.J.R.-Z.); (J.F.Q.d.M.); Tel.: +34-958243252 (F.J.R.-Z.); +34-958243185 (J.F.Q.d.M.)
| | - José F. Quílez del Moral
- Department of Organic Chemistry, Institute of Biotechnology, University of Granada, 18071 Granada, Spain;
- Correspondence: (F.J.R.-Z.); (J.F.Q.d.M.); Tel.: +34-958243252 (F.J.R.-Z.); +34-958243185 (J.F.Q.d.M.)
| |
Collapse
|
3
|
Synthesis of Novel Diclofenac Hydrazones: Molecular Docking, Anti-Inflammatory, Analgesic, and Ulcerogenic Activity. J CHEM-NY 2020. [DOI: 10.1155/2020/4916726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
This study was aimed to design novel diclofenac hydrazones having anti-inflammatory and analgesic activity with gastric sparing effect. A new series of 2-[2-(2,6-dichloroanilino)phenyl]-N’-[(substituted phenyl) methylidene] acetohydrazide derivatives (1−14) were synthesized and evaluated for their anti-inflammatory, analgesic, and ulcerogenic activity. The compounds were identified and confirmed by elemental analysis and spectral data. During anti-inflammatory activity by carrageenan-induced paw edema method, compounds (2, 3, 7, 8, 11, and 13) were found to be most promising. Compounds 3, 8, and 13 have been found to have significant analgesic activity compared to the reference drug diclofenac in analgesic activity by both the hot plate method and acetic acid-induced writhing method. The compounds which presented highly significant anti-inflammatory and analgesic activity were further tested for their ulcerogenic activity. Compounds 3 and 8 showed maximum ulcerogenic reduction activities. Compound 8 was found to have LD50 of 168 mg/kg. Compound 8 with 3,5-dimethoxy-4-hydroxyphenyl substitution was found to be the most promising anti-inflammatory and analgesic agent with gastric sparing activity. Molecular docking of compounds was performed for COX−1/COX−2 binding site. Lead compound 8 showed better binding affinities of −9.4 kJ/mol with both COX-1 and COX-2 as compared to the standard drug, diclofenac with binding affinities of −6.6 kJ/mol and −8.1 kJ/mol for COX−1 and COX−2, respectively.
Collapse
|
4
|
Appa R, Mhaisalkar VA, Bafana A, Saravana Devi S, Krishnamurthi K, Chakrabarti T, Naoghare PK. Simultaneous quantitative monitoring of four indicator contaminants of emerging concern (CEC) in different water sources of Central India using SPE/LC-(ESI)MS-MS. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:489. [PMID: 30046939 DOI: 10.1007/s10661-018-6867-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 07/12/2018] [Indexed: 05/27/2023]
Abstract
Environmental occurrence of CECs poses a great threat to both aquatic life and human health. The aim of this study was to optimize and validate SPE/LC-(ESI)MS-MS method for simultaneous quantitative monitoring of two sub-classes of CECs (pharmaceuticals and hormones) and to estimate the concentrations of select CECs in environmental water samples. For all the tested analytes, recoveries in laboratory reagent water were greater than 81%. Average percent (relative standard deviation) RSD of the analytes in recovery, repeatability, and reproducibility experiments were ≤ 10%. Determination coefficients (r2) of primidone, diclofenac, testosterone, and progesterone were estimated to be 0.9979, 0.9972, 0.9968, and 0.9962, respectively. Limits of detection (LOD) for primidone, diclofenac, testosterone, and progesterone were 4.63 ng/L, 5.36 ng/L, 0.55 ng/L, and 0.88 ng/L, respectively. Limits of quantification (LOQ) for primidone, diclofenac, testosterone, and progesterone were 14.72 ng/L, 17.06 ng/L, 1.766 ng/L, and 2.813 ng/L, respectively. Average recoveries in environmental water and wastewater samples were greater than 74% and RSD were ≤ 7%. Trace levels (68.33-125.70 ng/L) of primidone were detected in four environmental water samples, whereas diclofenac was not detected in any of the tested sample. Trace levels of progesterone were observed in two environmental samples (16.64 -203.73 ng/L), whereas testosterone was detected in STP inlet sample (178.16 ng/L).
Collapse
Affiliation(s)
- Roshan Appa
- Department of Civil Engineering, Visvesvaraya National Institute of Technology, Nagpur, India
| | - V A Mhaisalkar
- Department of Civil Engineering, Visvesvaraya National Institute of Technology, Nagpur, India
| | - Amit Bafana
- Environmental Impact and Sustainability Division, National Environmental Engineering Research Institute (NEERI), CSIR, Nehru Marg, Nagpur, 440020, India
| | - S Saravana Devi
- Environmental Impact and Sustainability Division, National Environmental Engineering Research Institute (NEERI), CSIR, Nehru Marg, Nagpur, 440020, India
| | - Kannan Krishnamurthi
- Environmental Impact and Sustainability Division, National Environmental Engineering Research Institute (NEERI), CSIR, Nehru Marg, Nagpur, 440020, India
| | - Tapan Chakrabarti
- Department of Civil Engineering, Visvesvaraya National Institute of Technology, Nagpur, India
| | - Pravin K Naoghare
- Environmental Impact and Sustainability Division, National Environmental Engineering Research Institute (NEERI), CSIR, Nehru Marg, Nagpur, 440020, India.
| |
Collapse
|
5
|
Synthesis, Anti-Inflammatory Activity, and In Silico Study of Novel Diclofenac and Isatin Conjugates. INTERNATIONAL JOURNAL OF MEDICINAL CHEMISTRY 2018; 2018:9139786. [PMID: 30009055 PMCID: PMC6020500 DOI: 10.1155/2018/9139786] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 04/28/2018] [Accepted: 05/16/2018] [Indexed: 01/29/2023]
Abstract
The design, synthesis, and development of novel non-steroidal anti-inflammatory drugs (NSAIDs) with better activity and lower side effects are respectable area of research. Novel Diclofenac Schiff's bases (M1, M2, M4, M7, and M8) were designed and synthesized, and their respective chemical structures were deduced using various spectral tools (IR, 1H NMR, 13C NMR, and MS). The compounds were synthesized via Schiff's condensation reaction and their anti-inflammatory activity was investigated applying the Carrageenan-induced paw edema model against Diclofenac as positive control. Percentage inhibition of edema indicated that all compounds were exhibiting a comparable anti-inflammatory activity as Diclofenac. Moreover, the anti-inflammatory activity was supported via virtual screening using molecular docking study. Interestingly compound M2 showed the highest in vivo activity (61.32% inhibition) when compared to standard Diclofenac (51.36% inhibition) as well as the best binding energy score (-10.765) and the virtual screening docking score (-12.142).
Collapse
|
6
|
Magliocca S, De Caro C, Lazzarato L, Russo R, Rolando B, Chegaev K, Marini E, Nieddu M, Burrai L, Boatto G, Cristiano C, Marabello D, Gazzano E, Riganti C, Sodano F, Rimoli MG. Aceclofenac–Galactose Conjugate: Design, Synthesis, Characterization, and Pharmacological and Toxicological Evaluations. Mol Pharm 2018; 15:3101-3110. [DOI: 10.1021/acs.molpharmaceut.8b00195] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Salvatore Magliocca
- Department of Pharmacy, “Federico II” University of Naples, 80131 Naples, Italy
| | - Carmen De Caro
- Department of Pharmacy, “Federico II” University of Naples, 80131 Naples, Italy
- Department of Science of Health, School of Medicine and Surgery, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| | | | - Roberto Russo
- Department of Pharmacy, “Federico II” University of Naples, 80131 Naples, Italy
| | | | | | | | - Maria Nieddu
- Department of Chemistry and Pharmacy, University of Sassari, 07100, Sassari, Italy
| | - Lucia Burrai
- Department of Chemistry and Pharmacy, University of Sassari, 07100, Sassari, Italy
| | - Gianpiero Boatto
- Department of Chemistry and Pharmacy, University of Sassari, 07100, Sassari, Italy
| | - Claudia Cristiano
- Department of Pharmacy, “Federico II” University of Naples, 80131 Naples, Italy
| | - Domenica Marabello
- Interdepartmental Center
for Crystallography (CrisDi), 10125 Torino, Italy
| | - Elena Gazzano
- Department of Oncology, University of Torino, 10126 Torino, Italy
| | - Chiara Riganti
- Department of Oncology, University of Torino, 10126 Torino, Italy
| | | | - Maria Grazia Rimoli
- Department of Pharmacy, “Federico II” University of Naples, 80131 Naples, Italy
| |
Collapse
|
7
|
Peesa JP, Yalavarthi PR, Rasheed A, Mandava VBR. A perspective review on role of novel NSAID prodrugs in the management of acute inflammation. JOURNAL OF ACUTE DISEASE 2016. [DOI: 10.1016/j.joad.2016.08.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
8
|
Synthesis, In Vitro and In Vivo Evaluation of the N-ethoxycarbonylmorpholine Ester of Diclofenac as a Prodrug. Pharmaceuticals (Basel) 2014; 7:453-63. [PMID: 24736104 PMCID: PMC4014702 DOI: 10.3390/ph7040453] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 03/20/2014] [Accepted: 03/31/2014] [Indexed: 11/30/2022] Open
Abstract
The N-ethoxycarbonylmorpholine moiety was evaluated as a novel prodrug moiety for carboxylic acid containing drugs represented by diclofenac (1). Compound 2, the N-ethoxycarbonylmorpholine ester of diclofenac was synthesized and evaluated as a potential prodrug. The stability of the synthesized prodrug was evaluated in solutions of pH 1 and 7.4, and in plasma. The ester’s half lives were found to be 8 h, 47 h and 21 min in pH 1, pH 7.4 and plasma, respectively. Equimolar doses of diclofenac sodium and its synthesized prodrug were administered orally to a group of rabbits in a crossover study to evaluate their pharmacokinetic parameters. The prodrug 2 shows a similar rate and extent of absorption as the parent drug (1). The ulcerogenicity of the prepared prodrug was evaluated and compared with the parent drug. The prodrug showed less ulcerogenicity as detected by fewer number and smaller size of ulcers. In conclusion, the newly synthesized N-ethoxycarbonylmorpholine ester of diclofenac prodrug showed appropriate stability properties at different pHs, similar pharmacokinetic profile, and much less ulcerogenecity at the GIT compared to the parent drug diclofenac.
Collapse
|
9
|
Sinha M, Gautam L, Shukla PK, Kaur P, Sharma S, Singh TP. Current perspectives in NSAID-induced gastropathy. Mediators Inflamm 2013; 2013:258209. [PMID: 23576851 PMCID: PMC3610380 DOI: 10.1155/2013/258209] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Accepted: 02/14/2013] [Indexed: 12/18/2022] Open
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are the most highly prescribed drugs in the world. Their analgesic, anti-inflammatory, and antipyretic actions may be beneficial; however, they are associated with severe side effects including gastrointestinal injury and peptic ulceration. Though several approaches for limiting these side effects have been adopted, like the use of COX-2 specific drugs, comedication of acid suppressants like proton pump inhibitors and prostaglandin analogs, these alternatives have limitations in terms of efficacy and side effects. In this paper, the mechanism of action of NSAIDs and their critical gastrointestinal complications have been reviewed. This paper also provides the information on different preventive measures prescribed to minimize such adverse effects and analyses the new suggested strategies for development of novel drugs to maintain the anti-inflammatory functions of NSAIDs along with effective gastrointestinal protection.
Collapse
Affiliation(s)
| | | | | | | | - Sujata Sharma
- Department of Biophysics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110 029, India
| | - Tej P. Singh
- Department of Biophysics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110 029, India
| |
Collapse
|