1
|
Mmbando GS. Variation in ultraviolet-B (UV-B)-induced DNA damage repair mechanisms in plants and humans: an avenue for developing protection against skin photoaging. Int J Radiat Biol 2024; 100:1505-1516. [PMID: 39231421 DOI: 10.1080/09553002.2024.2398081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 09/06/2024]
Abstract
PURPOSE The increasing amounts of ultraviolet-B (UV-B) light in our surroundings have sparked worries about the possible effects on humans and plants. The detrimental effects of heightened UV-B exposure on these two vital elements of terrestrial life are different due to their unique and concurrent nature. Understanding common vulnerabilities and distinctive adaptations of UV-B radiation by exploring the physiological and biochemical responses of plants and the effects on human health is of huge importance. The comparative effects of UV-B radiation on plants and animals, however, are poorly studied. This review sheds light on the sophisticated web of UV-B radiation effects by navigating the complex interaction between botanical and medical perspectives, drawing upon current findings. CONCLUSION By providing a comprehensive understanding of the complex effects of heightened UV-B radiation on plants and humans, this study summarizes relevant adaptation strategies to the heightened UV-B radiation stress, which offer new approaches for improving human cellular resilience to environmental stressors.
Collapse
Affiliation(s)
- Gideon Sadikiel Mmbando
- College of Natural and Mathematical Sciences, Department of Biology, The University of Dodoma, Dodoma, Tanzania
| |
Collapse
|
2
|
Hasterok S, Jankovskaja S, Miletic Dahlström R, Prgomet Z, Ohlsson L, Björklund S, Gustafsson A. Exploring the Surface: Sampling of Potential Skin Cancer Biomarkers Kynurenine and Tryptophan, Studied on 3D Melanocyte and Melanoma Models. Biomolecules 2024; 14:815. [PMID: 39062529 PMCID: PMC11274760 DOI: 10.3390/biom14070815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Early detection of cancer via biomarkers is vital for improving patient survival rates. In the case of skin cancers, low-molecular-weight biomarkers can penetrate the skin barrier, enabling non-invasive sampling at an early stage. This study focuses on detecting tryptophan (Trp) and kynurenine (Kyn) on the surface of reconstructed 3D melanoma and melanocyte models. This is examined in connection with IDO-1 and IL-6 expression in response to IFN-γ or UVB stimulation, both crucial factors of the melanoma tumor microenvironment (TME). Using a polystyrene scaffold, full-thickness human skin equivalents containing fibroblasts, keratinocytes, and melanocytes or melanoma cells were developed. The samples were stimulated with IFN-γ or UVB, and Trp and Kyn secretion was measured using HPLC-PDA and HPLC-MS. The expression of IDO-1 and IL-6 was measured using RT-qPCR. Increased Trp catabolism to Kyn was observed in IFN-γ-stimulated melanoma and melanocyte models, along with higher IDO-1 expression. UVB exposure led to significant changes in Kyn levels but only in the melanoma model. This study demonstrates the potential of skin surface Trp and Kyn monitoring to capture TME metabolic changes. It also lays the groundwork for future in vivo studies, aiding in understanding and monitoring skin cancer progression.
Collapse
Affiliation(s)
- Sylwia Hasterok
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, 205 06 Malmo, Sweden; (S.J.); (R.M.D.); (Z.P.); (L.O.); (S.B.)
- Biofilms Research Center for Biointerfaces, Malmö University, 205 06 Malmo, Sweden
| | - Skaidre Jankovskaja
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, 205 06 Malmo, Sweden; (S.J.); (R.M.D.); (Z.P.); (L.O.); (S.B.)
- Biofilms Research Center for Biointerfaces, Malmö University, 205 06 Malmo, Sweden
| | - Ruzica Miletic Dahlström
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, 205 06 Malmo, Sweden; (S.J.); (R.M.D.); (Z.P.); (L.O.); (S.B.)
- Biofilms Research Center for Biointerfaces, Malmö University, 205 06 Malmo, Sweden
| | - Zdenka Prgomet
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, 205 06 Malmo, Sweden; (S.J.); (R.M.D.); (Z.P.); (L.O.); (S.B.)
- Biofilms Research Center for Biointerfaces, Malmö University, 205 06 Malmo, Sweden
- Section for Oral Biology and Pathology, Faculty of Odontology, Malmö University, 214 21 Malmo, Sweden
| | - Lars Ohlsson
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, 205 06 Malmo, Sweden; (S.J.); (R.M.D.); (Z.P.); (L.O.); (S.B.)
- Biofilms Research Center for Biointerfaces, Malmö University, 205 06 Malmo, Sweden
| | - Sebastian Björklund
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, 205 06 Malmo, Sweden; (S.J.); (R.M.D.); (Z.P.); (L.O.); (S.B.)
- Biofilms Research Center for Biointerfaces, Malmö University, 205 06 Malmo, Sweden
| | - Anna Gustafsson
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, 205 06 Malmo, Sweden; (S.J.); (R.M.D.); (Z.P.); (L.O.); (S.B.)
- Biofilms Research Center for Biointerfaces, Malmö University, 205 06 Malmo, Sweden
| |
Collapse
|
3
|
Madorran E, Kocbek Šaherl L, Rakuša M, Takač I, Munda M. Finding a Direct Method for a Dynamic Process: The DD (Direct and Dynamic) Cell-Tox Method. Int J Mol Sci 2024; 25:5133. [PMID: 38791172 PMCID: PMC11120653 DOI: 10.3390/ijms25105133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
The main focus of in vitro toxicity assessment methods is to assess the viability of the cells, which is usually based on metabolism changes. Yet, when exposed to toxic substances, the cell triggers multiple signals in response. With this in mind, we have developed a promising cell-based toxicity method that observes various cell responses when exposed to toxic substances (either death, division, or remain viable). Based on the collective cell response, we observed and predicted the dynamics of the cell population to determine the toxicity of the toxicant. The method was tested with two different conformations: In the first conformation, we exposed a monoculture model of blood macrophages to UV light, hydrogen peroxide, nutrient deprivation, tetrabromobisphenol A, fatty acids, and 5-fluorouracil. In the second, we exposed a coculture liver model consisting of hepatocytes, hepatic stellate cells, Kupffer cells, and liver sinusoidal endothelial cells to rifampicin, ibuprofen, and 5-fluorouracil. The method showed good accuracy compared to established toxicity assessment methods. In addition, this approach provided more representative information on the toxic effects of the compounds, as it considers the different cellular responses induced by toxic agents.
Collapse
Affiliation(s)
- Eneko Madorran
- Faculty of Medicine, Institute of Anatomy, Histology and Embryology, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia; (L.K.Š.); (M.R.); (M.M.)
| | - Lidija Kocbek Šaherl
- Faculty of Medicine, Institute of Anatomy, Histology and Embryology, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia; (L.K.Š.); (M.R.); (M.M.)
| | - Mateja Rakuša
- Faculty of Medicine, Institute of Anatomy, Histology and Embryology, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia; (L.K.Š.); (M.R.); (M.M.)
| | - Iztok Takač
- Division for Gynecology and Perinatology, University Medical Centre Maribor, Ljubljanska Ulica 5, 2000 Maribor, Slovenia;
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
| | - Miha Munda
- Faculty of Medicine, Institute of Anatomy, Histology and Embryology, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia; (L.K.Š.); (M.R.); (M.M.)
| |
Collapse
|
4
|
Choi W, Cho JH, Park SH, Kim DS, Lee HP, Kim D, Kim HS, Kim JH, Cho JY. Ginseng root-derived exosome-like nanoparticles protect skin from UV irradiation and oxidative stress by suppressing activator protein-1 signaling and limiting the generation of reactive oxygen species. J Ginseng Res 2024; 48:211-219. [PMID: 38465216 PMCID: PMC10920011 DOI: 10.1016/j.jgr.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 12/05/2023] [Accepted: 01/10/2024] [Indexed: 03/12/2024] Open
Abstract
Background Recently, plant-derived exosome-like nanoparticles (PDENs) have been isolated, and active research was focusing on understanding their properties and functions. In this study, the characteristics and molecular properties of ginseng root-derived exosome-like nanoparticles (GrDENs) were examined in terms of skin protection. Methods HPLC-MS protocols were used to analyze the ginsenoside contents in GrDENs. To investigate the beneficial effect of GrDENs on skin, HaCaT cells were pre-treated with GrDENs (0-2 × 109 particles/mL), and followed by UVB irradiation or H2O2 exposure. In addition, the antioxidant activity of GrDENs was measured using a fluorescence microscope or flow cytometry. Finally, molecular mechanisms were examined with immunoblotting analysis. Results GrDENs contained detectable levels of ginsenosides (Re, Rg1, Rb1, Rf, Rg2 (S), Gyp17, Rd, C-Mc1, C-O, and F2). In UVB-irradiated HaCaT cells, GrDENs protected cells from death and reduced ROS production. GrDENs downregulated the mRNA expression of proapoptotic genes, including BAX, caspase-1, -3, -6, -7, and -8 and the ratio of cleaved caspase-8, -9, and -3 in a dose-dependent manner. In addition, GrDENs reduced the mRNA levels of aging-related genes (MMP2 and 3), proinflammatory genes (COX-2 and IL-6), and cellular senescence biomarker p21, possibly by suppressing activator protein-1 signaling. Conclusions This study demonstrates the protective effects of GrDENs against skin damage caused by UV and oxidative stress, providing new insights into beneficial uses of ginseng. In particular, our results suggest GrDENs as a potential active ingredient in cosmeceuticals to promote skin health.
Collapse
Affiliation(s)
- Wooram Choi
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jeong Hun Cho
- Research and Innovation Center, AMOREPACIFIC, Yongin, Republic of Korea
| | - Sang Hee Park
- Department of Biocosmetics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Dong Seon Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hwa Pyoung Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Donghyun Kim
- Research and Innovation Center, AMOREPACIFIC, Yongin, Republic of Korea
| | - Hyun Soo Kim
- Research and Innovation Center, AMOREPACIFIC, Yongin, Republic of Korea
| | - Ji Hye Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
5
|
Kwon TU, Kwon YJ, Baek HS, Park H, Lee H, Chun YJ. Unraveling the molecular mechanisms of cell migration impairment and apoptosis associated with steroid sulfatase deficiency: Implications for X-linked ichthyosis. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167004. [PMID: 38182070 DOI: 10.1016/j.bbadis.2023.167004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/08/2023] [Accepted: 12/21/2023] [Indexed: 01/07/2024]
Abstract
Steroid sulfatase (STS) deficiency is responsible for X-linked ichthyosis (XLI), a genetic disorder characterized by rough and dry skin caused by excessive keratinization. The impaired keratinization process leads to reduced cell mobility and increased apoptosis, which can cause an excessive buildup of the stratum corneum. In this study, we investigated the mechanisms underlying XLI and found that STS deficiency reduces cell mobility and increases apoptosis in human keratinocyte HaCaT cells. To explore these mechanisms further, RNA-sequencing was conducted on skin tissues from STS transgenic and knockout mice. Our RNA-seq results revealed that STS deficiency plays a critical role in regulating multiple signaling pathways associated with cell mobility and apoptosis, such as Wnt/β signaling and the Hippo signaling pathway. Knockdown of the STS gene using shRNA in HaCaT cells led to an upregulation of E-cadherin expression and suppression of key factors involved in epithelial-mesenchymal transition (EMT), such as N-cadherin and vimentin. Inhibition of EMT involved the Hippo signaling pathway and reduction of HIF-1α. Interestingly, inhibiting STS with shRNA increased mitochondrial respiration levels, as demonstrated by the extracellular flux oxygen consumption rate. Additionally, we observed a significant increase in ROS production in partial STS knockout cells compared to control cells. Our study demonstrated that the excessive generation of ROS caused by STS deficiency induces the expression of Bax and Bak, leading to the release of cytochrome c and subsequent cell death. Consequently, STS deficiency impairs cell mobility and promotes apoptosis, offering insights into the pathophysiological processes and potential therapeutic targets for XLI.
Collapse
Affiliation(s)
- Tae-Uk Kwon
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yeo-Jung Kwon
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hyoung-Seok Baek
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hyemin Park
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hyein Lee
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Young-Jin Chun
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul 06974, Republic of Korea.
| |
Collapse
|
6
|
Indirapriyadarshini R, Radhiga T, Kanimozhi G, Prasad NR. Preventive effect of andrographolide against ultraviolet-B radiation-induced oxidative stress and apoptotic signaling in human dermal fibroblasts. Cell Biochem Funct 2023; 41:1370-1382. [PMID: 37842803 DOI: 10.1002/cbf.3871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/19/2023] [Accepted: 10/07/2023] [Indexed: 10/17/2023]
Abstract
Ultraviolet radiation induces oxidative photoaging in the skin cells. In this study, we investigated the ability of andrographolide (ADP) to protect human dermal fibroblasts (HDFa) from UVB radiation-induced oxidative stress and apoptosis. The HDFa cells were exposed to UVB (19.8 mJ/cm2 ) radiation in the presence or absence of ADP (7 μM) and then oxidative stress and apoptotic protein expression were analyzed. UVB exposure resulted in a significant decline in the activity of antioxidant enzymes and altered mitochondrial membrane potential (MMP). Furthermore, UVB-irradiation causes increased intracellular reactive oxygen species (ROS) production, apoptotic morphological changes, and lipid peroxidation levels in the HDFa. Moreover, the pretreatment with ADP reduced the UVB-induced cytotoxicity, ROS production, and increased antioxidant enzymes activity. Further, the ADP pretreatment prevents the UVB-induced loss of MMP and apoptotic signaling in HDFa cells. Therefore, the present results suggest that ADP protects HDFa cells from UVB-induced oxidative stress and apoptotic damage.
Collapse
Affiliation(s)
| | - Thangaiyan Radhiga
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamilnadu, India
| | - Govindasamy Kanimozhi
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamilnadu, India
- Department of Biochemistry, Dharmapuram Gnanambigai Government Arts College for Women, Mayiladuthurai, India
| | - N Rajendra Prasad
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamilnadu, India
| |
Collapse
|
7
|
Jimenez-Bueno I, Garcia-Contreras R, Aranda-Herrera B, Sakagami H, Lopez-Ayuso CA, Nakajima H, Jurado CA, Nurrohman H. Cytotoxicity, Differentiation, and Biocompatibility of Root-End Filling: A Comprehensive Study. Biomimetics (Basel) 2023; 8:514. [PMID: 37999155 PMCID: PMC10669418 DOI: 10.3390/biomimetics8070514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/11/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023] Open
Abstract
Assessing the biocompatibility of endodontic root-end filling materials through cell line responses is both essential and of utmost importance. This study aimed to the cytotoxicity of the type of cell death through apoptosis and autophagy, and odontoblast cell-like differentiation effects of MTA, zinc oxide-eugenol, and two experimental Portland cements modified with bismuth (Portland Bi) and barium (Portland Ba) on primary cell cultures. Material and methods: The cells corresponded to human periodontal ligament and gingival fibroblasts (HPLF, HGF), human pulp cells (HPC), and human squamous carcinoma cells from three different patients (HSC-2, -3, -4). The cements were inoculcated in different concentrations for cytotoxicity evaluation, DNA fragmentation in electrophoresis, apoptosis caspase activation, and autophagy antigen reaction, odontoblast-like cells were differentiated and tested for mineral deposition. The data were subject to a non-parametric test. Results: All cements caused a dose-dependent reduction in cell viability. Contact with zinc oxide-eugenol induced neither DNA fragmentation nor apoptotic caspase-3 activation and autophagy inhibitors (3-methyladenine, bafilomycin). Portland Bi accelerated significantly (p < 0.05) the differentiation of odontoblast-like cells. Within the limitation of this study, it was concluded that Portland cement with bismuth exhibits cytocompatibility and promotes odontoblast-like cell differentiation. This research contributes valuable insights into biocompatibility, suggesting its potential use in endodontic repair and biomimetic remineralization.
Collapse
Affiliation(s)
- Ignacio Jimenez-Bueno
- Department of Endodontics, Faculty of Dentistry, Autonomous University State of Mexico (UAEMex), Toluca 50130, State of Mexico, Mexico;
| | - Rene Garcia-Contreras
- Interdisciplinary Research Laboratory, Nanostructures and Biomaterials Area, National School of Higher Studies (ENES) Leon, National Autonomous University of Mexico (UNAM), Leon 37684, Guanajuato, Mexico; (R.G.-C.); (C.A.L.-A.)
| | - Benjamin Aranda-Herrera
- Interdisciplinary Research Laboratory, Nanostructures and Biomaterials Area, National School of Higher Studies (ENES) Leon, National Autonomous University of Mexico (UNAM), Leon 37684, Guanajuato, Mexico; (R.G.-C.); (C.A.L.-A.)
| | - Hiroshi Sakagami
- Meikai University Research Institute of Odontology (M-RIO), Meikai University School of Dentistry, Sakado 350-0283, Saitama, Japan;
| | - Christian Andrea Lopez-Ayuso
- Interdisciplinary Research Laboratory, Nanostructures and Biomaterials Area, National School of Higher Studies (ENES) Leon, National Autonomous University of Mexico (UNAM), Leon 37684, Guanajuato, Mexico; (R.G.-C.); (C.A.L.-A.)
| | - Hiroshi Nakajima
- Division of Dental Biomaterials Science, Department of Restorative and Biomaterials Sciences, Meikai University School of Dentistry, Sakado 350-0283, Saitama, Japan
| | - Carlos A. Jurado
- Department of Prosthodontics, The University of Iowa College of Dentistry and Dental Clinics, Iowa City, IA 52242, USA
| | - Hamid Nurrohman
- Department of Restorative Dentistry & Prosthodontics, University of Texas School of Dentistry, Houston, TX 77054, USA
| |
Collapse
|
8
|
Park C, Kim DH, Kim TH, Jeong SU, Yoon JH, Moon SK, Kwon CY, Park SH, Hong SH, Shim JH, Kim GY, Choi YH. Improvement of Oxidative Stress-induced Cytotoxicity of Angelica keiskei (Miq.) Koidz. Leaves Extract through Activation of Heme Oxygenase-1 in C2C12 Murine Myoblasts. BIOTECHNOL BIOPROC E 2023. [DOI: 10.1007/s12257-022-0310-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
9
|
Single or Daily Application of Topical Curcumin Prevents Ultraviolet B-Induced Apoptosis in Mice. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010371. [PMID: 36615565 PMCID: PMC9824043 DOI: 10.3390/molecules28010371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/17/2022] [Accepted: 12/22/2022] [Indexed: 01/03/2023]
Abstract
Curcumin is a natural ingredient with antioxidant effects, widely studied as a treatment for various types of cancer. However, its effects on ultraviolet radiation have not been fully explored. The effects of single or daily application of 0.1-100 μM curcumin on cell apoptosis in ultraviolet B (UVB)-induced mice were tested using an experimental double-blind posttest design with a control group and two research models: a single application of curcumin before a single UVB exposure and daily application of curcumin for 7 days before a single UVB exposure on the seventh day. Apoptotic cells were counted using a tunnel system kit. The number of apoptotic cells under a single or daily application of curcumin for 7 days was significantly lower than that of the UVB controls (p ≤ 0.05). The number of apoptotic cells decreased with the increasing concentration of curcumin, and the maximum effect was observed at 100 μM. Daily application of topical curcumin was superior in preventing apoptosis (mean apoptotic cell count of 14.86 ± 1.68) compared with a single application (17.46 ± 0.60; p = 0.011). Topical curcumin can act as a potential photoprotective agent in preventing cutaneous malignancies due to UVB radiation. Further studies are warranted, especially in humans.
Collapse
|
10
|
Lim HS, Simon SE, Yow YY, Saidur R, Tan KO. Photoprotective activities of Lignosus rhinocerus in UV-irradiated human keratinocytes. JOURNAL OF ETHNOPHARMACOLOGY 2022; 299:115621. [PMID: 35987413 DOI: 10.1016/j.jep.2022.115621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/28/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lignosus rhinocerus, also known as Tiger Milk Mushroom has been used traditionally to treat a variety of human conditions, including asthma, diabetes, respiratory disease, skin allergy, and food poisoning. The reported activities of Lignosus rhinocerus extracts include anti-inflammatory, anti-oxidant, anti-asthmatic, anti-microbial, anti-cancer, neuroprotection, and immune modulation effects. However, its effect on human skin is not well documented, including human skin exposed to ultraviolet light (UV). Exposure to UV can trigger various cellular responses, including inflammation, oxidative stress, DNA damage, cell death, and cellular aging. AIM OF THE STUDY The study aims to investigate the effects of methanolic extract prepared from cultured Lignosus rhinocerus (herein referred to as TM02 and its methanol extract as TM02-ME) on UV-irradiated human keratinocytes. MATERIALS AND METHODS Powdered stock of TM02 was dissolved and sequentially extracted with different solvents to prepare the extracts and the methanol extract was subsequently characterized based on its bio-activities on HaCaT human keratinocytes. The keratinocytes were pre-treated with the methanol extract followed by UV-irradiation. Cellular responses of the HaCaT cells such as cell viability, DNA damage, as well as gene and protein expressions that were responsive to the treatments, were characterized by using bio-assays, including reverse-transcription based PCR, Western blot, cell viability, and mitochondrial Cytochrome C release assays. RESULTS TM02-ME protected HaCaT cells from UV-induced DNA damage and cell death in a dose-dependent manner. Pre-treatment of HaCaT cells with TM02-ME led to a 39% reduction of cyclobutane pyrimidine dimers (CPD) and up-regulated the gene expression of REV1 and SPINK5 in UVB-irradiated HaCaT cells when compared to the control. In addition, TM-02-ME treated HaCaT cells increased the expression of BCL-XL and BCL-2 proteins which coincided with the down-regulation of mitochondrial Cyt. C release in the UV-B irradiated HaCaT cells. The results were further supported by data that showed the stable clones of HaCaT cells stably expressed BCL-XL were resistant to UVB-induced cell death. CONCLUSIONS __The results showed that TM02-ME confers photoprotective activities to UVB-irradiated HaCaT cells, leading to a reduction in DNA damage and cell death as well as up-regulated the expression of REV1 and SPINK5 which are involved in DNA repair and skin barrier function, respectively. The up-regulation of pro-survival members of the BCL-2 family by TM02-ME confers protection against UVB-induced cell death.
Collapse
Affiliation(s)
- Hui Sin Lim
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, No.5 Jalan Universiti, Bandar Sunway, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Samson Eugin Simon
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, No.5 Jalan Universiti, Bandar Sunway, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Yoon-Yen Yow
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, No.5 Jalan Universiti, Bandar Sunway, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - R Saidur
- Research Centre for Nano-materials and Energy Technology (RCNMET), School of Engineering and Technology, Sunway University, No.5 Jalan Universiti, Bandar Sunway, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Kuan Onn Tan
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, No.5 Jalan Universiti, Bandar Sunway, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
11
|
Protective Effect of Flavonoids from Mulberry Leaf on AAPH-Induced Oxidative Damage in Sheep Erythrocytes. Molecules 2022; 27:molecules27217625. [PMID: 36364452 PMCID: PMC9654144 DOI: 10.3390/molecules27217625] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/09/2022] Open
Abstract
To evaluate the antioxidant activity of flavonoids extracted from Chinese herb mulberry leaves (ML), flavonoids from mulberry leaves (FML) were extracted and purified by using ultrasonic-assisted enzymatic extraction and D101 macroporous resin. Using LC-MS/MS-Liquid Chromatography with tandem mass spectrometry analysis, hesperidin, rutoside, hyperoside, cyanidin-3-o-glucoside, myricitrin, cyanidin, and quercetin were identified, and NMR and UV were consistent with the verification of IR flavonoid characteristics. The antioxidant activity of FML has also been evaluated as well as the protective effect on 2,2 0-azobis (2-amidinopropane) dihydrochloride (AAPH)-induced oxidative stress. The results showed that FML exhibited powerful antioxidant activity. Moreover, FML showed dose-dependent protection against AAPH-induced sheep erythrocytes’ oxidative hemolysis. In the enzymatic antioxidant system, pretreatment with high FML maintained the balance of SOD, CAT, and GSH-Px; in the non-enzymatic antioxidant system, the content of MDA can be effectively reduced after FML treatment. This study provides a research basis for the development of natural products from mulberry leaves.
Collapse
|
12
|
Peng S, Guo C, Wu S, Duan Z. Isolation, characterization and anti-UVB irradiation activity of an extracellular polysaccharide produced by Lacticaseibacillus rhamnosus VHPriobi O17. Heliyon 2022; 8:e11125. [PMID: 36299523 PMCID: PMC9589185 DOI: 10.1016/j.heliyon.2022.e11125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/27/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
The purpose of this study was to isolate exopolysaccharides (EPS) from lactic acid bacteria (LAB) and evaluate EPS anti-UVB viability. Lacticaseibacillus rhamnosus VHPriobi O17 with high EPS production was screened from 34 strains of LAB. The EPS (OP-2) produced by L. rhamnosus VHPriobi O17 was purified by alcohol precipitation and DEAE-μSphere anion exchange chromatography. By ion chromatography, FT-IR spectrum and gel column chromatography, EPS (OP-2) was a novel Man-like polysaccharide with the weight-averaged molecular of 84.2 kDa. The EPS (OP-2) can effectively alleviate HaCaT cells apoptosis and overproduction of reactive oxygen species (ROS) induced by UVB. The results also showed that it inhibited the release of pro-inflammatory cytokines (IL-1α, IL-6 and IL-8); and suppressed the phosphorylation cascade of JNK and p38 MAPK to reduce the expression level of active-caspase3, ultimately prevented cell apoptosis. Thus, the EPS produced by L. rhamnosus VHPriobi O17 have the potential to be used for human anti-UVB irradiation.
Collapse
Affiliation(s)
- Shudong Peng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China,Guangdong Youmei Institute of Intelligent Bio-Manufacturing, Foshan, 528225, China
| | - Chaoqun Guo
- Qingdao Vland Biotech Inc. Nutrition and Health Technology Center, Qingdao, China
| | - Songjie Wu
- Qingdao Vland Biotech Inc. Nutrition and Health Technology Center, Qingdao, China
| | - Zhi Duan
- Qingdao Vland Biotech Inc. Nutrition and Health Technology Center, Qingdao, China,Corresponding author.
| |
Collapse
|
13
|
A Promising Method for the Determination of Cell Viability: The Membrane Potential Cell Viability Assay. Cells 2022; 11:cells11152314. [PMID: 35954159 PMCID: PMC9367465 DOI: 10.3390/cells11152314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/19/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023] Open
Abstract
Determining the viability of cells is fraught with many uncertainties. It is often difficult to determine whether a cell is still alive, approaching the point of no return, or dead. Today, there are many methods for determining cell viability. Most rely on an indirect determination of cell death (metabolism, molecular transport, and leakage, to name a few). In contrast, we have developed a promising novel method for a “direct” determination of cell viability. The potential method assesses cell membrane integrity (which is essential for all viable cells) by measuring the electrical potential of the cell membrane. To test the assay, we chose two different cell types, blood macrophages (TLT) and breast cancer epithelial cells (MCF 7). We exposed them to seven different toxic scenarios (arsenic (V), UV light, hydrogen peroxide, nutrient starvation, Tetrabromobisphenol A, fatty acids, and 5-fluorouracil) to induce different cell death pathways. Under controlled test conditions, the assay showed good accuracy when comparing the toxicity assessment with well-established methods. Moreover, the method showed compatibility with live cell imaging. Although we know that further studies are needed to confirm the performance of the assay in other situations, the results obtained are promising for their wider application in the future.
Collapse
|
14
|
Xie D, Li YL, Wang GF, Jiang J, Sun LR. Ultraviolet light-emitting diode irradiation induces reactive oxygen species production and mitochondrial membrane potential reduction in HL-60 cells. J Int Med Res 2021; 49:3000605211016623. [PMID: 34038212 PMCID: PMC8161906 DOI: 10.1177/03000605211016623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Objective Ultraviolet light-emitting diode (UV LED) irradiation at 280 nm has been confirmed to induce apoptosis in cultured HL-60 cells, but the underlying mechanisms remain unclear. This study aimed to investigate the effects of 280 nm UV LED irradiation on reactive oxygen species (ROS) production and mitochondrial membrane potential (MMP) in HL-60 cells. Methods HL-60 cells were irradiated with 0, 8, 15, or 30 J/m2 of 280 nm UV LED and incubated for 2 hours. The intracellular ROS levels were assessed using the fluorescent probe 2ʹ-7ʹ-dichlorodihydrofluorescein diacetate (DCFH-DA) and a fluorescence plate reader. MMP was determined by flow cytometry using 5,5ʹ,6,6ʹ-tetrachloro-1,1ʹ,3,3ʹ-tetraethylbenzimidazol-carbocyanine iodide (JC-1) staining. The apoptosis-related proteins Bax and Bcl-2 were evaluated by western blot. Results UV LED irradiation at 280 nm induced a dose-dependent increase in ROS production and loss of MMP, and it activated apoptosis at irradiation doses of 8 to 30 J/m2. These results were consistent with a previous apoptosis study from the authors’ group. Conclusion Enhanced ROS production and mitochondrial depolarization are two distinct but interacting events, and both are involved in UV LED-induced apoptosis in HL-60 cells.
Collapse
Affiliation(s)
- Dong Xie
- Department of Pediatric Hematology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yun-Long Li
- Department of Pediatrics, People’s Hospital of Rizhao, Rizhao, Shandong, China
| | - Gui-Fen Wang
- Department of Obstetrics and Gynecology, Maternal and Child Care Service Centre of Zhaoyuan, Zhaoyuan, Shandong, China
| | - Jian Jiang
- Department of Pediatric Hematology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Li-Rong Sun
- Department of Pediatric Hematology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- Li-Rong Sun, Department of Pediatric Hematology, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong 266000, China.
| |
Collapse
|
15
|
Shan Z, Zhao Y, Qiu Z, Angxiu S, Gu Y, Luo J, Bi H, Luo W, Xiong R, Ma S, He Z, Chen L. Conjugated linoleic acid prompts bone formation in ovariectomized osteoporotic rats and weakens osteoclast formation after treatment with ultraviolet B. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:503. [PMID: 33850900 PMCID: PMC8039685 DOI: 10.21037/atm-21-934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Background Ultraviolet B (UVB) has been reported to prevent bone loss by promoting the synthesis of vitamin D. However, UVB can also enhance osteoclastic differentiation, inhibit osteogenic differentiation, and cause oxidative damage. The present study aimed to analyze the osteoprotective effects of UVB and conjugated linoleic acid (CLA) in rats with ovariectomy-induced osteoporosis, and to determine the interactions between UVB and CLA and their effects on bone mesenchymal stem cells (BMSCs) and bone marrow mononuclear cells (BMMCs). Methods In vitro, the distance of UVB irradiation and the dose of CLA were selected by immunofluorescence assays and Cytotoxicity assay. BMSCs and BMMCs were detected by immunohistochemical and immunofluorescence assays. In vivo, three-month-old female Sprague-Dawley rats that had undergone ovariectomy were treated with UVB and CLA. After 8 weeks of therapy, the femurs of the rats were examined by micro-computed tomography (CT) and immunohistochemical detection to assess the therapeutic efficacy. Results The least inhibitive UVB distance and dosage of CLA were selected for the in vivo experiments. CLA effectively weakened the osteogenic inhibitory effect of UVB (72 cm), significantly improved the activity of alkaline phosphatase (ALP), promoted the formation of mineralized nodules, and alleviated the oxidative damage induced by UVB. CLA also effectively weakened the osteoclast-promoting effect of UVB (72 cm), inhibited osteoclast formation, and inhibited the inflammatory damage to BMMCs caused by UVB (72 cm) irradiation. Micro-CT results showed that UVB irradiation could promote bone formation in ovariectomized Sprague-Dawley rats, while CLA could significantly promote bone regeneration. Immunofluorescence assays results showed that CLA alleviated UVB-induced oxidative damage to osteoblasts. The ROS detection results demonstrated that CLA effectively alleviated UVB-induced oxidative damage to BMSCs. Furthermore, Immunohistochemical assays showed that UVB and CLA treatment increased bone density, inhibited osteolytic osteolysis, and enhanced osteogenic activity. Conclusions CLA can effectively weaken osteoclast promotion, osteogenic inhibition, and oxidative damage caused by UVB. Combination treatment of UVB and CLA exerts an osteoprotective effect on ovariectomized osteoporotic rats and stimulates osteogenesis. The molecular mechanism of this interaction requires further investigation.
Collapse
Affiliation(s)
- Zhongshu Shan
- Department of Orthopedic Surgery, the 1st Affiliated Hospital of Soochow University, Suzhou, China.,Department of Orthopedic Surgery, People's Hospital of Qinghai Province, Xining, China
| | - Yanyan Zhao
- Department of Orthopedic Surgery, People's Hospital of Qinghai Province, Xining, China
| | - Zhixue Qiu
- Department of Orthopedic Surgery, People's Hospital of Qinghai Province, Xining, China
| | - Suonan Angxiu
- Department of Orthopedic Surgery, People's Hospital of Qinghai Province, Xining, China
| | - Yong Gu
- Department of Orthopedic Surgery, the 1st Affiliated Hospital of Soochow University, Suzhou, China
| | - Junming Luo
- Department of Pathology, People's Hospital of Qinghai Province, Xining, China
| | - Hongtao Bi
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences; Xining, China
| | - Wei Luo
- Department of Endocrinology, People's Hospital of Qinghai Province, Xining, China
| | - Rui Xiong
- Nutrition Department, People's Hospital of Qinghai Province, Xining, China
| | - Siqing Ma
- Department of Critical Care Medicine, People's Hospital of Qinghai Province, Xining, China
| | - Zhao He
- Department of Orthopedic Surgery, People's Hospital of Qinghai Province, Xining, China
| | - Liang Chen
- Department of Orthopedic Surgery, the 1st Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
16
|
Grossi S, Fenini G, Kockmann T, Hennig P, Di Filippo M, Beer HD. Inactivation of the Cytoprotective Major Vault Protein by Caspase-1 and -9 in Epithelial Cells during Apoptosis. J Invest Dermatol 2019; 140:1335-1345.e10. [PMID: 31877317 DOI: 10.1016/j.jid.2019.11.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 12/29/2022]
Abstract
Inflammasome activation induces caspase-1-dependent secretion of the proinflammatory cytokine IL-1β. In addition, caspase-1 activates the protein GSDMD in immune cells, causing pyroptosis, a lytic type of cell death. In contrast, UVB irradiation of human primary keratinocytes induces NLRP1 inflammasome activation, cytokine secretion, and caspase-1-dependent apoptosis, rather than pyroptosis. Here, we addressed the molecular mechanisms underlying the role of caspase-1 in UVB-induced cell death of human primary keratinocytes. We show that GSDMD is a poor substrate of caspase-1 in human primary keratinocytes and that its activation upon UVB irradiation supports secretion of IL-1β. We screened for novel substrates of caspase-1 by a mass spectrometry-based approach and identified the specific cleavage of the major vault protein (MVP) at D441 by caspase-1 and -9. MVP is the main component of vaults, highly conserved ribonucleoprotein particles, whose functions are poorly understood. Cleavage of MVP is a common event occurring in human primary keratinocytes and fibroblasts undergoing apoptosis induced by different stimuli. In contrast, MVP cleavage could not be detected in pyroptotic cells. Cleavage of MVP by caspase-1 and -9 inactivates this cytoprotective protein. These results demonstrate a proapoptotic activity of caspase-1 and a crosstalk with caspase-9 upon inactivation of the cytoprotective MVP in apoptotic epithelial cells.
Collapse
Affiliation(s)
- Serena Grossi
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland; Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Gabriele Fenini
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland; Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Tobias Kockmann
- Functional Genomics Center Zurich, ETH Zurich/University of Zurich, Zurich, Switzerland
| | - Paulina Hennig
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland; Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Michela Di Filippo
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland; Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Hans-Dietmar Beer
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland; Faculty of Medicine, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
17
|
Tran JQ, Muench MO, Heitman JW, Jackman RP. Pathogen reduction with riboflavin and ultraviolet light induces a quasi-apoptotic state in blood leukocytes. Transfusion 2019; 59:3501-3510. [PMID: 31599981 PMCID: PMC7391079 DOI: 10.1111/trf.15516] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/26/2019] [Accepted: 08/19/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Alloimmunization to platelet-rich plasma (PRP) transfusions can cause adverse reactions such as platelet refractoriness or transplant rejection. Pathogen reduction treatment with ultraviolet light and riboflavin (UV + R) of allogeneic PRP was shown to reduce allogeneic antibody responses and confer partial antigen-specific immune tolerance to subsequent transfusions in mice. Studies have shown that UV + R was effective at both rapidly killing donor white blood cells (WBCs) and reducing their ability to stimulate an allogeneic response in vitro. However, the manner in which UV + R induces WBC death and its associated role in the immune response to treated PRP is unknown. METHODS AND MATERIALS This study evaluates whether UV + R causes WBC apoptosis by examining phosphatidylserine exposure on the plasma membrane, membrane asymmetry, caspase activity, and chromatin condensation by flow cytometry. The immunogenicity of WBCs killed with UV + R versus apoptotic or necrotic pathways was also examined in vivo. RESULTS WBCs after UV + R exhibited early apoptotic-like characteristics including phosphatidylserine exposure on the outer leaflet of the plasma membrane and loss of membrane asymmetry, but unlike canonical apoptotic cells, caspase activity and chromatin condensation were not apparent. However, in vivo studies demonstrated, unlike untreated or necrotic WBCs, both apoptotic WBCs and UV + R-treated WBCs failed to prime alloantibody responses to subsequent untreated transfusions. CONCLUSION Overall, the mechanism of WBC death following UV + R treatment shares some membrane characteristics of early apoptosis but is distinct from classic apoptosis. Despite these differences, UV + R-treated and apoptotic WBCs both offer some protection from alloimmunization.
Collapse
Affiliation(s)
| | - Marcus O. Muench
- Vitalant Research Institute, San Francisco CA
- University of California, San Francisco, CA
| | | | - Rachael P. Jackman
- Vitalant Research Institute, San Francisco CA
- University of California, San Francisco, CA
| |
Collapse
|
18
|
Liao Y, He Q, Zhou F, Zhang J, Liang R, Yao X, Bunpetch V, Li J, Zhang S, Ouyang H. Current Intelligent Injectable Hydrogels for In Situ Articular Cartilage Regeneration. POLYM REV 2019. [DOI: 10.1080/15583724.2019.1683028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Youguo Liao
- Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, Guangxi, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiulin He
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Feifei Zhou
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingwei Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Renjie Liang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Xudong Yao
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute & School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Varitsara Bunpetch
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiajin Li
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Shufang Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Hongwei Ouyang
- Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, Guangxi, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute & School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
19
|
Wang YL, Wang LZ, Sun JD, Li XR, Wang Z, Sun LR. [Effect of ultraviolet irradiation on the proliferation of acute promyelocytic leukemia cells under hypoxic conditions and related mechanisms]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2019; 21:491-496. [PMID: 31104669 PMCID: PMC7389421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/26/2019] [Indexed: 11/12/2023]
Abstract
OBJECTIVE To study the effect of 280 nm-LED ultraviolet irradiation on the proliferation of acute promyelocytic leukemia (APL) HL-60 cells under hypoxic conditions and related mechanism. METHODS HL-60 cells in the logarithmic growth phase were selected and divided into control, hypoxia, ultraviolet and hypoxia+ultraviolet groups. The cells in the hypoxia group were treated with cobalt chloride (with a final concentration of 150 μmol/L), those in the ultraviolet group were irradiated by 280 nm-LED ultraviolet with an energy intensity of 30 J/m2, and those in the hypoxia+ultraviolet group were treated with cobalt chloride and then irradiated by 280 nm-LED ultraviolet. After 48 hours of treatment, the cells were placed under an invert microscope to observe cell morphology. CCK-8 assay was used to measure the inhibition rate of cell proliferation. Annexin V-FITC/PI double staining flow cytometry was used to evaluate cell apoptosis. Quantitative real-time PCR was used to measure the mRNA expression of Bcl-2. Each experiment above was repeated three times independently. RESULTS Compared with the control group, the experimental groups showed shrinkage, decreased brightness, and disordered arrangement of cells, and the number of cells decreased over the time of culture. There were significant differences in the inhibition rate of cell proliferation and cell apoptosis rate among the groups (P<0.01), and the hypoxia+ultraviolet group showed the strongest inhibition of cell proliferation and induction of cell apoptosis, followed by the ultraviolet group and the hypoxia group. Compared with the control group, the other three groups had a gradual reduction in the mRNA expression of Bcl-2, and the hypoxia+ultraviolet group had a significantly greater reduction than the hypoxia and ultraviolet groups (P<0.01). CONCLUSIONS Both hypoxia and ultraviolet irradiation can inhibit the proliferation of HL-60 cells and induce cell apoptosis, and ultraviolet irradiation has a better effect on proliferation inhibition and cell apoptosis under hypoxic conditions than under normoxic conditions, possibly by downregulating the mRNA expression of Bcl-2.
Collapse
Affiliation(s)
- Yi-Lin Wang
- Department of Pediatrics, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China.
| | | | | | | | | | | |
Collapse
|
20
|
Wang YL, Wang LZ, Sun JD, Li XR, Wang Z, Sun LR. [Effect of ultraviolet irradiation on the proliferation of acute promyelocytic leukemia cells under hypoxic conditions and related mechanisms]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2019; 21:491-496. [PMID: 31104669 PMCID: PMC7389421 DOI: 10.7499/j.issn.1008-8830.2019.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
OBJECTIVE To study the effect of 280 nm-LED ultraviolet irradiation on the proliferation of acute promyelocytic leukemia (APL) HL-60 cells under hypoxic conditions and related mechanism. METHODS HL-60 cells in the logarithmic growth phase were selected and divided into control, hypoxia, ultraviolet and hypoxia+ultraviolet groups. The cells in the hypoxia group were treated with cobalt chloride (with a final concentration of 150 μmol/L), those in the ultraviolet group were irradiated by 280 nm-LED ultraviolet with an energy intensity of 30 J/m2, and those in the hypoxia+ultraviolet group were treated with cobalt chloride and then irradiated by 280 nm-LED ultraviolet. After 48 hours of treatment, the cells were placed under an invert microscope to observe cell morphology. CCK-8 assay was used to measure the inhibition rate of cell proliferation. Annexin V-FITC/PI double staining flow cytometry was used to evaluate cell apoptosis. Quantitative real-time PCR was used to measure the mRNA expression of Bcl-2. Each experiment above was repeated three times independently. RESULTS Compared with the control group, the experimental groups showed shrinkage, decreased brightness, and disordered arrangement of cells, and the number of cells decreased over the time of culture. There were significant differences in the inhibition rate of cell proliferation and cell apoptosis rate among the groups (P<0.01), and the hypoxia+ultraviolet group showed the strongest inhibition of cell proliferation and induction of cell apoptosis, followed by the ultraviolet group and the hypoxia group. Compared with the control group, the other three groups had a gradual reduction in the mRNA expression of Bcl-2, and the hypoxia+ultraviolet group had a significantly greater reduction than the hypoxia and ultraviolet groups (P<0.01). CONCLUSIONS Both hypoxia and ultraviolet irradiation can inhibit the proliferation of HL-60 cells and induce cell apoptosis, and ultraviolet irradiation has a better effect on proliferation inhibition and cell apoptosis under hypoxic conditions than under normoxic conditions, possibly by downregulating the mRNA expression of Bcl-2.
Collapse
Affiliation(s)
- Yi-Lin Wang
- Department of Pediatrics, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China.
| | | | | | | | | | | |
Collapse
|
21
|
Hwang JY, Yadav AK, Jang BC, Kim YC. Antioxidant and cytoprotective effects of Stachys riederi var. japonica ethanol extract on UVA‑irradiated human dermal fibroblasts. Int J Mol Med 2019; 43:1497-1504. [PMID: 30628642 DOI: 10.3892/ijmm.2019.4048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 11/26/2018] [Indexed: 11/06/2022] Open
Abstract
Stachys riederi is one of the largest genera in the flowering plant family Lamiaceae. The aqueous extract of Stachys riederi var. japonica is known for its anti‑allergic effect. In the present study, the antioxidant and cytoprotective effects of Stachys riederi var. japonica ethanol extract (SREE) on ultraviolet A (UVA)‑irradiated human dermal fibroblasts (HDFs) were evaluated. At 100 µg/ml, SREE significantly inhibited production of reactive oxygen species (ROS) in UVA‑irradiated HDFs. SREE at 100 µg/ml additionally markedly interfered with the loss of mitochondrial membrane potential (ΔΨm) in these cells. In addition, SREE at 100 µg/ml attenuated UVA‑induced DNA fragmentation and caspase‑3 activation in HDFs. SREE at 100 µg/ml additionally increased mRNA and protein expressions of Bcl‑2 and decreased those of Bax and cytochrome c in UVA‑irradiated HDFs. In summary, to the best of our knowledge, these results demonstrate for the first time that SREE exhibited antioxidant and cytoprotective effects on UVA‑irradiated HDFs, which may be mediated through suppression of ROS generation, inhibition of the loss of ΔΨm and inhibition of apoptosis.
Collapse
Affiliation(s)
- Ji Yeon Hwang
- Department of Research and Development, Research Center for Natural Ingredients and New Materials, Daepyung Co., Ltd., Sangju 37112, Republic of Korea
| | - Anil Kumar Yadav
- Department of Molecular Medicine, College of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Byeong-Churl Jang
- Department of Molecular Medicine, College of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Young Chul Kim
- Department of Public Health, Faculty of Food and Health Sciences, Keimyung University, Daegu 42601, Republic of Korea
| |
Collapse
|
22
|
Penna I, Albanesi E, Bertorelli R, Bandiera T, Russo D. Cytoprotective, anti-inflammatory, and antioxidant properties of high-molecular-weight hyaluronan enriched with red orange extract in human fibroblasts exposed to ultra violet light B irradiation. Biotechnol Appl Biochem 2019; 66:273-280. [PMID: 30588719 DOI: 10.1002/bab.1722] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 12/22/2018] [Indexed: 11/09/2022]
Abstract
Ultraviolet (UV) light exposure is the primary factor responsible for skin photoaging, affecting all the skin layers, mainly through the production of reactive oxygen species (ROS), activation of inflammatory responses, and apoptosis. In keeping with this evidence, exogenous supplementation with dietary antioxidants has been shown to provide photoprotective benefits. Moreover, oral administration of hyaluronic acid (HA) has been proved to reduce the signs of aged skin, such as wrinkles, and increase hydration and elasticity. The combination of different biologically active substances in order to slow down the onset of skin aging could represent a promising preventive strategy against photoaging. In the present study, we investigated the effects of a dietary supplement (IALUTEC® RED), consisting of high-molecular-weight HA (HMW-HA) combined with red orange extract (ROC-Red Orange Complex® ), in human fibroblasts exposed to ultra violet light B-induced oxidative stress. Our study suggests that, in fibroblasts exposed to UVB light, IALUTEC® RED is active in decreasing both the inflammatory response and the generation of ROS, two events that are involved in skin photoaging.
Collapse
Affiliation(s)
- Ilaria Penna
- PharmaChemistry Line, Istituto Italiano di Tecnologia, Genova, Italy
| | - Ennio Albanesi
- Neurofacility, Istituto Italiano di Tecnologia, Genova, Italy
| | - Rosalia Bertorelli
- In Vivo Pharmacology Facility, Istituto Italiano di Tecnologia, Genova, Italy
| | - Tiziano Bandiera
- PharmaChemistry Line, Istituto Italiano di Tecnologia, Genova, Italy
| | - Debora Russo
- PharmaChemistry Line, Istituto Italiano di Tecnologia, Genova, Italy
| |
Collapse
|
23
|
Pascual-Garrido C, Aisenbrey EA, Rodriguez-Fontan F, Payne KA, Bryant SJ, Goodrich LR. Photopolymerizable Injectable Cartilage Mimetic Hydrogel for the Treatment of Focal Chondral Lesions: A Proof of Concept Study in a Rabbit Animal Model. Am J Sports Med 2019; 47:212-221. [PMID: 30481048 DOI: 10.1177/0363546518808012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND In this study, we investigate the in vitro and in vivo chondrogenic capacity of a novel photopolymerizable cartilage mimetic hydrogel, enhanced with extracellular matrix analogs, for cartilage regeneration. PURPOSE To (1) determine whether mesenchymal stem cells (MSCs) embedded in a novel cartilage mimetic hydrogel support in vitro chondrogenesis, (2) demonstrate that the proposed hydrogel can be delivered in situ in a critical chondral defect in a rabbit model, and (3) determine whether the hydrogel with or without MSCs supports in vivo chondrogenesis in a critical chondral defect. STUDY DESIGN Controlled laboratory study. METHODS Rabbit bone marrow-derived MSCs were isolated, expanded, encapsulated in the hydrogel, and cultured in chondrogenic differentiation medium for 9 weeks. Compressive modulus was evaluated at day 1 and at weeks 3, 6, and 9. Chondrogenic differentiation was investigated via quantitative polymerase reaction, safranin-O staining, and immunofluorescence. In vivo, a 3 mm-wide × 2-mm-deep chondral defect was created bilaterally on the knee trochlea of 10 rabbits. Each animal had 1 defect randomly assigned to be treated with hydrogel with or without MSCs, and the contralateral knee was left untreated. Hence, each rabbit served as its own matched control. Three groups were established: group A, hydrogel (n = 5); group B, hydrogel with MSCs (n = 5); and group C, control (n = 10). Repair tissue was evaluated at 6 months after intervention. RESULTS In vitro, chondrogenesis and the degradable behavior of the hydrogel by MSCs were confirmed. In vivo, the hydrogel could be delivered intraoperatively in a sterile manner. Overall, the hydrogel group had the highest scores on the modified O'Driscoll scoring system (group A, 17.4 ± 4.7; group B, 13 ± 3; group C, 16.7 ± 2.9) ( P = .11) and showed higher safranin-O staining (group A, 49.4% ± 20%; group B, 25.8% ± 16.4%; group C, 36.9% ± 25.2%) ( P = .27), although significance was not detected for either parameter. CONCLUSION This study provides the first evidence of the ability to photopolymerize this novel hydrogel in situ and assess its ability to provide chondrogenic cues for cartilage repair in a small animal model. In vitro chondrogenesis was evident when MSCs were encapsulated in the hydrogel. CLINICAL RELEVANCE Cartilage mimetic hydrogel may offer a tissue engineering approach for the treatment of osteochondral lesions.
Collapse
Affiliation(s)
- Cecilia Pascual-Garrido
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Elizabeth A Aisenbrey
- Department of Chemical & Biological Engineering, University of Colorado Boulder, Boulder, Colorado, USA
| | | | - Karin A Payne
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Stephanie J Bryant
- Department of Chemical & Biological Engineering, University of Colorado Boulder, Boulder, Colorado, USA
| | - Laurie R Goodrich
- Department of Clinical Sciences and Orthopaedic Research Center, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
24
|
Li L, Huang T, Lan C, Ding H, Yan C, Dou Y. Protective effect of polysaccharide from Sophora japonica L. flower buds against UVB radiation in a human keratinocyte cell line (HaCaT cells). JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 191:135-142. [PMID: 30639995 DOI: 10.1016/j.jphotobiol.2018.12.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 12/27/2022]
Abstract
Natured botanical extract has attracted considerable attention recently in the field of skin anti-ultraviolet (UV) radiation. As a medicinal herb, Sophora japonica flower buds contained several components such as flavonoids, isoflavonoids, triterpenes, alkaloids and polysaccharides, which have multiple pharmacological properties except hemostatic agents which have been used in China and Korea for centuries. The purpose of our study was to investigate whether polysaccharide extracted from Sophora japonica L. flower buds (PS) was able to attenuate UVB-induced damage using a human keratinocyte cell line (HaCaT cells). HaCaT cells were pretreated with PS in a serum-free medium for 2 h and then irradiated with different doses of UVB rays. The results showed that the PS attenuated UVB-induced cytotoxicity which was verified by MTT method and morphology feature assay. UVB exposure (30-120 mJ/cm2) reduced HaCaT cells viability significantly following with the increased irradiation dose 24 h later, while pretreatment with PS (0.25-2.0 mg/mL) attenuated UVB-induced cytotoxicity significantly and increased cell viability in a dose-dependent manner except 30 mJ/cm2 group. The PS reduced the ROS generation, down-regulated the expression of phosphor-JNK and phosphor-p38 MAPK proteins significantly through MAPK pathway in UVB-irradiated HaCaT cells. It also decreased the apoptosis rate at low dose of UVB ray and protected the cells from apoptosis which had been identified by the down-regulated level of active-caspase3 in UVB-irradiated HaCaT cells. In conclusion, PS pretreatment protected HaCaT keratinocytes from UVB irradiation-induced skin injuries effectively, and the underlying mechanism may involve MAPK signaling pathway which contribute to apoptotic cell death. However, further studies especially whose using human systems are needed to determine efficacy of PS in vivo.
Collapse
Affiliation(s)
- Liyan Li
- Medical School, Huanghe Science & Technology University, Zhengzhou 450063, PR China; College of Medicine, Zhengzhou University, Zhengzhou 450001, PR China; Henan Joint International Research Laboratory of Drug Discovery of Small Molecules, Huanghe Science & Technology University, Zhengzhou 450063, PR China
| | - Tao Huang
- Medical School, Huanghe Science & Technology University, Zhengzhou 450063, PR China.
| | - Chong Lan
- Henan Joint International Research Laboratory of Drug Discovery of Small Molecules, Huanghe Science & Technology University, Zhengzhou 450063, PR China
| | - Hui Ding
- Medical School, Huanghe Science & Technology University, Zhengzhou 450063, PR China
| | - Chunsheng Yan
- Medical School, Huanghe Science & Technology University, Zhengzhou 450063, PR China
| | - Yanli Dou
- Henan Joint International Research Laboratory of Drug Discovery of Small Molecules, Huanghe Science & Technology University, Zhengzhou 450063, PR China
| |
Collapse
|
25
|
Chen Z, Tian Y, Zhu C, Liu B, Zhang Y, Lu Z, Zhou Q, Wu Z. Sensitive detection of oxidative DNA damage in cyanobacterial cells using supercoiling-sensitive quantitative PCR. CHEMOSPHERE 2018; 211:164-172. [PMID: 30071428 DOI: 10.1016/j.chemosphere.2018.06.154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/25/2018] [Accepted: 06/25/2018] [Indexed: 06/08/2023]
Abstract
Supercoiling-sensitive quantitative PCR (ss-qPCR) is a sensitive technique to detect DNA damage in cultured animal cells and cultured/clinical human cells in vitro. In this study, we investigated whether the ss-qPCR method can be applied as a sensitive means to detect oxidative DNA damage in unicellular organisms. We used the model cyanobacterium Synechococcus elongatus PCC 7942 as a test organism and H2O2 as an exogenetic oxidative toxicant. Results showed that a significant increase in the plasmid DNA damage of S. elongatus PCC 7942 was induced by H2O2 in a dose- and time-dependent manner. The sensitivity of ss-qPCR in detecting DNA damage of the cyanobacterium was higher than the cell inhibition method (up to 255 times) as calculated from the slopes of fitted curves in the tested sub-toxic concentration range of 1-5 mM H2O2. Ss-qPCR also detected repairable low-intensity DNA damage in the cyanobacterium when DNA repair inhibitors were used. The detection limit of modified ss-qPCR was one tenth of that of previous methods. We also observed that ss-qPCR can be used to detect genomic DNA conformation change of cyanobacterium exposed to H2O2. Thus, this method will provide a powerful technical support for investigating the mechanisms of cyanobacterial DNA damage by environmental factors, especially intracellular reactive oxygen species enhancement-related factors.
Collapse
Affiliation(s)
- Zhilan Chen
- Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal-Polluted Soils, College of Hunan Province, Hunan University of Science and Technology, Taoyuan Road, Yuhu District, Xiangtan 411201, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road 7, Wuhan 430072, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, China; Hunan Province Key Laboratory of Coal Resources Clean-utilization and Mine Environment Protection, Hunan University of Science and Technology, Taoyuan Road, Yuhu District, Xiangtan 411201, China
| | - Yun Tian
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road 7, Wuhan 430072, China
| | - Chenhong Zhu
- Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal-Polluted Soils, College of Hunan Province, Hunan University of Science and Technology, Taoyuan Road, Yuhu District, Xiangtan 411201, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, China
| | - Biyun Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road 7, Wuhan 430072, China
| | - Yongyuan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road 7, Wuhan 430072, China
| | - Zhiying Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road 7, Wuhan 430072, China
| | - Qiaohong Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road 7, Wuhan 430072, China.
| | - Zhenbin Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road 7, Wuhan 430072, China
| |
Collapse
|
26
|
Liu Y, Hwang E, Ngo HTT, Perumalsamy H, Kim YJ, Li L, Yi TH. Protective Effects of Euphrasia officinalis Extract against Ultraviolet B-Induced Photoaging in Normal Human Dermal Fibroblasts. Int J Mol Sci 2018; 19:ijms19113327. [PMID: 30366440 PMCID: PMC6275060 DOI: 10.3390/ijms19113327] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 02/02/2023] Open
Abstract
Ultraviolet (UV) radiation induces skin photoaging, which is associated with the elevation of matrix metalloproteinases (MMPs) and the impairment of collagen. The Euphrasia species play a well-known role in the treatment of certain eye disorders through their anti-oxidative and anti-inflammatory activities. However, their protective activity toward UVB-induced damage remains unclear. In the present study, we investigated the protective effect of Euphrasia officinalis (95% ethanol extract) on UVB-irradiated photoaging in normal human dermal fibroblasts (NHDFs). Our results show that Euphrasia officinalis extract exhibited obvious reactive oxygen species (ROS) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activity, enhanced NHDF cell migration, and reduced UVB-induced apoptosis. The UVB-induced increases in MMP-1 and MMP-3 and decrease in type I procollagen were ameliorated by Euphrasia officinalis treatment, which worked by suppressing the mitogen-activated protein kinase (MAPK) and nuclear transcription factor activator protein 1 (AP-1) signaling pathways. Taken together, our data strongly suggest that Euphrasia officinalis ethanol extract could reduce UVB-induced photoaging by alleviating oxidative stress, proinflammatory activity, and cell apoptosis.
Collapse
Affiliation(s)
- Ying Liu
- College of Life Sciences, Kyung Hee University, 1732, Deogyeong daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Korea.
| | - Eunson Hwang
- College of Life Sciences, Kyung Hee University, 1732, Deogyeong daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Korea.
| | - Hien T T Ngo
- College of Life Sciences, Kyung Hee University, 1732, Deogyeong daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Korea.
| | - Haribalan Perumalsamy
- College of Life Sciences, Kyung Hee University, 1732, Deogyeong daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Korea.
| | - Yeon Ju Kim
- College of Life Sciences, Kyung Hee University, 1732, Deogyeong daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Korea.
| | - Lu Li
- College of Life Sciences, Kyung Hee University, 1732, Deogyeong daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Korea.
| | - Tae-Hoo Yi
- College of Life Sciences, Kyung Hee University, 1732, Deogyeong daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Korea.
| |
Collapse
|
27
|
Zhao L, Man Y, Liu S. Long non-coding RNA HULC promotes UVB-induced injury by up-regulation of BNIP3 in keratinocytes. Biomed Pharmacother 2018; 104:672-678. [DOI: 10.1016/j.biopha.2018.05.100] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 05/17/2018] [Accepted: 05/21/2018] [Indexed: 12/12/2022] Open
|
28
|
Salucci S, Battistelli M, Baldassarri V, Burini D, Falcieri E, Burattini S. Melatonin prevents mitochondrial dysfunctions and death in differentiated skeletal muscle cells. Microsc Res Tech 2017; 80:1174-1181. [PMID: 28742227 DOI: 10.1002/jemt.22914] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 07/08/2017] [Indexed: 12/24/2022]
Abstract
Oxidative stress increase induces cellular damage and apoptosis activation, a mechanism believed to represent a final common pathway correlated to sarcopenia and many skeletal muscle disorders. The goal of this study is to evaluate if melatonin, a ROS scavenger molecule, is able to counteract or modulate myotube death. Here, differentiated C2C12 skeletal muscle cells have been treated with melatonin before chemicals known to induce apoptotic death and oxidative stress, and its effect has been investigated by means of morpho-functional analyses. Ultrastructural observations show melatonin protection against triggers by the reducing of membrane blebbing, chromatin condensation, myonuclei loss and in situ DNA cleavage. Moreover, melatonin is able to prevent mitochondrial dysfunctions which occur in myotubes exposed to the trigger alone. These findings demonstrate melatonin ability in preventing apoptotic cell death in skeletal muscle fibers in vitro, suggesting for this molecule a potential therapeutic role in the treatment of various muscle disorders.
Collapse
Affiliation(s)
- Sara Salucci
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Saffi 2, Urbino, 61029, Italy
| | - Michela Battistelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Saffi 2, Urbino, 61029, Italy
| | - Valentina Baldassarri
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Saffi 2, Urbino, 61029, Italy
| | - Debora Burini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Saffi 2, Urbino, 61029, Italy
| | - Elisabetta Falcieri
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Saffi 2, Urbino, 61029, Italy
| | - Sabrina Burattini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Saffi 2, Urbino, 61029, Italy
| |
Collapse
|
29
|
Drigeard Desgarnier MC, Fournier F, Droit A, Rochette PJ. Influence of a pre-stimulation with chronic low-dose UVB on stress response mechanisms in human skin fibroblasts. PLoS One 2017; 12:e0173740. [PMID: 28301513 PMCID: PMC5354420 DOI: 10.1371/journal.pone.0173740] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/24/2017] [Indexed: 12/16/2022] Open
Abstract
Exposure to solar ultraviolet type B (UVB), through the induction of cyclobutane pyrimidine dimer (CPD), is the major risk factor for cutaneous cancer. Cells respond to UV-induced CPD by triggering the DNA damage response (DDR) responsible for signaling DNA repair, programmed cell death and cell cycle arrest. Underlying mechanisms implicated in the DDR have been extensively studied using single acute UVB irradiation. However, little is known concerning the consequences of chronic low-dose of UVB (CLUV) on the DDR. Thus, we have investigated the effect of a CLUV pre-stimulation on the different stress response pathways. We found that CLUV pre-stimulation enhances CPD repair capacity and leads to a cell cycle delay but leave residual unrepaired CPD. We further analyzed the consequence of the CLUV regimen on general gene and protein expression. We found that CLUV treatment influences biological processes related to the response to stress at the transcriptomic and proteomic levels. This overview study represents the first demonstration that human cells respond to chronic UV irradiation by modulating their genotoxic stress response mechanisms.
Collapse
Affiliation(s)
- Marie-Catherine Drigeard Desgarnier
- Axe Médecine Régénératrice, Centre de Recherche du CHU de Québec – Université Laval, Hôpital du Saint-Sacrement, Québec, Quebec, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Université Laval, Québec, Quebec, Canada
| | - Frédéric Fournier
- Centre de Protéomique, Centre de Recherche du CHU de Québec – Université Laval, Québec, Quebec, Canada
- Département de Médicine Moléculaire, Université Laval, Québec, Canada
| | - Arnaud Droit
- Centre de Protéomique, Centre de Recherche du CHU de Québec – Université Laval, Québec, Quebec, Canada
- Département de Médicine Moléculaire, Université Laval, Québec, Canada
| | - Patrick J. Rochette
- Axe Médecine Régénératrice, Centre de Recherche du CHU de Québec – Université Laval, Hôpital du Saint-Sacrement, Québec, Quebec, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Université Laval, Québec, Quebec, Canada
- Département d’Ophtalmologie et ORL - Chirurgie Cervico-Faciale, Université Laval, Québec, Canada
- * E-mail:
| |
Collapse
|
30
|
Zhu L, Lu Y, Yu WG, Zhao X, Lu YH. Anti-photoageing and anti-melanogenesis activities of chrysin. PHARMACEUTICAL BIOLOGY 2016; 54:2692-2700. [PMID: 27226145 DOI: 10.1080/13880209.2016.1179334] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
CONTEXT Melanin plays an important role in preventing skin photoageing by blocking ultraviolet B (UVB). However, East Asian women prefer light and fair skin, therefore they want to keep their skin from photoageing and at the same time reduce the melanin in their skin. Chrysin is a kind of natural flavonoid with luxurious biological activities, which has a very promising effect on achieving this goal. OBJECTIVE To elucidate the effects and mechanisms of chrysin on photoageing and melanogenesis. MATERIALS AND METHODS Human dermal fibroblasts (HDF) and B16 murine melanoma cells were incubated with chrysin (0-25 μM) for 48 h. Anti-photoageing activity was examined in HDF by assessment of synthesis/degradation of collagen I, antioxidative and antisenescent activities through ELISA and colorimetric method. Anti-melanogenesis activity was tested by assessment of melanin, tyrosinase (TYR), melanogenic proteins inhibition activities in B16 cells using colorimetric and ELISA method. RESULTS Chrysin increased collagen I secretion (50-121.54% at 6.25-25 μM) and chrysin showed anti-photoageing activity by decreasing the degradation of collagen I, repairing oxidation damage and reducing the rate of HDF senescence. Furthermore, chrysin exhibited inhibitory activities with 3.00-20.35% reduction of melanin content at 6.25-25 μM, and inhibited melanin synthesis through the inhibition of TYR activity and the suppression of melanogenic proteins (TYR, TYR-related protein-1/2 and microphthalmia-associated transcription factor) expressions. DISCUSSION AND CONCLUSION Chrysin may have potential for developing a functional cosmetic agent because of its anti-photoageing and anti-melanogenesis activities.
Collapse
Affiliation(s)
- Li Zhu
- a State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai , P.R. China
- b Shanghai Institute of Biomanufacturing Technology , Shanghai , P.R. China
| | - Yue Lu
- a State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai , P.R. China
- b Shanghai Institute of Biomanufacturing Technology , Shanghai , P.R. China
| | - Wan-Guo Yu
- a State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai , P.R. China
- b Shanghai Institute of Biomanufacturing Technology , Shanghai , P.R. China
| | - Xin Zhao
- c Shanghai Inoherb Cosmetics Co. Ltd. , Shanghai , P.R. China
| | - Yan-Hua Lu
- a State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai , P.R. China
- b Shanghai Institute of Biomanufacturing Technology , Shanghai , P.R. China
| |
Collapse
|
31
|
Xie D, Sun Y, Wang L, Li X, Zang C, Zhi Y, Sun L. Ultraviolet light-emitting diode irradiation-induced cell death in HL-60 human leukemia cells in vitro. Mol Med Rep 2016; 13:2506-10. [PMID: 26820261 PMCID: PMC4768973 DOI: 10.3892/mmr.2016.4812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 12/15/2015] [Indexed: 01/12/2023] Open
Abstract
Ultraviolet (UV) radiation is considered to be a potent cell-damaging agent in various cell lineages; however, the effect of UV light‑emitting diode (LED) irradiation on human cells remains unclear. The aim of the present study was to examine the effect of UV LED irradiation emitting at 280 nm on cultured HL‑60 human leukemia cells, and to explore the underlying mechanisms. HL‑60 cells were irradiated with UV LED (8, 15, 30 and 60 J/m2) and incubated for 2 h after irradiation. The rates of cell proliferation and apoptosis, the cell cycle profiles and the mRNA expression of B‑cell lymphoma 2 (Bcl‑2) were detected using cell counting kit‑8, multicaspase assays, propidium iodide staining and reverse transcription‑quantitative polymerase chain reaction, respectively. The results showed that UV LED irradiation (8‑60 J/m2) inhibited the proliferation of HL‑60 cells in a dose‑dependent manner. UV LED at 8‑30 J/m2 induced dose‑dependent apoptosis and G0/G1 cell cycle arrest, and inhibited the expression of Bcl‑2 mRNA, while UV LED at 60 J/m2 induced necrosis. In conclusion, 280 nm UV LED irradiation inhibits proliferation and induces apoptosis and necrosis in cultured HL‑60 cells. In addition, the cell cycle arrest at the G0/G1 phase and the downregulation of Bcl‑2 mRNA expression were shown to be involved in UV LED-induced apoptosis.
Collapse
Affiliation(s)
- Dong Xie
- Department of Pediatric Hematology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Yan Sun
- Department of Pediatric Hematology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Lingzhen Wang
- Department of Pediatric Hematology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Xiaoling Li
- Department of Pediatrics, People's Hospital of Linyi, Linyi, Shandong 276000, P.R. China
| | - Chuannong Zang
- Department of Pediatrics, Central Hospital of Wendeng, Weihai, Shandong 264400, P.R. China
| | - Yunlai Zhi
- Department of Pediatric Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Lirong Sun
- Department of Pediatric Hematology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
32
|
Fernández-García E, Carvajal-Lérida I, Pérez-Gálvez A. Carotenoids exclusively synthesized in red pepper (capsanthin and capsorubin) protect human dermal fibroblasts against UVB induced DNA damage. Photochem Photobiol Sci 2016; 15:1204-1211. [DOI: 10.1039/c6pp00134c] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Capsanthin and capsorubin, carotenoids exclusively synthesized in red pepper, protect human dermal fibroblasts against UVB induced DNA damage.
Collapse
Affiliation(s)
- Elisabet Fernández-García
- Institute of Biochemistry and Molecular Biology I
- Faculty of Medicine
- Heinrich-Heine-University Düsseldorf
- D-40001 Düsseldorf
- Germany
| | - Irene Carvajal-Lérida
- Department of Food Phytochemistry
- Instituto de la Grasa (CSIC)
- Campus Universitario Pablo de Olavide
- 41013, Sevilla
- Spain
| | - Antonio Pérez-Gálvez
- Department of Food Phytochemistry
- Instituto de la Grasa (CSIC)
- Campus Universitario Pablo de Olavide
- 41013, Sevilla
- Spain
| |
Collapse
|
33
|
Utilizing the virus-induced blocking of apoptosis in an easy baculovirus titration method. Sci Rep 2015; 5:15487. [PMID: 26490731 PMCID: PMC4614547 DOI: 10.1038/srep15487] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 09/28/2015] [Indexed: 11/19/2022] Open
Abstract
Baculovirus-mediated protein expression is a robust experimental technique for producing recombinant higher-eukaryotic proteins because it combines high yields with considerable post-translational modification capabilities. In this expression system, the determination of the titer of recombinant baculovirus stocks is important to achieve the correct multiplicity of infection for effective amplification of the virus and high expression of the target protein. To overcome the drawbacks of existing titration methods (e.g., plaque assay, real-time PCR), we present a simple and reliable assay that uses the ability of baculoviruses to block apoptosis in their host cells to accurately titrate virus samples. Briefly, after incubation with serial dilutions of baculovirus samples, Sf9 cells were UV irradiated and, after apoptosis induction, they were viewed via microscopy; the presence of cluster(s) of infected cells as islets indicated blocked apoptosis. Subsequently, baculovirus titers were calculated through the determination of the 50% endpoint dilution. The method is simple, inexpensive, and does not require unique laboratory equipment, consumables or expertise; moreover, it is versatile enough to be adapted for the titration of every virus species that can block apoptosis in any culturable host cells which undergo apoptosis under specific conditions.
Collapse
|
34
|
Calò R, Visone CM, Marabini L. Thymol and Thymus Vulgaris L. activity against UVA- and UVB-induced damage in NCTC 2544 cell line. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 791:30-7. [DOI: 10.1016/j.mrgentox.2015.07.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/09/2015] [Accepted: 07/21/2015] [Indexed: 12/31/2022]
|
35
|
Salucci S, Burattini S, Battistelli M, Buontempo F, Canonico B, Martelli AM, Papa S, Falcieri E. Tyrosol prevents apoptosis in irradiated keratinocytes. J Dermatol Sci 2015; 80:61-8. [PMID: 26166167 DOI: 10.1016/j.jdermsci.2015.07.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 06/18/2015] [Accepted: 07/01/2015] [Indexed: 12/31/2022]
Abstract
BACKGROUND Phenolic compounds, the biggest group of natural antioxidants, have attracted much attention due to their known and wide-ranging biological activities, as well as to their health effects. In particular, regardless their antioxidant activity, they play a key role in the control of several inflammation-associated processes as well as in improving antioxidant defense system. In an our previous work we have demonstrated the ability of Hydroxytyrosol, an ortho-diphenolic compound, essential component of oleuropein, in preventing apoptotic cell death induced by UVB radiation in HaCaT cell lines in vitro. In olive oil, besides Hydroxytyrosol, there are appreciable amounts of Tyrosol and its secoiridoid derivatives. OBJECTIVE It has been well established that Tyrosol has a significantly lower antioxidant activity than Hydroxytyrosol, but despite this, recent studies suggest that Tyrosol exerts a powerful protective effect against oxidative injuries in cell systems and that it is able to improve the intracellular antioxidant defenses. MATERIALS AND METHODS Here, Tyrosol effect has been evaluated in HaCaT cells exposed to UVB radiation by means of morphological and molecular analyses. RESULTS Our study revealed the polyphenol ability in reducing apoptotic markers and in protecting HaCaT cells from damage. CONCLUSION These findings suggest an important role of Tyrosol in protecting cells from apoptotic cell death and encourage the use of this phytochemical as biological ingredient in topical preparations as possible tool to prevent skin damage.
Collapse
Affiliation(s)
- Sara Salucci
- DiSTeVA, University of Urbino Carlo Bo, Urbino 61029, Italy.
| | | | | | - Francesca Buontempo
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | | | | | - Stefano Papa
- DiSB, University of Urbino Carlo Bo, Urbino 61029, Italy
| | | |
Collapse
|
36
|
A Potent Inhibitor of Phosphoinositide 3-Kinase (PI3K) and Mitogen Activated Protein (MAP) Kinase Signalling, Quercetin (3, 3', 4', 5, 7-Pentahydroxyflavone) Promotes Cell Death in Ultraviolet (UV)-B-Irradiated B16F10 Melanoma Cells. PLoS One 2015; 10:e0131253. [PMID: 26148186 PMCID: PMC4493061 DOI: 10.1371/journal.pone.0131253] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 05/31/2015] [Indexed: 12/21/2022] Open
Abstract
Ultraviolet (UV) radiation–induced skin damage contributes strongly to the formation of melanoma, a highly lethal form of skin cancer. Quercetin (Qu), the most widely consumed dietary bioflavonoid and well known inhibitor of phosphoinositide 3-kinase (PI3K) and mitogen activated protein (MAP) kinase signalling, has been reported to be chemopreventive in several forms of non-melanoma skin cancers. Here, we report that the treatment of ultraviolet (UV)-B-irradiated B16F10 melanoma cells with quercetin resulted in a dose dependent reduction in cell viability and increased apoptosis. The present study has brought out that the pro-apoptotic effects of quercetin in UVB-irradiated B16F10 cells are mediated through the elevation of intracellular reactive oxygen species (ROS) formation, calcium homeostasis imbalance, modulation of anti-oxidant defence response and depolarization of mitochondrial membrane potential (ΔΨM). Promotion of UVB-induced cell death by quercetin was further revealed by cleavage of chromosomal DNA, caspase activation, poly (ADP) ribose polymerase (PARP) cleavage, and an increase in sub-G1 cells. Quercetin markedly attenuated MEK-ERK signalling, influenced PI3K/Akt pathway, and potentially enhanced the UVB-induced NF-κB nuclear translocation. Furthermore, combined UVB and quercetin treatment decreased the ratio of Bcl-2 to that of Bax, and upregulated the expression of Bim and apoptosis inducing factor (AIF). Overall, these results suggest the possibility of using quercetin in combination with UVB as a possible treatment option for melanoma in future.
Collapse
|
37
|
Battistelli M, Salucci S, Olivotto E, Facchini A, Minguzzi M, Guidotti S, Pagani S, Flamigni F, Borzì RM, Facchini A, Falcieri E. Cell death in human articular chondrocyte: a morpho-functional study in micromass model. Apoptosis 2015; 19:1471-83. [PMID: 25015553 DOI: 10.1007/s10495-014-1017-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Chondrocyte death and loss of extracellular matrix are the central features in articular cartilage degeneration during osteoarthritis pathogenesis. Cartilage diseases and, in particular, osteoarthritis are widely correlated to apoptosis but, chondrocytes undergoing apoptosis "in vivo" more often display peculiar features that correspond to a distinct process of programmed cell death termed "chondroptosis". Programmed cell death of primary human chondrocyte has been here investigated in micromasses, a tridimensional culture model, that represents a convenient means for studying chondrocyte biology. Cell death has been induced by different physical or chemical apoptotic agents, such as UVB radiation, hyperthermia and staurosporine delivered at both 1 and 3 weeks maturation. Conventional electron microscopy was used to analyse morphological changes. Occurrence of DNA fragmentation and caspase involvement were also investigated. At Transmission Electron Microscopy, control cells appear rounding or slightly elongated with plurilobated nucleus and diffusely dispersed chromatin. Typically UVB radiation and staurosporine induce chromatin apoptotic features, while hyperthermia triggers the "chondroptotic" phenotype. A weak TUNEL positivity appears in control, correlated to the well known cell death patterns occurring along cartilage differentiation. UVB radiation produces a strong positivity, mostly localized at the micromass periphery. After hyperthermia a higher number of fluorescent nuclei appears, in particular at 3 weeks. Staurosporine evidences a diffuse, but reduced, positivity. Therefore, DNA fragmentation is a common pattern in dying chondrocytes, both in apoptotic and "chondroptotic" cells. Moreover, all triggers induce caspase pathway activation, even if to a different extent, suggesting a fundamental role of apoptotic features, in chondrocyte cell death.
Collapse
Affiliation(s)
- M Battistelli
- DiSTeVA, Campus Scientifico Enrico Mattei, Università degli Studi di Urbino Carlo Bo, Via Ca' le Suore 2, 61029, Urbino, PU, Italy,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Rafiq RA, Ganai BA, Tasduq SA. Piperine promotes ultraviolet (UV)-B-induced cell death in B16F10 mouse melanoma cells through modulation of major regulators of cell survival. RSC Adv 2015. [DOI: 10.1039/c4ra12860e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Piperine elevates intracellular ROS formation and impairs calcium homeostasis. It acts as a potent UVB photosensitizer, causing cell death and attenuation of major regulators of survival signalling pathways, offering a possible, practical therapeutic strategy for melanoma.
Collapse
Affiliation(s)
- Rather A. Rafiq
- PK-PD and Toxicology Division
- CSIR-Indian Institute of Integrative Medicine
- Council of Scientific and Industrial Research (CSIR)
- Jammu Tawi
- India
| | - Bashir A. Ganai
- Centre of Research for Development (CORD)
- University of Kashmir
- Srinagar
- India
| | - Sheikh A. Tasduq
- PK-PD and Toxicology Division
- CSIR-Indian Institute of Integrative Medicine
- Council of Scientific and Industrial Research (CSIR)
- Jammu Tawi
- India
| |
Collapse
|
39
|
Salucci S, Burattini S, Curzi D, Buontempo F, Martelli AM, Zappia G, Falcieri E, Battistelli M. Antioxidants in the prevention of UVB-induced keratynocyte apoptosis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 141:1-9. [PMID: 25305749 DOI: 10.1016/j.jphotobiol.2014.09.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/05/2014] [Accepted: 09/06/2014] [Indexed: 01/03/2023]
Abstract
Skin cells can respond to UVB-induced damage by counteracting it through antioxidant activation and DNA repair mechanisms or, when damage is massive by undergoing programmed cell death. Antioxidant factors, and, in particular, food compounds, have attracted much interest because of their potential use in new protective strategies for degenerative skin disorders. Melatonin, creatine and hydroxytyrosol show a variety of pharmacological and clinical benefits including anti-oxidant and anti-inflammatory activities. Here, the potential protective actions of antioxidant compounds against UVB-induced apoptosis were investigated in human keratinocytes. The cells were pre-treated with antioxidants before UVB exposure and their effect evaluated by means of ultrastructural and molecular analyses. After UVB radiation typical morphological apoptotic features and in situ DNA fragmentation after TUNEL reaction, appeared. A significant numerical decrease of apoptotic patterns could be observed when antioxidants were administrated before cell death induction. Moreover, both the intrinsic and extrinsic apoptotic pathways appeared activated after UVB radiation, and their down-regulation has been shown when antioxidants were added to cells before death induction. In conclusion, these compounds are able to prevent apoptotic cell death in human keratinocytes exposed to UVB, suggesting, for these molecules, an important role in preventing skin damage.
Collapse
Affiliation(s)
- Sara Salucci
- DiSTeVA, University of Urbino Carlo Bo, Urbino 61029, Italy
| | | | - Davide Curzi
- DiSTeVA, University of Urbino Carlo Bo, Urbino 61029, Italy
| | - Francesca Buontempo
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | | | | | - Elisabetta Falcieri
- DiSTeVA, University of Urbino Carlo Bo, Urbino 61029, Italy; IGM, CNR, Rizzoli Orthopaedic Institute, Bologna 40136, Italy
| | | |
Collapse
|
40
|
In vitro studies on the mechanisms involved in chemoprevention using Calluna vulgaris on vascular endothelial cells exposed to UVB. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 136:54-61. [DOI: 10.1016/j.jphotobiol.2014.04.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 04/21/2014] [Indexed: 01/06/2023]
|
41
|
Cha JW, Piao MJ, Kim KC, Yao CW, Zheng J, Kim SM, Hyun CL, Ahn YS, Hyun JW. The Polyphenol Chlorogenic Acid Attenuates UVB-mediated Oxidative Stress in Human HaCaT Keratinocytes. Biomol Ther (Seoul) 2014; 22:136-42. [PMID: 24753819 PMCID: PMC3975475 DOI: 10.4062/biomolther.2014.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 02/20/2014] [Accepted: 03/06/2014] [Indexed: 12/20/2022] Open
Abstract
We investigated the protective effects of chlorogenic acid (CGA), a polyphenol compound, on oxidative damage induced by UVB exposure on human HaCaT cells. In a cell-free system, CGA scavenged 1,1-diphenyl-2-picrylhydrazyl radicals, superoxide anions, hydroxyl radicals, and intracellular reactive oxygen species (ROS) generated by hydrogen peroxide and ultraviolet B (UVB). Furthermore, CGA absorbed electromagnetic radiation in the UVB range (280–320 nm). UVB exposure resulted in damage to cellular DNA, as demonstrated in a comet assay; pre-treatment of cells with CGA prior to UVB irradiation prevented DNA damage and increased cell viability. Furthermore, CGA pre-treatment prevented or ameliorated apoptosis-related changes in UVB-exposed cells, including the formation of apoptotic bodies, disruption of mitochondrial membrane potential, and alterations in the levels of the apoptosis-related proteins Bcl-2, Bax, and caspase-3. Our findings suggest that CGA protects cells from oxidative stress induced by UVB radiation.
Collapse
Affiliation(s)
- Ji Won Cha
- School of Medicine and Institute for Nuclear Science and Technology, Jeju National University, Jeju 690-756, Republic of Korea
| | - Mei Jing Piao
- School of Medicine and Institute for Nuclear Science and Technology, Jeju National University, Jeju 690-756, Republic of Korea
| | - Ki Cheon Kim
- School of Medicine and Institute for Nuclear Science and Technology, Jeju National University, Jeju 690-756, Republic of Korea
| | - Cheng Wen Yao
- School of Medicine and Institute for Nuclear Science and Technology, Jeju National University, Jeju 690-756, Republic of Korea
| | - Jian Zheng
- School of Medicine and Institute for Nuclear Science and Technology, Jeju National University, Jeju 690-756, Republic of Korea
| | - Seong Min Kim
- School of Medicine and Institute for Nuclear Science and Technology, Jeju National University, Jeju 690-756, Republic of Korea
| | - Chang Lim Hyun
- School of Medicine and Institute for Nuclear Science and Technology, Jeju National University, Jeju 690-756, Republic of Korea
| | - Yong Seok Ahn
- Research Institute of Processing from Jeju Fisher Food, Choung Ryong Fisheries Co., LTD, Jeju 697-943, Republic of Korea
| | - Jin Won Hyun
- School of Medicine and Institute for Nuclear Science and Technology, Jeju National University, Jeju 690-756, Republic of Korea
| |
Collapse
|
42
|
Salucci S, Burattini S, Battistelli M, Baldassarri V, Curzi D, Valmori A, Falcieri E. Melatonin prevents chemical-induced haemopoietic cell death. Int J Mol Sci 2014; 15:6625-40. [PMID: 24747596 PMCID: PMC4013651 DOI: 10.3390/ijms15046625] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 04/09/2014] [Accepted: 04/09/2014] [Indexed: 12/12/2022] Open
Abstract
Melatonin (MEL), a methoxyindole synthesized by the pineal gland, is a powerful antioxidant in tissues as well as within cells, with a fundamental role in ameliorating homeostasis in a number of specific pathologies. It acts both as a direct radical scavenger and by stimulating production/activity of intracellular antioxidant enzymes. In this work, some chemical triggers, with different mechanisms of action, have been chosen to induce cell death in U937 hematopoietic cell line. Cells were pre-treated with 100 µM MEL and then exposed to hydrogen peroxide or staurosporine. Morphological analyses, TUNEL reaction and Orange/PI double staining have been used to recognize ultrastructural apoptotic patterns and to evaluate DNA behavior. Chemical damage and potential MEL anti-apoptotic effects were quantified by means of Tali® Image-Based Cytometer, able to monitor cell viability and apoptotic events. After trigger exposure, chromatin condensation, micronuclei formation and DNA fragmentation have been observed, all suggesting apoptotic cell death. These events underwent a statistically significant decrease in samples pre-treated with MEL. After caspase inhibition and subsequent assessment of cell viability, we demonstrated that apoptosis occurs, at least in part, through the mitochondrial pathway and that MEL interacts at this level to rescue U937 cells from death.
Collapse
Affiliation(s)
- Sara Salucci
- DiSTeVA, University of Urbino Carlo Bo, Urbino 61029, Italy.
| | | | | | | | - Davide Curzi
- DiSTeVA, University of Urbino Carlo Bo, Urbino 61029, Italy.
| | - Aurelio Valmori
- IGM, CNR, Rizzoli Orthopaedic Institute, Bologna 40136, Italy.
| | | |
Collapse
|
43
|
Protective effect of Vaccinium myrtillus extract against UVA- and UVB-induced damage in a human keratinocyte cell line (HaCaT cells). JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 132:27-35. [PMID: 24577051 DOI: 10.1016/j.jphotobiol.2014.01.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 01/08/2014] [Accepted: 01/08/2014] [Indexed: 12/25/2022]
Abstract
Recently, the field of skin protection have shown a considerable interest in the use of botanicals. Vaccinium myrtillus contains several polyphenols and anthocyanins with multiple pharmacological properties. The purpose of our study was to examine whether a water-soluble V. myrtillus extract (dry matter 12.4%; total polyphenols 339.3mg/100 g fw; total anthocyanins 297.4 mg/100 g fw) was able to reduce UVA- and UVB-induced damage using a human keratinocyte cell line (HaCaT). HaCaT cells were pretreated for 1h with extract in a serum-free medium and then irradiated with UVA (8-40 J/cm(2)) and UVB (0.008-0.72 J/cm(2)) rays. All experiments were performed 24h after the end of irradiation, except for oxidative stress tests. The extract was able to reduce the UVB-induced cytotoxicity and genotoxicity (studied by comet and micronucleous assays) at lower doses. V. myrtillus extract reduced lipid peroxidation UVB-induced, but had no effect against the ROS UVB-produced. With UVA-induced damage V. myrtillus reduced genotoxicity as well as the unbalance of redox intracellular status. Moreover our extract reduced the UVA-induced apoptosis, but had no effect against the UVB one. V. myrtillus extract showed its free radical scavenging properties reducing oxidative stress and apoptotic markers, especially in UVA-irradiated cells.
Collapse
|
44
|
Battistelli M, Salucci S, Burattini S, Falcieri E. Further considerations on in vitro skeletal muscle cell death. Muscles Ligaments Tendons J 2013; 3:267-274. [PMID: 24596689 PMCID: PMC3940499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The present review discusses the apoptotic behavior induced by chemical and physical triggers in C2C12 skeletal muscle cells, comparing myoblast to myotube sensitivity, and investigating it by means of morphological, biochemical and cytofluorimetric analyses. After all treatments, myotubes, differently from myoblasts, showed a poor sensitivity to cell death. Intriguingly, in cells exposed to staurosporine, etoposide and UVB radiation, apoptotic and normal nuclei within the same fibercould be revealed. The presence of nuclear-dependent "territorial" death domains in the syncytium could explain a delayed cell death of myotubes compared to mononucleated cells. Moreover, autophagic granules abundantly appeared in myotubes after each treatment. Autophagy could protect muscle cell integrity against chemical and physical stimuli, making C2C12 myotubes, more resistant to cell death induction.
Collapse
Affiliation(s)
- Michela Battistelli
- Corresponding author: Michela Battistelli, Department of Earth, Life and Environmental Sciences (DiSTeVA), Campus Scientifico “Enrico Mattei”, Via Ca’ le Suore, 2, 61029 Urbino, PU, Italy, E-mail:
| | | | | | | |
Collapse
|