1
|
Pang B, Dong G, Pang T, Sun X, Liu X, Nie Y, Chang X. Advances in pathogenesis and treatment of vascular endothelial injury-related diseases mediated by mitochondrial abnormality. Front Pharmacol 2024; 15:1422686. [PMID: 39281286 PMCID: PMC11394189 DOI: 10.3389/fphar.2024.1422686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/13/2024] [Indexed: 09/18/2024] Open
Abstract
Vascular endothelial cells, serving as a barrier between blood and the arterial wall, play a crucial role in the early stages of the development of atherosclerosis, cardiovascular diseases (CVDs), and Alzheimer's disease (AD). Mitochondria, known as the powerhouses of the cell, are not only involved in energy production but also regulate key biological processes in vascular endothelial cells, including redox signaling, cellular aging, calcium homeostasis, angiogenesis, apoptosis, and inflammatory responses. The mitochondrial quality control (MQC) system is essential for maintaining mitochondrial homeostasis. Current research indicates that mitochondrial dysfunction is a significant driver of endothelial injury and CVDs. This article provides a comprehensive overview of the causes of endothelial injury in CVDs, ischemic stroke in cerebrovascular diseases, and AD, elucidating the roles and mechanisms of mitochondria in these conditions, and aims to develop more effective therapeutic strategies. Additionally, the article offers treatment strategies for cardiovascular and cerebrovascular diseases, including the use of clinical drugs, antioxidants, stem cell therapy, and specific polyphenols, providing new insights and methods for the clinical diagnosis and treatment of related vascular injuries to improve patient prognosis and quality of life. Future research should delve deeper into the molecular and mechanistic links between mitochondrial abnormalities and endothelial injury, and explore how to regulate mitochondrial function to prevent and treat CVDs.
Collapse
Affiliation(s)
- Boxian Pang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Guangtong Dong
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Tieliang Pang
- Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Xinyao Sun
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Xin Liu
- Bioscience Department, University of Nottingham, Nottingham, United Kingdom
| | - Yifeng Nie
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Sun D, Ma J, Du L, Liu Q, Yue H, Peng C, Chen H, Wang G, Liu X, Shen Y. Fluid shear stress induced-endothelial phenotypic transition contributes to cerebral ischemia-reperfusion injury and repair. APL Bioeng 2024; 8:016110. [PMID: 38414635 PMCID: PMC10898918 DOI: 10.1063/5.0174825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 01/30/2024] [Indexed: 02/29/2024] Open
Abstract
Long-term ischemia leads to insufficient cerebral microvascular perfusion and dysfunction. Reperfusion restores physiological fluid shear stress (FSS) but leads to serious injury. The mechanism underlying FSS-induced endothelial injury in ischemia-reperfusion injury (IRI) remains poorly understood. In this study, a rat model of middle cerebral artery occlusion was constructed to explore cerebrovascular endothelial function and inflammation in vivo. Additionally, the rat brain microvascular endothelial cells (rBMECs) were exposed to a laminar FSS of 0.5 dyn/cm2 for 6 h and subsequently restored to physiological fluid shear stress level (2 dyn/cm2) for 2 and 12 h, respectively. We found that reperfusion induced endothelial-to-mesenchymal transition (EndMT) in endothelial cells, leading to serious blood-brain barrier dysfunction and endothelial inflammation, accompanied by the nuclear accumulation of Yes-associated protein (YAP). During the later stage of reperfusion, cerebral endothelium was restored to the endothelial phenotype with a distinct change in mesenchymal-to-endothelial transition (MEndT), while YAP was translocated and phosphorylated in the cytoplasm. Knockdown of YAP or inhibition of actin polymerization markedly impaired the EndMT in rBMECs. These findings suggest that ischemia-reperfusion increased intensity of FSS triggered an EndMT process and, thus, led to endothelial inflammation and tissue injury, whereas continuous FSS induced a time-dependent reversal MEndT event contributing to the endothelial repair. This study provides valuable insight for therapeutic strategies targeting IRI.
Collapse
Affiliation(s)
| | - Jia Ma
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Lingyu Du
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Qiao Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Hongyan Yue
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Chengxiu Peng
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Hanxiao Chen
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | | | | | | |
Collapse
|
3
|
Li Z, Li JN, Li Q, Liu C, Zhou LH, Zhang Q, Xu Y. Cholesterol efflux regulator ABCA1 exerts protective role against high shear stress-induced injury of HBMECs via regulating PI3K/Akt/eNOS signaling. BMC Neurosci 2022; 23:61. [PMCID: PMC9636808 DOI: 10.1186/s12868-022-00748-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 10/26/2022] [Indexed: 11/08/2022] Open
Abstract
Background In brain, microvascular endothelial cells are exposed to various forces, including shear stress (SS). However, little is known about the effects of high shear stress (HSS) on human brain microvascular endothelial cells (HBMECs) and the underlying mechanism. The cholesterol efflux regulator ATP-binding cassette subfamily A member 1 (ABCA1) has been demonstrated to exert protective effect on HBMECs. However, whether ABCA1 is involved in the mechanism underneath the effect of HSS on HBMECs remains obscure. In the present study, a series of experiments were performed to better understand the effect of HSS on cellular processes of HBMECs and the possible involvement of ABCA1 and PI3K/Akt/eNOS in the underlying mechanisms. Results HBMECs were subjected to physiological SS (PSS) or high SS (HSS). Cell migration was evaluated using Transwell assay. Apoptotic HBMECs were detected by flow cytometry or caspase3/7 activity. IL-1β, IL-6, MCP-1 and TNF-α levels were measured by ELISA. RT-qPCR and western blotting were used for mRNA and protein expression detection, respectively. ROS and NO levels were detected using specific detection kits. Compared to PSS, HBMECs exhibited decreased cell viability and migration and increased cell apoptosis, increased levels of inflammatory cytokines, and improved ROS and NO productions after HSS treatment. Moreover, HSS downregulated ABCA1 but upregulated the cholesterol efflux-related proteins MMP9, AQP4, and CYP46 and activated PI3K/Akt/eNOS pathway. Overexpression of ABCA1 in HBMECS inhibited PI3K/Akt/eNOS pathway and counteracted the deleterious effects of HSS. Contrary effects were observed by ABCA1 silencing. Inhibiting PI3K/Akt/eNOS pathway mimicked ABCA1 effects, suggesting that ABCA1 protects HBMECs from HSS via PI3K/Akt/eNOS signaling. Conclusion These results advanced our understanding on the mechanisms of HSS on HBMECs and potentiated ABCA1/PI3K/Akt/eNOS pathway as therapeutic target for cerebrovascular diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s12868-022-00748-2.
Collapse
Affiliation(s)
- Zhe Li
- grid.73113.370000 0004 0369 1660Present Address: Neurovascular Center, Changhai Hospital, Naval Medical University, No. 168 Changhai Rd, Shanghai, 200433 China
| | - Jia-Nan Li
- Department of Neurosurgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning Province China
| | - Qiang Li
- grid.73113.370000 0004 0369 1660Present Address: Neurovascular Center, Changhai Hospital, Naval Medical University, No. 168 Changhai Rd, Shanghai, 200433 China
| | - Chun Liu
- grid.24516.340000000123704535Present Address: Department of Cerebrovascular Diseases, Blue Cross Brain Hospital Affiliated to Tongji University, No. 2880 Qixin Road, Shanghai, 201101 China
| | - Lin-Hua Zhou
- grid.24516.340000000123704535Present Address: Department of Cerebrovascular Diseases, Blue Cross Brain Hospital Affiliated to Tongji University, No. 2880 Qixin Road, Shanghai, 201101 China
| | - Qi Zhang
- grid.24516.340000000123704535Present Address: Department of Cerebrovascular Diseases, Blue Cross Brain Hospital Affiliated to Tongji University, No. 2880 Qixin Road, Shanghai, 201101 China
| | - Yi Xu
- grid.73113.370000 0004 0369 1660Present Address: Neurovascular Center, Changhai Hospital, Naval Medical University, No. 168 Changhai Rd, Shanghai, 200433 China
| |
Collapse
|
4
|
van Dinther M, Voorter PH, Jansen JF, Jones EA, van Oostenbrugge RJ, Staals J, Backes WH. Assessment of microvascular rarefaction in human brain disorders using physiological magnetic resonance imaging. J Cereb Blood Flow Metab 2022; 42:718-737. [PMID: 35078344 PMCID: PMC9014687 DOI: 10.1177/0271678x221076557] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cerebral microvascular rarefaction, the reduction in number of functional or structural small blood vessels in the brain, is thought to play an important role in the early stages of microvascular related brain disorders. A better understanding of its underlying pathophysiological mechanisms, and methods to measure microvascular density in the human brain are needed to develop biomarkers for early diagnosis and to identify targets for disease modifying treatments. Therefore, we provide an overview of the assumed main pathophysiological processes underlying cerebral microvascular rarefaction and the evidence for rarefaction in several microvascular related brain disorders. A number of advanced physiological MRI techniques can be used to measure the pathological alterations associated with microvascular rarefaction. Although more research is needed to explore and validate these MRI techniques in microvascular rarefaction in brain disorders, they provide a set of promising future tools to assess various features relevant for rarefaction, such as cerebral blood flow and volume, vessel density and radius and blood-brain barrier leakage.
Collapse
Affiliation(s)
- Maud van Dinther
- Department of Neurology, Maastricht University Medical Center, The Netherlands.,CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands
| | - Paulien Hm Voorter
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, The Netherlands.,MHeNs - School for Mental Health and Neuroscience, Maastricht University, The Netherlands
| | - Jacobus Fa Jansen
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, The Netherlands.,MHeNs - School for Mental Health and Neuroscience, Maastricht University, The Netherlands
| | | | - Robert J van Oostenbrugge
- Department of Neurology, Maastricht University Medical Center, The Netherlands.,CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands.,MHeNs - School for Mental Health and Neuroscience, Maastricht University, The Netherlands
| | - Julie Staals
- Department of Neurology, Maastricht University Medical Center, The Netherlands.,CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands
| | - Walter H Backes
- CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands.,Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, The Netherlands.,MHeNs - School for Mental Health and Neuroscience, Maastricht University, The Netherlands
| |
Collapse
|
5
|
Zeng Y, Du X, Yao X, Qiu Y, Jiang W, Shen J, Li L, Liu X. Mechanism of cell death of endothelial cells regulated by mechanical forces. J Biomech 2021; 131:110917. [PMID: 34952348 DOI: 10.1016/j.jbiomech.2021.110917] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/26/2022]
Abstract
Cell death of endothelial cells (ECs) is a common devastating consequence of various vascular-related diseases. Atherosclerosis, hypertension, sepsis, diabetes, cerebral ischemia and cardiac ischemia/reperfusion injury, and chronic kidney disease remain major causes of morbidity and mortality worldwide, in which ECs are constantly subjected to a great amount of dynamic changed mechanical forces including shear stress, extracellular matrix stiffness, mechanical stretch and microgravity. A thorough understanding of the regulatory mechanisms by which the mechanical forces controlled the cell deaths including apoptosis, autophagy, and pyroptosis is crucial for the development of new therapeutic strategies. In the present review, experimental and clinical data highlight that nutrient depletion, oxidative stress, tumor necrosis factor-α, high glucose, lipopolysaccharide, and homocysteine possess cytotoxic effects in many tissues and induce apoptosis of ECs, and that sphingosine-1-phosphate protects ECs. Nevertheless, EC apoptosis in the context of those artificial microenvironments could be enhanced, reduced or even reversed along with the alteration of patterns of shear stress. An appropriate level of autophagy diminishes EC apoptosis to some extent, in addition to supporting cell survival upon microenvironment challenges. The intervention of pyroptosis showed a profound effect on atherosclerosis. Further cell and animal studies are required to ascertain whether the alterations in the levels of cell deaths and their associated regulatory mechanisms happen at local lesion sites with considerable mechanical force changes, for preventing senescence and cell deaths in the vascular-related diseases.
Collapse
Affiliation(s)
- Ye Zeng
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Xiaoqiang Du
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xinghong Yao
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yan Qiu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wenli Jiang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Junyi Shen
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Liang Li
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
6
|
The Protective Effect of Aspirin Eugenol Ester on Oxidative Stress to PC12 Cells Stimulated with H 2O 2 through Regulating PI3K/Akt Signal Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5527475. [PMID: 34257805 PMCID: PMC8249132 DOI: 10.1155/2021/5527475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023]
Abstract
Aspirin eugenol ester (AEE) is a new pharmaceutical compound esterified by aspirin and eugenol, which has anti-inflammatory, antioxidant, and other pharmacological activities. This study is aimed at identifying the protective effect of AEE against H2O2-induced apoptosis in rat adrenal pheochromocytoma PC12 cells and the possible mechanisms. The results of cell viability assay showed that AEE could increase the viability of PC12 cells stimulated by H2O2, while AEE alone had no significant effect on the viability of PC12 cells. Compared with the control group, the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) were significantly decreased, and the content of malondialdehyde (MDA) was significantly increased in the H2O2 group. By AEE pretreatment, the level of MDA was reduced and the levels of SOD, CAT, and GSH-Px were increased in H2O2-stimulated PC12 cells. In addition, AEE could reduce the apoptosis of PC12 cells induced by H2O2 via reducing superoxide anion, intracellular ROS, and mitochondrial ROS (mtROS) and increasing the levels of mitochondrial membrane potential (ΔΨm). Furthermore, the results of western blotting showed that compared with the control group, the expression of p-PI3K, p-Akt, and Bcl-2 was significantly decreased, while the expression of Caspase-3 and Bax was significantly increased in the H2O2 group. In the AEE group, AEE pretreatment could upregulate the expression of p-PI3K, p-Akt, and Bcl-2 and downregulate the expression of Caspase-3 and Bax in PC12 cells stimulated with H2O2. The silencing of PI3K with shRNA and its inhibitor-LY294002 could abrogate the protective effect of AEE in PC12 cells. Therefore, AEE has a protective effect on H2O2-induced PC12 cells by regulating the PI3K/Akt signal pathway to inhibit oxidative stress.
Collapse
|
7
|
Gao JQ, Wang P, Yan JW, Ba LN, Shi PL, Wu HM, Guan XY, Cao YG, Sun HL, Mao XY. Shear Stress Rescued the Neuronal Impairment Induced by Global Cerebral Ischemia Reperfusion via Activating PECAM-1-eNOS-NO Pathway. Front Cell Dev Biol 2021; 8:631286. [PMID: 33553171 PMCID: PMC7859356 DOI: 10.3389/fcell.2020.631286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/30/2020] [Indexed: 12/17/2022] Open
Abstract
Microvessel hypoperfusion following ischemic stress resulted in a decreased shear stress of brain microvascular endothelial cells (BMECs) and contributed to abnormal expression of PECAM-1 after global cerebral ischemia/reperfusion (I/R) injury. Here, we identified novel pathophysiologic and rehabilitative procedures specific to shear stress in microvascular endothelial cells in response to global cerebral I/R injury. We found that the decrease in cerebral blood flow of gerbils after global cerebral I/R injury reduces shear stress, and the abnormal change in shear stress leads to microvascular endothelial cell and neuron damage. Nevertheless, suitable high levels of shear stress contribute to rescuing the dysfunction and malformation of BMECs via regulating the PECAM-1-eNOS-NO pathway to enhance nitric oxide release, decrease the expression of caspase-3 to reduce apoptosis, and improve the shear-adaptability of endothelial cells, thereby playing a protective role in the gerbil brain.
Collapse
Affiliation(s)
- Jing-Quan Gao
- Department of Nursing, Harbin Medical University-Daqing, Daqing, China
| | - Peng Wang
- Department of Physiology, Harbin Medical University-Daqing, Daqing, China
| | - Jun-Wei Yan
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Li-Na Ba
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, China
| | - Pi-Long Shi
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, China
| | - Hong-Mei Wu
- Department of Nursing, Harbin Medical University-Daqing, Daqing, China
| | - Xue-Ying Guan
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, China
| | - Yong-Gang Cao
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, China
| | - Hong-Li Sun
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, China
| | - Xiao-Yuan Mao
- Institute of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China
| |
Collapse
|
8
|
Chang L, Zhang W, Shi S, Peng Y, Wang D, Zhang L, Zhang J. microRNA-195 attenuates neuronal apoptosis in rats with ischemic stroke through inhibiting KLF5-mediated activation of the JNK signaling pathway. Mol Med 2020; 26:31. [PMID: 32272873 PMCID: PMC7146986 DOI: 10.1186/s10020-020-00150-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 02/18/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Accumulating evidence has implicated the regulation of microRNAs (miRs) in ischemia stroke. The current study aimed to elucidate the role of microRNA-195 (miR-195) in neuronal apoptosis and brain plasticity in rats with ischemic stroke via the JNK signaling pathway/KLF5 axis. METHODS Ischemic stroke rat models were established by middle cerebral artery occlusion (MCAO), and oxygen deprivation (OGD) models were constructed in rat neuronal cells, followed by gain- or loss-of-function of miR-195 and/or KLF5 in rats and cells. Infarct volume, neuronal loss and ultrastructure, the expression of GAP-43, SYP and KLF5 protein as well as cell apoptosis were determined in the rats. Caspase-3 activity as well as the expression of miR-195, KLF5, GAP-43, SYP, JNK, phosphorylated JNK, Bax and Bcl-2 was measured in the cells. RESULTS The infarct size, expression of GAP-43 and SYP protein and apoptotic cells were increased in the miR-195-/- MCAO rats, while reductions were detected in the miR-195 mimic MCAO and KLF5-/- MCAO rats. Bcl-2 expression was increased, Bax and Caspase-3 expression as well as the ratio of phosphorylated JNK/JNK was decreased in response to miR-195 overexpression or KLF5 knockdown. Interestingly, the silencing of KLF5 reversed the effects exerted by the miR-195 inhibitor on the expression of Bcl-2, phosphorylated JNK/JNK, Bax and Caspase-3. CONCLUSIONS Collectively, our study unraveled that miR-195 could down-regulate KLF5 and block the JNK signaling pathway, ultimately inhibiting neuronal apoptosis in rats with ischemic stroke.
Collapse
Affiliation(s)
- Lisha Chang
- Department of Neurology, North China University of Science and Technology Affiliated Hospital, No. 73, Jianshe South Road, Tangshan, 063000, Hebei Province, People's Republic of China
| | - Wan Zhang
- Quality Control Office, North China University of Science and Technology Affiliated Hospital, Tangshan, 063000, People's Republic of China
| | - Songxin Shi
- Department of Neurology, North China University of Science and Technology Affiliated Hospital, No. 73, Jianshe South Road, Tangshan, 063000, Hebei Province, People's Republic of China
| | - Yanbo Peng
- Department of Neurology, North China University of Science and Technology Affiliated Hospital, No. 73, Jianshe South Road, Tangshan, 063000, Hebei Province, People's Republic of China
| | - Dali Wang
- Department of Neurology, North China University of Science and Technology Affiliated Hospital, No. 73, Jianshe South Road, Tangshan, 063000, Hebei Province, People's Republic of China
| | - Li Zhang
- Department of Neurology, North China University of Science and Technology Affiliated Hospital, No. 73, Jianshe South Road, Tangshan, 063000, Hebei Province, People's Republic of China
| | - Jiang Zhang
- Department of Neurology, North China University of Science and Technology Affiliated Hospital, No. 73, Jianshe South Road, Tangshan, 063000, Hebei Province, People's Republic of China.
| |
Collapse
|
9
|
Yong YX, Yang H, Lian J, Xu XW, Han K, Hu MY, Wang HC, Zhou LM. Up-regulated microRNA-199b-3p represses the apoptosis of cerebral microvascular endothelial cells in ischemic stroke through down-regulation of MAPK/ERK/EGR1 axis. Cell Cycle 2019; 18:1868-1881. [PMID: 31204565 DOI: 10.1080/15384101.2019.1632133] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs (miRNAs) have emerged as key mediators of posttranscriptional gene silencing in both pathogenic and pathological aspects of ischemic stroke biology. Therefore, the purpose of present study was to explore the effect of microRNA-199b-3p (miR-199b-3p) on the cerebral microvascular endothelial cells (CMECs) in middle cerebral artery occlusion-reperfusion (MCAO-R) mice by regulating MAPK/ERK/EGR1 axis. Mice were used to establish MCAO-R models and to measure the expression of miR-199b-3p and the MAPK/ERK/EGR1 axis-related genes. CMECs were extracted from the MCAO-R mice. A series of mimic or inhibitor for miR-199b-3p, or U0126 (an inhibitor for the MAPK/ERK/EGR1 axis) were introduced to treat these CMECs. The levels of miR-199b-3p and MAPK/ERK/EGR1 axis-related genes in tissues and cells were detected. The effects miR-199b-3p on the process of CMECs, including cell viability, cell cycle and cell apoptosis were evaluated. miR-199b-3p expressed poorly in the brain tissues after MCAO-R, along with activated MAPK/ERK/EGR1 axis and increased CMECs apoptosis. CMECs transfected with miR-199b-3p mimics and U0126 manifested with increased cell viability, more cells arrested at the S stage, and inhibited apoptosis of CMECs. In conclusion, these key results demonstrated up-regulated miR-199b-3p could protect mice against ischemic stroke by inhibiting the apoptosis of CMECs through blockade of MAPK/ERK/EGR1 axis.
Collapse
Affiliation(s)
- Ya-Xiong Yong
- a Guizhou Medical University , Guiyang , P. R. China.,b Department of Neurology, the Seventh Affiliated Hospital of Sun Yat-sen University , Shenzhen , P. R. China
| | - Hua Yang
- a Guizhou Medical University , Guiyang , P. R. China.,c Institute of Medical Sciences, Guizhou Medical University , Guiyang , P.R. China.,d Department of Neurosurgery, the Affiliated Hospital of Guizhou Medical University , Guiyang , P. R. China
| | - Jia Lian
- e Department of Neurology, the Seventh Affiliated Hospital of Sun Yat-sen University , Shenzhen , P.R. China
| | - Xiao-Wei Xu
- b Department of Neurology, the Seventh Affiliated Hospital of Sun Yat-sen University , Shenzhen , P. R. China
| | - Ke Han
- b Department of Neurology, the Seventh Affiliated Hospital of Sun Yat-sen University , Shenzhen , P. R. China
| | - Ming-Yi Hu
- b Department of Neurology, the Seventh Affiliated Hospital of Sun Yat-sen University , Shenzhen , P. R. China
| | - Hua-Cheng Wang
- b Department of Neurology, the Seventh Affiliated Hospital of Sun Yat-sen University , Shenzhen , P. R. China
| | - Lie-Min Zhou
- b Department of Neurology, the Seventh Affiliated Hospital of Sun Yat-sen University , Shenzhen , P. R. China
| |
Collapse
|
10
|
Brain protection against ischemic stroke using choline as a new molecular bypass treatment. Acta Pharmacol Sin 2015; 36:1416-25. [PMID: 26567726 DOI: 10.1038/aps.2015.104] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/29/2015] [Indexed: 12/24/2022] Open
Abstract
AIM To determine whether administration of choline could attenuate brain injury in a rat model of ischemic stroke and the underlying mechanisms. METHODS A rat model of ischemic stroke was established through permanent middle cerebral artery occlusion (pMCAO). After the surgery, the rats were treated with choline or choline plus the specific α7 nAChR antagonist methyllycaconitine (MLA), or with the control drug nimodipine for 10 days. The neurological deficits, brain-infarct volume, pial vessel density and the number of microvessels in the cortex were assessed. Rat brain microvascular endothelial cells (rBMECs) cultured under hypoxic conditions were used in in vitro experiments. RESULTS Oral administration of choline (100 or 200 mg·kg(-1)·d(-1)) or nimodipine (20 mg·kg(-1)·d(-1)) significantly improved neurological deficits, and reduced infarct volume and nerve cell loss in the ischemic cerebral cortices in pMCAO rats. Furthermore, oral administration of choline, but not nimodipine, promoted the pial arteriogenesis and cerebral-cortical capillary angiogenesis in the ischemic regions. Moreover, oral administration of choline significantly augmented pMCAO-induced increases in the expression levels of α7 nAChR, HIF-1α and VEGF in the ischemic cerebral cortices as well as in the serum levels of VEGF. Choline-induced protective effects were prevented by co-treatment with MLA (1 mg·kg(-1)·d(-1), ip). Treatment of rBMECs cultured under hypoxic conditions in vitro with choline (1, 10 and 100 μmol/L) dose-dependently promoted the endothelial-cell proliferation, migration and tube formation, as well as VEGF secretion, which were prevented by co-treatment with MLA (1 μmol/L) or by transfection with HIF-1α siRNA. CONCLUSION Choline effectively attenuates brain ischemic injury in pMCAO rats, possibly by facilitating pial arteriogenesis and cerebral-cortical capillary angiogenesis via upregulating α7 nAChR levels and inducing the expression of HIF-1α and VEGF.
Collapse
|
11
|
Pathophysiology of hypertension: interactions between macro and microvascular alterations through endothelial dysfunction. J Hypertens 2014; 32:216-24. [PMID: 24270179 DOI: 10.1097/hjh.0000000000000021] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Hypertension is a multifactorial systemic chronic disorder through functional and structural macrovascular and microvascular alterations. Macrovascular alterations are featured by arterial stiffening, disturbed wave reflection and altered central to peripheral pulse pressure amplification. Microvascular alterations, including altered wall-to-lumen ratio of larger arterioles, vasomotor tone abnormalities and network rarefaction, lead to disturbed tissue perfusion and susceptibility to ischemia. Central arterial stiffness and microvascular alterations are common denominators of organ damages. Vascular alterations are intercorrelated, amplifying the haemodynamic load and causing further damage in the arterial network. A plausible precursor role of vascular alterations in incident hypertension provides new insights for preventive and therapeutic strategies targeting macro and microvasculature. Cumulative metabolic burden and oxidative stress lead to chronic endothelial injury, promoting structural and functional vascular alterations, especially in the microvascular network. Pathophysiology of hypertension may then be revisited, based on both macrovascular and microvascular alterations, with a precursor role of endothelial dysfunction for the latter.
Collapse
|
12
|
Kuntz M, Mysiorek C, Pétrault O, Boucau MC, Aijjou R, Uzbekov R, Bérézowski V. Transient oxygen-glucose deprivation sensitizes brain capillary endothelial cells to rtPA at 4h of reoxygenation. Microvasc Res 2013; 91:44-57. [PMID: 24333620 DOI: 10.1016/j.mvr.2013.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Revised: 11/28/2013] [Accepted: 12/03/2013] [Indexed: 01/11/2023]
Abstract
Thrombolysis treatment of acute ischemic stroke is limited by the pro-edematous and hemorrhagic effects exerted by reperfusion, which disrupts the blood-brain barrier (BBB) capillary endothelium in the infarct core. Most studies of the ischemic BBB overlook the complexity of the penumbral area, where the affected brain cells are still viable following deprivation. Our present objective was to examine in vitro the kinetic impact of reoxygenation on the integrity of ischemic BBB cells after oxygen-glucose deprivation. Through the use of a co-culture of brain capillary endothelial cells and glial cells, we first showed that the transendothelial permeability increase induced by deprivation can occur with both preserved cell viability and interendothelial tight junction network. The subtle and heterogeneous alteration of the tight junctions was observable only through electron microscopy. A complete permeability recovery was then found after reoxygenation, when Vimentin and Actin networks were reordered. However, still sparse ultrastructural alterations of tight junctions suggested an acquired vulnerability. Endothelial cells were then exposed to recombinant tissue-type plasminogen activator (rtPA) to define a temporal profile for the toxic effect of this thrombolytic on transendothelial permeability. Interestingly, the reoxygenated BBB broke down with aggravated tight junction disruption when exposed to rtPA only at 4h after reoxygenation. Moreover, this breakdown was enhanced by 50% when ischemic glial cells were present during the first hours of reoxygenation. Our results suggest that post-stroke reoxygenation enables retrieval of the barrier function of brain capillary endothelium when in a non-necrotic environment, but may sensitize it to rtPA at the 4-hour time point, when both endothelial breakdown mechanisms and glial secretions could be identified and targeted in a therapeutical perspective.
Collapse
Affiliation(s)
- Mélanie Kuntz
- Univ Lille Nord de France, UArtois, LBHE, EA 2465, Faculté des Sciences Jean Perrin, rue Jean Souvraz, S.P.18, F-62307 Lens cedex, France; Institut de Médecine Prédictive et de Recherche Thérapeutique, Place de Verdun, F-59045 Lille cedex, France; Institut Fédératif de Recherche 114, Place de Verdun, F-59045 Lille cedex, France.
| | - Caroline Mysiorek
- Univ Lille Nord de France, UArtois, LBHE, EA 2465, Faculté des Sciences Jean Perrin, rue Jean Souvraz, S.P.18, F-62307 Lens cedex, France; Institut de Médecine Prédictive et de Recherche Thérapeutique, Place de Verdun, F-59045 Lille cedex, France; Institut Fédératif de Recherche 114, Place de Verdun, F-59045 Lille cedex, France.
| | - Olivier Pétrault
- Univ Lille Nord de France, UArtois, LBHE, EA 2465, Faculté des Sciences Jean Perrin, rue Jean Souvraz, S.P.18, F-62307 Lens cedex, France; Institut de Médecine Prédictive et de Recherche Thérapeutique, Place de Verdun, F-59045 Lille cedex, France; Institut Fédératif de Recherche 114, Place de Verdun, F-59045 Lille cedex, France.
| | - Marie-Christine Boucau
- Univ Lille Nord de France, UArtois, LBHE, EA 2465, Faculté des Sciences Jean Perrin, rue Jean Souvraz, S.P.18, F-62307 Lens cedex, France; Institut de Médecine Prédictive et de Recherche Thérapeutique, Place de Verdun, F-59045 Lille cedex, France; Institut Fédératif de Recherche 114, Place de Verdun, F-59045 Lille cedex, France.
| | - Rachid Aijjou
- Univ Lille Nord de France, UArtois, LBHE, EA 2465, Faculté des Sciences Jean Perrin, rue Jean Souvraz, S.P.18, F-62307 Lens cedex, France; Institut de Médecine Prédictive et de Recherche Thérapeutique, Place de Verdun, F-59045 Lille cedex, France; Institut Fédératif de Recherche 114, Place de Verdun, F-59045 Lille cedex, France.
| | - Rustem Uzbekov
- Département des Microscopies, Université François Rabelais, F-37100 Tours, France; Faculty of Bioengineering & Bioinformatics, Moscow State University, 119991 Moscow, Russia.
| | - Vincent Bérézowski
- Univ Lille Nord de France, UArtois, LBHE, EA 2465, Faculté des Sciences Jean Perrin, rue Jean Souvraz, S.P.18, F-62307 Lens cedex, France; Institut de Médecine Prédictive et de Recherche Thérapeutique, Place de Verdun, F-59045 Lille cedex, France; Institut Fédératif de Recherche 114, Place de Verdun, F-59045 Lille cedex, France.
| |
Collapse
|
13
|
Zhang Y, Zhang P, Shen X, Tian S, Wu Y, Zhu Y, Jia J, Wu J, Hu Y. Early exercise protects the blood-brain barrier from ischemic brain injury via the regulation of MMP-9 and occludin in rats. Int J Mol Sci 2013; 14:11096-112. [PMID: 23708107 PMCID: PMC3709721 DOI: 10.3390/ijms140611096] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 05/05/2013] [Accepted: 05/16/2013] [Indexed: 01/18/2023] Open
Abstract
Early exercise within 24 h after stroke can reduce neurological deficits after ischemic brain injury. However, the mechanisms underlying this neuroprotection remain poorly understood. Ischemic brain injury disrupts the blood-brain barrier (BBB) and then triggers a cascade of events, leading to secondary brain injury and poor long-term outcomes. This study verified the hypothesis that early exercise protected the BBB after ischemia. Adult rats were randomly assigned to sham, early exercise (EE) or non-exercise (NE) groups. The EE and NE groups were subjected to ischemia induced by middle cerebral artery occlusion (MCAO). The EE group ran on a treadmill beginning 24 h after ischemia, 30 min per day for three days. After three-days’ exercise, EB extravasation and electron microscopy were used to evaluate the integrity of the BBB. Neurological deficits, cerebral infarct volume and the expression of MMP-9, the tissue inhibitors of metalloproteinase-1 (TIMP-1), and occludin were determined. The data indicated that early exercise significantly inhibited the ischemia-induced reduction of occludin, and an increase in MMP-9 promoted TIMP-1 expression (p < 0.01), attenuated the BBB disruption (p < 0.05) and neurological deficits (p < 0.01) and diminished the infarct volume (p < 0.01). Our results suggest that the neuroprotection conferred by early exercise was likely achieved by improving the function of the BBB via the regulation of MMP-9 and occludin.
Collapse
Affiliation(s)
- Yuling Zhang
- Department of Rehabilitation of Huashan Hospital, Fudan University, Shanghai 200040, China; E-Mails: (Y.Z.); (P.Z.); (X.S.); (S.T.); (Y.W.); (Y.Z.); (J.J.); (J.W.)
- State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - Pengyue Zhang
- Department of Rehabilitation of Huashan Hospital, Fudan University, Shanghai 200040, China; E-Mails: (Y.Z.); (P.Z.); (X.S.); (S.T.); (Y.W.); (Y.Z.); (J.J.); (J.W.)
| | - Xiafeng Shen
- Department of Rehabilitation of Huashan Hospital, Fudan University, Shanghai 200040, China; E-Mails: (Y.Z.); (P.Z.); (X.S.); (S.T.); (Y.W.); (Y.Z.); (J.J.); (J.W.)
- State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - Shan Tian
- Department of Rehabilitation of Huashan Hospital, Fudan University, Shanghai 200040, China; E-Mails: (Y.Z.); (P.Z.); (X.S.); (S.T.); (Y.W.); (Y.Z.); (J.J.); (J.W.)
| | - Yi Wu
- Department of Rehabilitation of Huashan Hospital, Fudan University, Shanghai 200040, China; E-Mails: (Y.Z.); (P.Z.); (X.S.); (S.T.); (Y.W.); (Y.Z.); (J.J.); (J.W.)
- State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - Yulian Zhu
- Department of Rehabilitation of Huashan Hospital, Fudan University, Shanghai 200040, China; E-Mails: (Y.Z.); (P.Z.); (X.S.); (S.T.); (Y.W.); (Y.Z.); (J.J.); (J.W.)
| | - Jie Jia
- Department of Rehabilitation of Huashan Hospital, Fudan University, Shanghai 200040, China; E-Mails: (Y.Z.); (P.Z.); (X.S.); (S.T.); (Y.W.); (Y.Z.); (J.J.); (J.W.)
- State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - Junfa Wu
- Department of Rehabilitation of Huashan Hospital, Fudan University, Shanghai 200040, China; E-Mails: (Y.Z.); (P.Z.); (X.S.); (S.T.); (Y.W.); (Y.Z.); (J.J.); (J.W.)
| | - Yongshan Hu
- Department of Rehabilitation of Huashan Hospital, Fudan University, Shanghai 200040, China; E-Mails: (Y.Z.); (P.Z.); (X.S.); (S.T.); (Y.W.); (Y.Z.); (J.J.); (J.W.)
- State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
- Author to whom correspondence should be addressed; E-Mail: ; Tel./Fax: +86-21-5288-7820
| |
Collapse
|