1
|
Lenton ICD, Scott EK, Rubinsztein-Dunlop H, Favre-Bulle IA. Optical Tweezers Exploring Neuroscience. Front Bioeng Biotechnol 2020; 8:602797. [PMID: 33330435 PMCID: PMC7732537 DOI: 10.3389/fbioe.2020.602797] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/04/2020] [Indexed: 12/30/2022] Open
Abstract
Over the past decade, optical tweezers (OT) have been increasingly used in neuroscience for studies of molecules and neuronal dynamics, as well as for the study of model organisms as a whole. Compared to other areas of biology, it has taken much longer for OT to become an established tool in neuroscience. This is, in part, due to the complexity of the brain and the inherent difficulties in trapping individual molecules or manipulating cells located deep within biological tissue. Recent advances in OT, as well as parallel developments in imaging and adaptive optics, have significantly extended the capabilities of OT. In this review, we describe how OT became an established tool in neuroscience and we elaborate on possible future directions for the field. Rather than covering all applications of OT to neurons or related proteins and molecules, we focus our discussions on studies that provide crucial information to neuroscience, such as neuron dynamics, growth, and communication, as these studies have revealed meaningful information and provide direction for the field into the future.
Collapse
Affiliation(s)
- Isaac C. D. Lenton
- School of Mathematics and Physics, The University of Queensland, Brisbane, QLD, Australia
| | - Ethan K. Scott
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | | | - Itia A. Favre-Bulle
- School of Mathematics and Physics, The University of Queensland, Brisbane, QLD, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
2
|
Huang L, Bian S, Cheng Y, Shi G, Liu P, Ye X, Wang W. Microfluidics cell sample preparation for analysis: Advances in efficient cell enrichment and precise single cell capture. BIOMICROFLUIDICS 2017; 11:011501. [PMID: 28217240 PMCID: PMC5303167 DOI: 10.1063/1.4975666] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/24/2017] [Indexed: 05/03/2023]
Abstract
Single cell analysis has received increasing attention recently in both academia and clinics, and there is an urgent need for effective upstream cell sample preparation. Two extremely challenging tasks in cell sample preparation-high-efficiency cell enrichment and precise single cell capture-have now entered into an era full of exciting technological advances, which are mostly enabled by microfluidics. In this review, we summarize the category of technologies that provide new solutions and creative insights into the two tasks of cell manipulation, with a focus on the latest development in the recent five years by highlighting the representative works. By doing so, we aim both to outline the framework and to showcase example applications of each task. In most cases for cell enrichment, we take circulating tumor cells (CTCs) as the target cells because of their research and clinical importance in cancer. For single cell capture, we review related technologies for many kinds of target cells because the technologies are supposed to be more universal to all cells rather than CTCs. Most of the mentioned technologies can be used for both cell enrichment and precise single cell capture. Each technology has its own advantages and specific challenges, which provide opportunities for researchers in their own area. Overall, these technologies have shown great promise and now evolve into real clinical applications.
Collapse
Affiliation(s)
- Liang Huang
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University , Beijing, China
| | - Shengtai Bian
- Department of Biomedical Engineering, Tsinghua University , Beijing, China
| | - Yinuo Cheng
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University , Beijing, China
| | - Guanya Shi
- Department of Automotive Engineering, Tsinghua University , Beijing, China
| | - Peng Liu
- Department of Biomedical Engineering, Tsinghua University , Beijing, China
| | - Xiongying Ye
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University , Beijing, China
| | - Wenhui Wang
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University , Beijing, China
| |
Collapse
|
3
|
|
4
|
Abstract
Maintenance of neuronal polarity and regulation of cytoskeletal dynamics are vital during development and to uphold synaptic activity in neuronal networks. Here we show that soluble β-amyloid (Aβ) disrupts actin and microtubule (MT) dynamics via activation of RhoA and inhibition of histone deacetylase 6 (HDAC6) in cultured hippocampal neurons. The contact of Aβ with the extracellular membrane promotes RhoA activation, leading to growth cone collapse and neurite retraction, which might be responsible for hampered neuronal pathfinding and migration in Alzheimer's disease (AD). The inhibition of HDAC6 by Aβ increases the level of heterodimeric acetylated tubulin and acetylated tau, both of which have been found altered in AD. We also find that the loss of HDAC6 activity perturbs the integrity of axon initial segment (AIS), resulting in mislocalization of ankyrin G and increased MT instability in the AIS concomitant with loss of polarized localization of tau and impairment of action potential firing.
Collapse
|
5
|
Podlipec R, Štrancar J. Cell-scaffold adhesion dynamics measured in first seconds predicts cell growth on days scale – optical tweezers study. ACS APPLIED MATERIALS & INTERFACES 2015; 7:6782-6791. [PMID: 25764169 DOI: 10.1021/acsami.5b00235] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Understanding the cell-biomaterial interface from the very first contact is of crucial importance for their successful implementation and function in damaged tissues. However, the lack of bio- and mechano-analytical methods to investigate and probe the initial processes on the interface, especially in 3D, raises the need for applying new experimental techniques. In our study, optical tweezers combined with confocal fluorescence microscopy were optimized to investigate the initial cell-scaffold contact and to investigate its correlation with the material-dependent cell growth. By the optical tweezers-induced cell manipulation accompanied by force detection up to 100 pN and position detection by fluorescence microscopy, accurate adhesion dynamics and strength analysis was implemented, where several attachment sites were formed on the interface in the first few seconds. More importantly, we have shown that dynamics of cell adhesion on scaffold surfaces correlates with cell growth on the days scale, which indicates that the first seconds of the contact could markedly direct further cell response. Such a contact dynamics analysis on 3D scaffold surfaces, applied for the first time, can thus serve to predict scaffold biocompatibility.
Collapse
Affiliation(s)
- Rok Podlipec
- Centre of Excellence NAMASTE, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
- Laboratory of Biophysics, Condensed Matter Physics Department, "Jožef Stefan" Institute, Jamova cesta 39, Ljubljana SI-1000, Slovenia
| | - Janez Štrancar
- Centre of Excellence NAMASTE, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
- Laboratory of Biophysics, Condensed Matter Physics Department, "Jožef Stefan" Institute, Jamova cesta 39, Ljubljana SI-1000, Slovenia
| |
Collapse
|
6
|
Guillaume-Gentil O, Potthoff E, Ossola D, Franz CM, Zambelli T, Vorholt JA. Force-controlled manipulation of single cells: from AFM to FluidFM. Trends Biotechnol 2014; 32:381-8. [PMID: 24856959 DOI: 10.1016/j.tibtech.2014.04.008] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 04/16/2014] [Accepted: 04/21/2014] [Indexed: 01/25/2023]
Abstract
The ability to perturb individual cells and to obtain information at the single-cell level is of central importance for addressing numerous biological questions. Atomic force microscopy (AFM) offers great potential for this prospering field. Traditionally used as an imaging tool, more recent developments have extended the variety of cell-manipulation protocols. Fluidic force microscopy (FluidFM) combines AFM with microfluidics via microchanneled cantilevers with nano-sized apertures. The crucial element of the technology is the connection of the hollow cantilevers to a pressure controller, allowing their operation in liquid as force-controlled nanopipettes under optical control. Proof-of-concept studies demonstrated a broad spectrum of single-cell applications including isolation, deposition, adhesion and injection in a range of biological systems.
Collapse
Affiliation(s)
| | - Eva Potthoff
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Dario Ossola
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland
| | - Clemens M Franz
- DFG-Center for Functional Nanostructures, Karlsruhe Institute for Technology, Wolfgang-Gaede-Strasse 1a, 76131 Karlsruhe, Germany
| | - Tomaso Zambelli
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland.
| | - Julia A Vorholt
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland.
| |
Collapse
|
7
|
Farcasanu IC, Mitrica R, Cristache L, Nicolau I, Ruta LL, Paslaru L, Comorosan S. Optical manipulation ofSaccharomyces cerevisiaecells reveals that green light protection against UV irradiation is favored by low Ca2+and requires intact UPR pathway. FEBS Lett 2013; 587:3514-21. [DOI: 10.1016/j.febslet.2013.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 09/05/2013] [Accepted: 09/10/2013] [Indexed: 12/16/2022]
|
8
|
Pacoret C, Régnier S. Invited article: a review of haptic optical tweezers for an interactive microworld exploration. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2013; 84:081301. [PMID: 24007046 DOI: 10.1063/1.4818912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
This paper is the first review of haptic optical tweezers, a new technique which associates force feedback teleoperation with optical tweezers. This technique allows users to explore the microworld by sensing and exerting picoNewton-scale forces with trapped microspheres. Haptic optical tweezers also allow improved dexterity of micromanipulation and micro-assembly. One of the challenges of this technique is to sense and magnify picoNewton-scale forces by a factor of 10(12) to enable human operators to perceive interactions that they have never experienced before, such as adhesion phenomena, extremely low inertia, and high frequency dynamics of extremely small objects. The design of optical tweezers for high quality haptic feedback is challenging, given the requirements for very high sensitivity and dynamic stability. The concept, design process, and specification of optical tweezers reviewed here are focused on those intended for haptic teleoperation. In this paper, two new specific designs as well as the current state-of-the-art are presented. Moreover, the remaining important issues are identified for further developments. The initial results obtained are promising and demonstrate that optical tweezers have a significant potential for haptic exploration of the microworld. Haptic optical tweezers will become an invaluable tool for force feedback micromanipulation of biological samples and nano- and micro-assembly parts.
Collapse
Affiliation(s)
- Cécile Pacoret
- Institut des systèmes Intelligents et de Robotique, Université Pierre et Marie Curie, CNRS UMR 7222, 4 Place Jussieu, 75252 Paris Cedex, France
| | | |
Collapse
|