1
|
Sugihara J, Wong A, Shimizu H, Zhao J, Cho HR, Wang Y, Refetoff S, Arvan P, Liu M. Thyroidal Transcriptomic Profiles of Pathoadaptive Responses to Congenital Hypothyroidism in XB130 Knockout Mice. Cells 2022; 11:975. [PMID: 35326426 PMCID: PMC8947158 DOI: 10.3390/cells11060975] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 01/26/2023] Open
Abstract
Congenital hypothyroidism is a genetic condition in which the thyroid gland fails to produce sufficient thyroid hormone (TH), resulting in metabolic dysfunction and growth retardation. Xb130-/- mice exhibit perturbations of thyrocyte cytoskeleton and polarity, and develop postnatal transient growth retardation due to congenital hypothyroidism, leading ultimately to multinodular goiter. To determine the underlying mechanisms, we performed transcriptomic analyses on thyroid glands of mice at three age points: week 2 (W2, before visible growth retardation), W4 (at the nadir of growth); and W12 (immediately before full growth recovery). Using gene set enrichment analysis, we compared a defined set of thyroidal genes between Xb130+/+ and Xb130-/- mice to identify differentially enriched gene clusters. At the earliest postnatal stage (W2), the thyroid glands of Xb130-/- mice exhibited significantly downregulated gene clusters related to cellular metabolism, which continued to W4. Additionally, mutant thyroids at W4 and W12 showed upregulated gene clusters related to extracellular matrix, angiogenesis, and cell proliferation. At W12, despite nearly normal levels of serum TH and TSH and body size, a significantly large number of gene clusters related to inflammatory response were upregulated. Early postnatal TH deficiency may suppress cellular metabolism within the thyroid gland itself. Upregulation of genes related to extracellular matrix and angiogenesis may promote subsequent thyroid growth. Chronic inflammatory responses may contribute to the pathogenesis of multinodular goiter in later life. Some of the pathoadaptive responses of Xb130-/- mice may overlap with those from other mutations causing congenital hypothyroidism.
Collapse
Affiliation(s)
- Junichi Sugihara
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (J.S.); (A.W.); (H.S.); (J.Z.); (H.-R.C.); (Y.W.)
| | - Aaron Wong
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (J.S.); (A.W.); (H.S.); (J.Z.); (H.-R.C.); (Y.W.)
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Hiroki Shimizu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (J.S.); (A.W.); (H.S.); (J.Z.); (H.-R.C.); (Y.W.)
| | - Jinbo Zhao
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (J.S.); (A.W.); (H.S.); (J.Z.); (H.-R.C.); (Y.W.)
| | - Hae-Ra Cho
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (J.S.); (A.W.); (H.S.); (J.Z.); (H.-R.C.); (Y.W.)
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Yingchun Wang
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (J.S.); (A.W.); (H.S.); (J.Z.); (H.-R.C.); (Y.W.)
| | - Samuel Refetoff
- Departments of Medicine, Pediatrics and Committee on Genetics, The University of Chicago, Chicago, IL 60637, USA;
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI 48105, USA;
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (J.S.); (A.W.); (H.S.); (J.Z.); (H.-R.C.); (Y.W.)
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Departments of Surgery and Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
2
|
Cheng J, Liu J, Li M, Liu Z, Wang X, Zhang L, Wang Z. Hydrogel-Based Biomaterials Engineered from Natural-Derived Polysaccharides and Proteins for Hemostasis and Wound Healing. Front Bioeng Biotechnol 2021; 9:780187. [PMID: 34881238 PMCID: PMC8645981 DOI: 10.3389/fbioe.2021.780187] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/25/2021] [Indexed: 01/11/2023] Open
Abstract
Rapid and effective hemostasis is of great importance to improve the quality of treatment and save lives in emergency, surgical practice, civilian, and military settings. Traditional hemostatic materials such as tourniquets, gauze, bandages, and sponges have shown limited efficacy in the management of uncontrollable bleeding, resulting in widespread interest in the development of novel hemostatic materials and techniques. Benefiting from biocompatibility, degradability, injectability, tunable mechanical properties, and potential abilities to promote coagulation, wound healing, and anti-infection, hydrogel-based biomaterials, especially those on the basis of natural polysaccharides and proteins, have been increasingly explored in preclinical studies over the past few years. Despite the exciting research progress and initial commercial development of several hemostatic hydrogels, there is still a significant distance from the desired hemostatic effect applicable to clinical treatment. In this review, after elucidating the process of biological hemostasis, the latest progress of hydrogel biomaterials engineered from natural polysaccharides and proteins for hemostasis is discussed on the basis of comprehensive literature review. We have focused on the preparation strategies, physicochemical properties, hemostatic and wound-healing abilities of these novel biomaterials, and highlighted the challenges that needed to be addressed to achieve the transformation of laboratory research into clinical practice, and finally presented future research directions in this area.
Collapse
Affiliation(s)
- Junyao Cheng
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing, China.,Chinese PLA Medical School, Beijing, China
| | - Jianheng Liu
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing, China
| | - Ming Li
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing, China
| | - Zhongyang Liu
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Licheng Zhang
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing, China
| | - Zheng Wang
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
3
|
Dobson GP, Biros E, Letson HL, Morris JL. Living in a Hostile World: Inflammation, New Drug Development, and Coronavirus. Front Immunol 2021; 11:610131. [PMID: 33552070 PMCID: PMC7862725 DOI: 10.3389/fimmu.2020.610131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/25/2020] [Indexed: 12/14/2022] Open
Abstract
We present a brief history of the immune response and show that Metchnikoff's theory of inflammation and phagocytotic defense was largely ignored in the 20th century. For decades, the immune response was believed to be triggered centrally, until Lafferty and Cunningham proposed the initiating signal came from the tissues. This shift opened the way for Janeway's pattern recognition receptor theory, and Matzinger's danger model. All models failed to appreciate that without inflammation, there can be no immune response. The situation changed in the 1990s when cytokine biology was rapidly advancing, and the immune system's role expanded from host defense, to the maintenance of host health. An inflammatory environment, produced by immune cells themselves, was now recognized as mandatory for their attack, removal and repair functions after an infection or injury. We explore the cellular programs of the immune response, and the role played by cytokines and other mediators to tailor the right response, at the right time. Normally, the immune response is robust, self-limiting and restorative. However, when the antigen load or trauma exceeds the body's internal tolerances, as witnessed in some COVID-19 patients, excessive inflammation can lead to increased sympathetic outflows, cardiac dysfunction, coagulopathy, endothelial and metabolic dysfunction, multiple organ failure and death. Currently, there are few drug therapies to reduce excessive inflammation and immune dysfunction. We have been developing an intravenous (IV) fluid therapy comprising adenosine, lidocaine and Mg2+ (ALM) that confers a survival advantage by preventing excessive inflammation initiated by sepsis, endotoxemia and sterile trauma. The multi-pronged protection appears to be unique and may provide a tool to examine the intersection points in the immune response to infection or injury, and possible ways to prevent secondary tissue damage, such as that reported in patients with COVID-19.
Collapse
Affiliation(s)
- Geoffrey P. Dobson
- Heart, Trauma and Sepsis Research Laboratory, College of Medicine and Dentistry, James Cook University, Townsville, QLD, Australia
| | | | | | | |
Collapse
|
4
|
Shi C, Yang L, Braun A, Anders HJ. Extracellular DNA-A Danger Signal Triggering Immunothrombosis. Front Immunol 2020; 11:568513. [PMID: 33117353 PMCID: PMC7575749 DOI: 10.3389/fimmu.2020.568513] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022] Open
Abstract
Clotting and inflammation are effective danger response patterns positively selected by evolution to limit fatal bleeding and pathogen invasion upon traumatic injuries. As a trade-off, thrombotic, and thromboembolic events complicate severe forms of infectious and non-infectious states of acute and chronic inflammation, i.e., immunothrombosis. Factors linked to thrombosis and inflammation include mediators released by platelet granules, complement, and lipid mediators and certain integrins. Extracellular deoxyribonucleic acid (DNA) was a previously unrecognized cellular component in the blood, which elicits profound proinflammatory and prothrombotic effects. Pathogens trigger the release of extracellular DNA together with other pathogen-associated molecular patterns. Dying cells in the inflamed or infected tissue release extracellular DNA together with other danger associated molecular pattern (DAMPs). Neutrophils release DNA by forming neutrophil extracellular traps (NETs) during infection, trauma or other forms of vascular injury. Fluorescence tissue imaging localized extracellular DNA to sites of injury and to intravascular thrombi. Functional studies using deoxyribonuclease (DNase)-deficient mouse strains or recombinant DNase show that extracellular DNA contributes to the process of immunothrombosis. Here, we review rodent models of immunothrombosis and the evolving evidence for extracellular DNA as a driver of immunothrombosis and discuss challenges and prospects for extracellular DNA as a potential therapeutic target.
Collapse
Affiliation(s)
- Chongxu Shi
- Renal Division, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians University Munich, Munich, Germany
| | - Luying Yang
- Renal Division, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians University Munich, Munich, Germany
| | - Attila Braun
- German Center for Lung Research, Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians University Munich, Munich, Germany
| | - Hans-Joachim Anders
- Renal Division, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians University Munich, Munich, Germany
| |
Collapse
|
5
|
Mulay SR, Steiger S, Shi C, Anders HJ. A guide to crystal-related and nano- or microparticle-related tissue responses. FEBS J 2020; 287:818-832. [PMID: 31829497 DOI: 10.1111/febs.15174] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 12/09/2019] [Indexed: 12/25/2022]
Abstract
Crystals and nano- and microparticles form inside the human body from intrinsic proteins, minerals, or metabolites or enter the body as particulate matter from occupational and environmental sources. Associated tissue injuries and diseases mostly develop from cellular responses to such crystal deposits and include inflammation, cell necrosis, granuloma formation, tissue fibrosis, and stone-related obstruction of excretory organs. But how do crystals and nano- and microparticles trigger these biological processes? Which pathomechanisms are identical across different particle types, sizes, and shapes? In addition, which mechanisms are specific to the atomic or molecular structure of crystals or to specific sizes or shapes? Do specific cellular or molecular mechanisms qualify as target for therapeutic interventions? Here, we provide a guide to approach this diverse and multidisciplinary research domain. We give an overview about the clinical spectrum of crystallopathies, about shared and specific pathomechanisms as a conceptual overview before digging deeper into the specialty field of interest.
Collapse
Affiliation(s)
- Shrikant R Mulay
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Stefanie Steiger
- Renal Division, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU Munich, Germany
| | - Chongxu Shi
- Renal Division, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU Munich, Germany
| | - Hans-Joachim Anders
- Renal Division, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU Munich, Germany
| |
Collapse
|
6
|
Abstract
The nephrons of the kidney are independent functional units harboring cells of a low turnover during homeostasis. As such, physiological renal cell death is a rather rare event and dead cells are flushed away rapidly with the urinary flow. Renal cell necrosis occurs in acute kidney injuries such as thrombotic microangiopathies, necrotizing glomerulonephritis, or tubular necrosis. All of these are associated with intense intrarenal inflammation, which contributes to further renal cell loss, an autoamplifying process referred to as necroinflammation. But how does renal cell necrosis trigger inflammation? Here, we discuss the role of danger-associated molecular patterns (DAMPs), mitochondrial (mito)-DAMPs, and alarmins, as well as their respective pattern recognition receptors. The capacity of DAMPs and alarmins to trigger cytokine and chemokine release initiates the recruitment of leukocytes into the kidney that further amplify necroinflammation. Infiltrating neutrophils often undergo neutrophil extracellular trap formation associated with neutrophil death or necroptosis, which implies a release of histones, which act not only as DAMPs but also elicit direct cytotoxic effects on renal cells, namely endothelial cells. Proinflammatory macrophages and eventually cytotoxic T cells further drive kidney cell death and inflammation. Dissecting the molecular mechanisms of necroinflammation may help to identify the best therapeutic targets to limit nephron loss in kidney injury.
Collapse
Affiliation(s)
- Shrikant R Mulay
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Santhosh V Kumar
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Maciej Lech
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Jyaysi Desai
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Hans-Joachim Anders
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany.
| |
Collapse
|
7
|
Weidenbusch M, Rodler S, Song S, Romoli S, Marschner JA, Kraft F, Holderied A, Kumar S, Mulay SR, Honarpisheh M, Kumar Devarapu S, Lech M, Anders HJ. Gene expression profiling of the Notch-AhR-IL22 axis at homeostasis and in response to tissue injury. Biosci Rep 2017; 37:BSR20170099. [PMID: 29054964 PMCID: PMC5741834 DOI: 10.1042/bsr20170099] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 10/15/2017] [Accepted: 10/17/2017] [Indexed: 12/11/2022] Open
Abstract
Notch and interleukin-22 (IL-22) signaling are known to regulate tissue homeostasis and respond to injury in humans and mice, and the induction of endogenous aryl hydrocarbon receptor (Ahr) ligands through Notch links the two pathways in a hierarchical fashion. However in adults, the species-, organ- and injury-specific gene expression of the Notch-AhR-IL22 axis components is unknown. We therefore performed gene expression profiling of DLL1, DLL3, DLL4, DLK1, DLK2, JAG1, JAG2, Notch1, Notch2, Notch3, Notch4, ADAM17/TNF-α ADAM metalloprotease converting enzyme (TACE), PSEN1, basigin (BSG)/CD147, RBP-J, HES1, HES5, HEY1, HEYL, AHR, ARNT, ARNT2, CYP1A1, CYP24A1, IL-22, IL22RA1, IL22RA2, IL10RB, and STAT3 under homeostatic conditions in ten mature murine and human organs. Additionally, the expression of these genes was assessed in murine models of acute sterile inflammation and progressive fibrosis. We show that there are organ-specific gene expression profiles of the Notch-AhR-IL22 axis in humans and mice. Although there is an overall interspecies congruency, specific differences between human and murine expression signatures do exist. In murine tissues with AHR/ARNT expression CYP1A1 and IL-22 were correlated with HES5 and HEYL expression, while in human tissues no such correlation was found. Notch and AhR signaling are involved in renal inflammation and fibrosis with specific gene expression changes in each model. Despite the presence of all Notch pathway molecules in the kidney and a model-specific induction of Notch ligands, IL-22 was only up-regulated in acute inflammation, but rapidly down-regulated during regeneration. This implies that for targeting injury responses, e.g. via IL-22, species-specific differences, injury type and time points have to be considered.
Collapse
Affiliation(s)
- Marc Weidenbusch
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Severin Rodler
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Shangqing Song
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Simone Romoli
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Julian A Marschner
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Franziska Kraft
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Alexander Holderied
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Santosh Kumar
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Shrikant R Mulay
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Mohsen Honarpisheh
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Satish Kumar Devarapu
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Maciej Lech
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Hans-Joachim Anders
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| |
Collapse
|
8
|
Huang F, Zhang RY, Song L. Beneficial effect of magnolol on lupus nephritis in MRL/lpr mice by attenuating the NLRP3 inflammasome and NF‑κB signaling pathway: A mechanistic analysis. Mol Med Rep 2017; 16:4817-4822. [PMID: 28791390 DOI: 10.3892/mmr.2017.7154] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 04/05/2017] [Indexed: 11/06/2022] Open
Abstract
Lupus nephritis (LN) is a common complication of systemic lupus erythematosus. The present study aimed to elucidate the protective effect of magnolol (MG) on the progression of LN, via inhibition of key signaling pathways. The results of the present study demonstrated that administration of MG caused inhibition of the activation of NACHT, LRR and PYD domains‑containing protein 3 and interleukin‑1β production. Histopathological analysis confirmed that the vehicle‑treated group exhibited characteristic glomerular disease, which was observed to be suppressed following the administration of MG; a marked decrease in glomerular and vascular lesions was observed compared with the vehicle control. This decrease was further demonstrated through analysis of kidney sections. The expression level of cell surface glycoprotein F4/80 was demonstrated to be markedly decreased in the MG‑treated mice compared with the vehicle control group. The MG‑treated mice exhibited a marked decrease in serum and renal tumor necrosis factor‑α expression levels.
Collapse
Affiliation(s)
- Feng Huang
- Department of Urology, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| | - Rui-Yun Zhang
- Headquarters of Emergency Room, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| | - Lei Song
- Department of Urology, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| |
Collapse
|
9
|
Honarpisheh M, Desai J, Marschner JA, Weidenbusch M, Lech M, Vielhauer V, Anders HJ, Mulay SR. Regulated necrosis-related molecule mRNA expression in humans and mice and in murine acute tissue injury and systemic autoimmunity leading to progressive organ damage, and progressive fibrosis. Biosci Rep 2016; 36:e00425. [PMID: 27811014 PMCID: PMC5146826 DOI: 10.1042/bsr20160336] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/20/2016] [Accepted: 11/02/2016] [Indexed: 12/30/2022] Open
Abstract
The species-specific, as well as organ-specific expression of regulated necrosis (RN)-related molecules, is not known. We determined the expression levels of tumour necrosis factor receptor-1 (TNFR1), receptor activated protein kinase (RIPK)1, RIPK3, mixed lineage kinase domain-like (MLKL), CASP8, Fas-associated protein with death domain (FADD), cellular inhibitor of apoptosis protein (CIAP)1, CIAP2, glutathione peroxidase-4 (GPX4), cyclophilin D (CYPD), CASP1, NLRP3 and poly(ADP-ribose) polymerase-1 (PARP1) in human and mouse solid organs. We observed significant differences in expression of these molecules between human and mice. In addition, we characterized their expression profiles in acute as well as persistent tissue injury and chronic tissue remodelling using acute and chronic kidney injury models. We observed that the degree and pattern of induction of RN-related molecules were highly dependent on the trigger and disease pathogenesis. Furthermore, we studied their expression patterns in mice with lupus-like systemic autoimmunity, which revealed that the expression of MLKL, GPX4 and PARP1 significantly increased in the spleen along disease progression and CASP1, RIPK1, RIPK3 and CYPD were higher at the earlier stages but were significantly decreased in the later stages. In contrast, in the kidney, the expression of genes involved in pyroptosis, e.g. NLRP3 and CASP1 were significantly increased and TNFR1, RIPK1, RIPK3, CIAP1/2 and GPX4 were significantly decreased along the progression of lupus nephritis (LN). Thus, the organ- and species-specific expression of RN-related molecules should be considered during designing experiments, interpreting the results as well as extrapolating the conclusions from one species or organ to another species or organ respectively.
Collapse
Affiliation(s)
- Mohsen Honarpisheh
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig Maximilians University of Munich, Munich, 80336 Germany
| | - Jyaysi Desai
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig Maximilians University of Munich, Munich, 80336 Germany
| | - Julian A Marschner
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig Maximilians University of Munich, Munich, 80336 Germany
| | - Marc Weidenbusch
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig Maximilians University of Munich, Munich, 80336 Germany
| | - Maciej Lech
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig Maximilians University of Munich, Munich, 80336 Germany
| | - Volker Vielhauer
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig Maximilians University of Munich, Munich, 80336 Germany
| | - Hans-Joachim Anders
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig Maximilians University of Munich, Munich, 80336 Germany
| | - Shrikant R Mulay
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig Maximilians University of Munich, Munich, 80336 Germany
| |
Collapse
|
10
|
The Immune System in Tissue Environments Regaining Homeostasis after Injury: Is "Inflammation" Always Inflammation? Mediators Inflamm 2016; 2016:2856213. [PMID: 27597803 PMCID: PMC4997018 DOI: 10.1155/2016/2856213] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 07/08/2016] [Accepted: 07/19/2016] [Indexed: 12/31/2022] Open
Abstract
Inflammation is a response to infections or tissue injuries. Inflammation was once defined by clinical signs, later by the presence of leukocytes, and nowadays by expression of "proinflammatory" cytokines and chemokines. But leukocytes and cytokines often have rather anti-inflammatory, proregenerative, and homeostatic effects. Is there a need to redefine "inflammation"? In this review, we discuss the functions of "inflammatory" mediators/regulators of the innate immune system that determine tissue environments to fulfill the need of the tissue while regaining homeostasis after injury.
Collapse
|
11
|
Autophagy, Innate Immunity and Tissue Repair in Acute Kidney Injury. Int J Mol Sci 2016; 17:ijms17050662. [PMID: 27153058 PMCID: PMC4881488 DOI: 10.3390/ijms17050662] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 04/14/2016] [Accepted: 04/20/2016] [Indexed: 01/09/2023] Open
Abstract
Kidney is a vital organ with high energy demands to actively maintain plasma hemodynamics, electrolytes and water homeostasis. Among the nephron segments, the renal tubular epithelium is endowed with high mitochondria density for their function in active transport. Acute kidney injury (AKI) is an important clinical syndrome and a global public health issue with high mortality rate and socioeconomic burden due to lack of effective therapy. AKI results in acute cell death and necrosis of renal tubule epithelial cells accompanied with leakage of tubular fluid and inflammation. The inflammatory immune response triggered by the tubular cell death, mitochondrial damage, associative oxidative stress, and the release of many tissue damage factors have been identified as key elements driving the pathophysiology of AKI. Autophagy, the cellular mechanism that removes damaged organelles via lysosome-mediated degradation, had been proposed to be renoprotective. An in-depth understanding of the intricate interplay between autophagy and innate immune response, and their roles in AKI pathology could lead to novel therapies in AKI. This review addresses the current pathophysiology of AKI in aspects of mitochondrial dysfunction, innate immunity, and molecular mechanisms of autophagy. Recent advances in renal tissue regeneration and potential therapeutic interventions are also discussed.
Collapse
|
12
|
Starke C, Betz H, Hickmann L, Lachmann P, Neubauer B, Kopp JB, Sequeira-Lopez MLS, Gomez RA, Hohenstein B, Todorov VT, Hugo CPM. Renin lineage cells repopulate the glomerular mesangium after injury. J Am Soc Nephrol 2014; 26:48-54. [PMID: 24904091 DOI: 10.1681/asn.2014030265] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Mesangial cell injury has a major role in many CKDs. Because renin-positive precursor cells give rise to mesangial cells during nephrogenesis, this study tested the hypothesis that the same phenomenon contributes to glomerular regeneration after murine experimental mesangial injury. Mesangiolysis was induced by administration of an anti-mesangial cell serum in combination with LPS. In enhanced green fluorescent protein-reporter mice with constitutively labeled renin lineage cells, the size of the enhanced green fluorescent protein-positive area in the glomerular tufts increased after mesangial injury. Furthermore, we generated a novel Tet-on inducible triple-transgenic LacZ reporter line that allowed selective labeling of renin cells along renal afferent arterioles of adult mice. Although no intraglomerular LacZ expression was detected in healthy mice, about two-thirds of the glomerular tufts became LacZ positive during the regenerative phase after severe mesangial injury. Intraglomerular renin descendant LacZ-expressing cells colocalized with mesangial cell markers α8-integrin and PDGF receptor-β but not with endothelial, podocyte, or parietal epithelial cell markers. In contrast with LacZ-positive cells in the afferent arterioles, LacZ-positive cells in the glomerular tuft did not express renin. These data demonstrate that extraglomerular renin lineage cells represent a major source of repopulating cells for reconstitution of the intraglomerular mesangium after injury.
Collapse
Affiliation(s)
- Charlotte Starke
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Hannah Betz
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Linda Hickmann
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Peter Lachmann
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Björn Neubauer
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Jeffrey B Kopp
- Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland; and
| | | | - R Ariel Gomez
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Bernd Hohenstein
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Vladimir T Todorov
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany;
| | - Christian P M Hugo
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
13
|
Anders HJ. Immune system modulation of kidney regeneration--mechanisms and implications. Nat Rev Nephrol 2014; 10:347-58. [PMID: 24776845 DOI: 10.1038/nrneph.2014.68] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The immune system is an important guardian of tissue homeostasis. In response to injury, resident and infiltrating immune cells orchestrate all phases of danger control, resolution of inflammation and tissue regeneration or scar formation. As mammalian postnatal kidneys are not capable of de novo nephrogenesis, recovery is limited to the regeneration or repair of existing nephrons. The regenerative capacity of the nephron varies between compartments; the epithelial cells of the tubule regenerate more efficiently than the structurally highly organized podocytes. Cells of the surrounding environment modulate nephron regeneration by secreting paracrine mediators. This Review discusses immune mediators and pathways that regulate the intrinsic regenerative capacity of the nephron. Eliminating injurious triggers, modulating renal inflammation and specifically enhancing the regenerative capacity of nephrons might be a promising strategy to improve long-term outcomes in patients with acute kidney injury and/or chronic kidney disease.
Collapse
Affiliation(s)
- Hans-Joachim Anders
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München-Innenstadt, Ziemssenstrasse 1, 80336 Munich, Germany
| |
Collapse
|
14
|
BARGMAN JOANNEM, AVILA-CASADO CARMEN. Resolution of Proteinuria in Lupus Nephritis: Hurry Up and Wait. J Rheumatol 2014; 41:622-5. [DOI: 10.3899/jrheum.140157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Bierzynska A, Soderquest K, Koziell A. Genes and podocytes - new insights into mechanisms of podocytopathy. Front Endocrinol (Lausanne) 2014; 5:226. [PMID: 25667580 PMCID: PMC4304234 DOI: 10.3389/fendo.2014.00226] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 12/09/2014] [Indexed: 12/24/2022] Open
Abstract
After decades of primarily morphological study, positional cloning of the NPHS1 gene was the landmark event that established aberrant podocyte genetics as a pivotal cause of malfunction of the glomerular filter. This ended any uncertainty whether genetic mutation plays a significant role in hereditary nephrotic syndromes (NS) and confirmed podocytes as critical players in regulating glomerular protein filtration. Although subsequent sequencing of candidate genes chosen on the basis of podocyte biology had less success, unbiased analysis of genetically informative kindreds and syndromic disease has led to further gene discovery. However, the 45 genes currently associated with human NS explain not more than 20-30% of hereditary and only 10-20% of sporadic cases. It is becoming increasingly clear both from genetic analysis and phenotypic data - including occasional response to immunosuppressive agents and post-transplant disease recurrence in Mendelian disease - that monogenic inheritance of abnormalities in podocyte-specific genes disrupting filter function is only part of the story. Recent advances in genetic screening technology combined with increasingly robust bioinformatics are set to allow identification and characterization of novel disease causing variants and more importantly, disease modifying genes. Emerging data also support a significant but incompletely characterized immunoregulatory component.
Collapse
Affiliation(s)
- Agnieszka Bierzynska
- Academic Renal Unit, School of Clinical Sciences, Bristol University, Bristol, UK
| | - Katrina Soderquest
- Division of Transplantation Immunology and Mucosal Biology, Department of Experimental Immunobiology, Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Ania Koziell
- Division of Transplantation Immunology and Mucosal Biology, Department of Experimental Immunobiology, Faculty of Life Sciences and Medicine, King’s College London, London, UK
- *Correspondence: Ania Koziell, Division of Transplantation Immunology and Mucosal Biology, Department of Experimental Immunobiology, Faculty of Life Sciences and Medicine, 5th Floor Tower Wing, Guy’s Hospital, Great Maze Pond, London SE1 9RT, UK e-mail:
| |
Collapse
|