1
|
Narayan M. Securing Native Disulfide Bonds in Disulfide-Coupled Protein Folding Reactions: The Role of Intrinsic and Extrinsic Elements vis-à-vis Protein Aggregation and Neurodegeneration. ACS OMEGA 2021; 6:31404-31410. [PMID: 34869967 PMCID: PMC8637583 DOI: 10.1021/acsomega.1c05269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
Disulfide bonds play an important role in physiology and are the mainstay of proteins that reside in the plasma membrane and of those that are secreted outside the cell. Disulfide-bond-containing proteins comprise ∼30% of all eukaryotic proteins. Using bovine pancreatic ribonuclease A (RNase A) as an exemplar, we review the regeneration (oxidative folding) of disulfide-bond-containing proteins from their fully reduced state to the biologically active form. We discuss the key aspects of the oxidative folding landscape w.r.t. the acquisition and retention of native disulfide bonds which is an essential requirement for the polypeptide to be biologically functional. By re-examining the regeneration trajectory in light of the symbiotic relationship between native disulfide bonds and a protective structure, we describe the elements that compete with the processes that secure native disulfide bonds in disulfide-coupled protein folding. The impact of native-disulfide-bond formation on protein stability, trafficking, protein misfolding, and neurodegenerative onset is elaborated upon.
Collapse
|
2
|
Mikami R, Tsukagoshi S, Arai K. Abnormal Enhancement of Protein Disulfide Isomerase-like Activity of a Cyclic Diselenide Conjugated with a Basic Amino Acid by Inserting a Glycine Spacer. BIOLOGY 2021; 10:biology10111090. [PMID: 34827083 PMCID: PMC8615077 DOI: 10.3390/biology10111090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 11/16/2022]
Abstract
In a previous study, we reported that (S)-1,2-diselenane-4-amine (1) catalyzes oxidative protein folding through protein disulfide isomerase (PDI)-like catalytic mechanisms and that the direct conjugation of a basic amino acid (Xaa: His, Lys, or Arg) via an amide bond improves the catalytic activity of 1 by increasing its diselenide (Se–Se) reduction potential (E′°). In this study, to modulate the Se–Se redox properties and the association of the compounds with a protein substrate, new catalysts, in which a Gly spacer was inserted between 1 and Xaa, were synthesized. Exhaustive comparison of the PDI-like catalytic activities and E′° values among 1, 1-Xaa, and 1-Gly-Xaa showed that the insertion of a Gly spacer into 1-Xaa either did not change or slightly reduced the PDI-like activity and the E′° values. Importantly, however, only 1-Gly-Arg deviated from this generality and showed obviously increased E°′ value and PDI-like activity compared to the corresponding compound with no Gly spacer (1-Arg); on the contrary, its catalytic activity was the highest among the diselenide compounds employed in this study, while this abnormal enhancement of the catalytic activity of 1-Gly-Arg could not be fully explained by the thermodynamics of the Se–Se bond and its association ability with protein substrates.
Collapse
|
3
|
Mikami R, Tsukagoshi S, Oda Y, Arai K. S-Denitrosylase-like Activity of Cyclic Diselenides Conjugated with Xaa-His Dipeptide: Role of Proline Spacer as a Key Activity Booster. Chembiochem 2021; 23:e202100394. [PMID: 34350692 DOI: 10.1002/cbic.202100394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Indexed: 11/05/2022]
Abstract
This study developed dipeptide-conjugated 1,2-diselenan-4-amine (1), i.e., 1-Xaa-His, as a new class of S-denitrosylase mimic. The synthesized compounds, especially 1-Pro-His, remarkably promoted S-denitrosylation of nitrosothiols (RSNO) via a catalytic cycle involving the reversible redox reaction between the diselenide and its corresponding diselenol ([SeH,SeH]) form with coexisting reductant thiols (R'SH), during which the [SeH,SeH] form as a key reactive species reduces RSNO to the corresponding thiol (RSH). Structural analyses of 1-Pro-His suggested that the peptide backbone of [SeH,SeH] is rigidly bent to form a γ-turn, possibly including an NH···Se hydrogen bond between the imidazole ring of His and selenol group, thus stabilizing the [SeH,SeH] form thermodynamically, and dramatically enhancing the catalytic activity. Furthermore, the synthetic compounds were found to prohibit S-nitrosylation-induced protein misfolding in the presence of RSNO, eventually implying their potential as a drug seed for misfolding diseases caused by the dysregulation of the S-denitrosylation system.
Collapse
Affiliation(s)
- Rumi Mikami
- Tokai University - Shonan Campus: Tokai Daigaku, Chemistry, Kitakaname, 259-1292, Hiratsuka-shi, JAPAN
| | - Shunsuke Tsukagoshi
- Tokai University - Shonan Campus: Tokai Daigaku, Chemistry, Kitakaname, 259-1292, Hiratsuka-shi, JAPAN
| | - Yoshiki Oda
- Tokai University - Shonan Campus: Tokai Daigaku, Technology Joint Management Office, Kitakaname, 259-1292, Hiratsuka-shi, JAPAN
| | - Kenta Arai
- Tokai University, Chemistry, Kitakaname, 259-1292, Hiratsuka-shi, JAPAN
| |
Collapse
|
4
|
Narayan M. The Formation of Native Disulfide Bonds: Treading a Fine Line in Protein Folding. Protein J 2021; 40:134-139. [PMID: 33765253 DOI: 10.1007/s10930-021-09976-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2021] [Indexed: 10/21/2022]
Abstract
The folding of proteins that contain disulfide bonds is termed oxidative protein folding. It involves a chemical reaction resulting in the formation of disulfide bonds and a physical conformational folding reaction that promotes the formation of the native structure. While the presence of disulfide bonds significantly increases the complexity of the folding landscape, it is generally recognized that native disulfide bonds help funnel the trajectory towards the final folded form. Here, we review the role of disulfide bonds in oxidative protein folding and argue that even structure-inducing native disulfide bond formation treads a fine line in the regeneration of disulfide-bond-containing proteins. The translation of this observation to protein misfolding related disorders is discussed.
Collapse
Affiliation(s)
- Mahesh Narayan
- Department of Chemistry and Biochemistry, The University of Texas at El Paso (UTEP), 500 W. University Ave., El Paso, TX, 79968, USA.
| |
Collapse
|
5
|
Arai K, Iwaoka M. Flexible Folding: Disulfide-Containing Peptides and Proteins Choose the Pathway Depending on the Environments. Molecules 2021; 26:E195. [PMID: 33401729 PMCID: PMC7794709 DOI: 10.3390/molecules26010195] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 12/24/2020] [Accepted: 12/29/2020] [Indexed: 11/18/2022] Open
Abstract
In the last few decades, development of novel experimental techniques, such as new types of disulfide (SS)-forming reagents and genetic and chemical technologies for synthesizing designed artificial proteins, is opening a new realm of the oxidative folding study where peptides and proteins can be folded under physiologically more relevant conditions. In this review, after a brief overview of the historical and physicochemical background of oxidative protein folding study, recently revealed folding pathways of several representative peptides and proteins are summarized, including those having two, three, or four SS bonds in the native state, as well as those with odd Cys residues or consisting of two peptide chains. Comparison of the updated pathways with those reported in the early years has revealed the flexible nature of the protein folding pathways. The significantly different pathways characterized for hen-egg white lysozyme and bovine milk α-lactalbumin, which belong to the same protein superfamily, suggest that the information of protein folding pathways, not only the native folded structure, is encoded in the amino acid sequence. The application of the flexible pathways of peptides and proteins to the engineering of folded three-dimensional structures is an interesting and important issue in the new realm of the current oxidative protein folding study.
Collapse
Affiliation(s)
| | - Michio Iwaoka
- Department of Chemistry, School of Science, Tokai University, Kitakaname, Hiratsuka-shi, Kanagawa 259-1292, Japan;
| |
Collapse
|
6
|
Narayan M. Revisiting the Formation of a Native Disulfide Bond: Consequences for Protein Regeneration and Beyond. Molecules 2020; 25:molecules25225337. [PMID: 33207635 PMCID: PMC7697891 DOI: 10.3390/molecules25225337] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 11/16/2022] Open
Abstract
Oxidative protein folding involves the formation of disulfide bonds and the regeneration of native structure (N) from the fully reduced and unfolded protein (R). Oxidative protein folding studies have provided a wealth of information on underlying physico-chemical reactions by which disulfide-bond-containing proteins acquire their catalytically active form. Initially, we review key events underlying oxidative protein folding using bovine pancreatic ribonuclease A (RNase A), bovine pancreatic trypsin inhibitor (BPTI) and hen-egg white lysozyme (HEWL) as model disulfide bond-containing folders and discuss consequential outcomes with regard to their folding trajectories. We re-examine the findings from the same studies to underscore the importance of forming native disulfide bonds and generating a “native-like” structure early on in the oxidative folding pathway. The impact of both these features on the regeneration landscape are highlighted by comparing ideal, albeit hypothetical, regeneration scenarios with those wherein a native-like structure is formed relatively “late” in the R→N trajectory. A special case where the desired characteristics of oxidative folding trajectories can, nevertheless, stall folding is also discussed. The importance of these data from oxidative protein folding studies is projected onto outcomes, including their impact on the regeneration rate, yield, misfolding, misfolded-flux trafficking from the endoplasmic reticulum (ER) to the cytoplasm, and the onset of neurodegenerative disorders.
Collapse
Affiliation(s)
- Mahesh Narayan
- The Department of Chemistry and Biochemistry, The University of Texas as El Paso, El Paso, TX 79968, USA
| |
Collapse
|
7
|
Tsukagoshi S, Mikami R, Arai K. Basic Amino Acid Conjugates of 1,2-Diselenan-4-amine with Protein Disulfide Isomerase-like Functions as a Manipulator of Protein Quality Control. Chem Asian J 2020; 15:2646-2652. [PMID: 32662226 DOI: 10.1002/asia.202000682] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Indexed: 11/09/2022]
Abstract
Protein disulfide isomerase (PDI) can assist immature proteins to correctly fold by controlling cysteinyl disulfide (SS)-relating reactions (i. e., SS-formation, SS-cleavage, and SS-isomerization). PDI controls protein quality by suppressing protein aggregation, as well as functions as an oxidative folding catalyst. Following the amino acid sequence of the active center in PDI, basic amino acid conjugates of 1,2-diselenan-4-amine (1), which show oxidoreductase- and isomerase-like activities for SS-relating reactions, were designed as a novel PDI model compound. By conjugating the amino acids, the diselenide reduction potential of compound 1 was significantly increased, causing improvement of the catalytic activities for all SS-relating reactions. Furthermore, these compounds, especially histidine-conjugated one, remarkably suppressed protein aggregation even at low concertation (0.3 mM∼). Thus, it was demonstrated that the conjugation of basic amino acids into 1 simultaneously achieves the enhancement of the redox reactivity and the capability to suppress protein aggregation.
Collapse
Affiliation(s)
- Shunsuke Tsukagoshi
- Department of Chemistry School of Science, Tokai University, Kitalaname, Hiratsuka-shi, Kanagawa, 259-1292, Japan
| | - Rumi Mikami
- Department of Chemistry School of Science, Tokai University, Kitalaname, Hiratsuka-shi, Kanagawa, 259-1292, Japan
| | - Kenta Arai
- Department of Chemistry School of Science, Tokai University, Kitalaname, Hiratsuka-shi, Kanagawa, 259-1292, Japan
| |
Collapse
|
8
|
Iwaoka M, Mitsuji T, Shinozaki R. Oxidative folding pathways of bovine milk β-lactoglobulin with odd cysteine residues. FEBS Open Bio 2019; 9:1379-1391. [PMID: 31087497 PMCID: PMC6668375 DOI: 10.1002/2211-5463.12656] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 05/13/2019] [Indexed: 01/06/2023] Open
Abstract
Bovine β‐lactoglobulin (BLG) is a major whey protein with unique structural characteristics: it possesses a free Cys thiol (SH) and two disulfide (SS) bonds and consists of a β‐barrel core surrounded by one long and several short α helices. Although SS‐intact conformational folding has been studied in depth, the oxidative folding pathways and accompanying SS formation/rearrangement are poorly understood. In this study, we used trans‐3,4‐dihydroxyselenolane oxide, a water‐soluble selenoxide reagent which undergoes rapid and quantitative SS formation, to determine the oxidative folding pathways of BLG variant A (BLGA) at pH 8.0 and 25 °C. This was done by characterizing two key one‐SS intermediates, a particular folding intermediate having a Cys66–Cys160 SS bond (I‐1) and a particular folding intermediate having a Cys106–Cys119 SS bond (I‐2), which have a native Cys66–Cys160 and Cys106–Cys119 SS bond, respectively. In the major folding pathway, the reduced protein (R) with abundant α helices was oxidized to I‐1, which was then transformed to I‐2 through SS rearrangement. The native protein (N) was formed by oxidation of I‐2. The redundant Cys121 thiol facilitates SS rearrangement. N is also generated from an ensemble of folding intermediates having two SS bonds (2SS) intermediates with scrambled SS bonds through SS rearrangement, but this minor pathway is deteriorative due to aggregation or overoxidation of 2SS. During oxidative folding of BLGA, α→β conformational transition occurred as previously observed in SS‐intact folding. These findings are informative not only for elucidating oxidative folding pathways of other members of the β‐lactoglobulin family, but also for understanding the roles of a redundant Cys thiol in the oxidative folding process of a protein with odd Cys residues.
Collapse
Affiliation(s)
- Michio Iwaoka
- Department of Chemistry, School of Science, Tokai University, Hiratsuka-shi, Kanagawa, Japan
| | - Takumi Mitsuji
- Department of Chemistry, School of Science, Tokai University, Hiratsuka-shi, Kanagawa, Japan
| | - Reina Shinozaki
- Department of Chemistry, School of Science, Tokai University, Hiratsuka-shi, Kanagawa, Japan
| |
Collapse
|
9
|
Abstract
trans-3,4-Dihydroxyselenolane oxide (DHSox), a water-soluble cyclic selenoxide reagent, is useful for rapid and quantitative formation of disulphide (SS) bonds in a reduced state of SS-containing proteins because the selenoxide is a strong but selective oxidant for thiol substrates (RSH) in a wide range of pH. Due to this advantage over common disulphide reagents, such as oxidized dithiothreitol (DTTox) and glutathione (GSSG), DHSox enables clear characterization of oxidative folding pathways of proteins. DHSox is also useful for facile diagnosis of weakly folded structure, or reactivity (i.e., pKa) of the thiols, present in a reduced polypeptide chain and the partially oxidized folding intermediates, identification of the key SS intermediates that can be oxidized directly to the native state, and preparation of SS-scrambled misfolded protein species. In this chapter, these diverse utilities of DHSox in protein folding study are demonstrated.
Collapse
Affiliation(s)
- Kenta Arai
- Department of Chemistry, School of Science, Tokai University, Hiratsuka-shi, Kanagawa, Japan
| | - Michio Iwaoka
- Department of Chemistry, School of Science, Tokai University, Hiratsuka-shi, Kanagawa, Japan.
| |
Collapse
|
10
|
Schäfer O, Barz M. Of Thiols and Disulfides: Methods for Chemoselective Formation of Asymmetric Disulfides in Synthetic Peptides and Polymers. Chemistry 2018; 24:12131-12142. [DOI: 10.1002/chem.201800681] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Olga Schäfer
- Institute of Organic Chemistry; Johannes Gutenberg University Mainz; Duesbergweg 10-14 55128 Mainz Germany
| | - Matthias Barz
- Institute of Organic Chemistry; Johannes Gutenberg University Mainz; Duesbergweg 10-14 55128 Mainz Germany
| |
Collapse
|
11
|
Shinozaki R, Iwaoka M. Effects of Metal Ions, Temperature, and a Denaturant on the Oxidative Folding Pathways of Bovine α-Lactalbumin. Int J Mol Sci 2017; 18:ijms18091996. [PMID: 28926961 PMCID: PMC5618645 DOI: 10.3390/ijms18091996] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/11/2017] [Accepted: 09/13/2017] [Indexed: 12/02/2022] Open
Abstract
Bovine α-lactalbumin (αLA) has four disulfide (SS) bonds in the native form (N). On the oxidative folding pathways of this protein, two specific SS folding intermediates, i.e., (61–77, 73–91) and des[6–120], which have two and three native SS bonds, respectively, accumulate predominantly in the presence of Ca2+. In this study, we reinvestigated the pathways using a water-soluble cyclic selenoxide reagent, trans-3,4-dihydroxyselenolane oxide (DHSox), as a strong and quantitative oxidant to oxidize the fully reduced form (R). In the presence of ethylenediaminetetraacetic acid (EDTA) (under a metal-free condition), SS formation randomly proceeded, and N did not regenerate. On the other hand, two specific SS intermediates transiently generated in the presence of Ca2+. These intermediates could be assigned to (61–77, 73–91) and des[6–120] having two common SS bonds, i.e., Cys61-Cys77 and Cys73-Cys91, near the calcium binding pocket of the β-sheet domain. Much faster folding to N was observed in the presence of Mn2+, whereas Na+, K+, Mg2+, and Zn2+ did not affect the pathways. The two key intermediates were susceptible to temperature and a denaturant. The oxidative folding pathways revealed were significantly different from those of hen egg white lysozyme, which has the same SS-bonding pattern as αLA, suggesting that the folding pathways of SS-containing proteins can alter depending on the amino acid sequence and other factors, even when the SS-bond topologies are similar to each other.
Collapse
Affiliation(s)
- Reina Shinozaki
- Department of Chemistry, School of Science, Tokai University, Kitakaname, Hiratsuka-shi, Kanagawa 259-1292, Japan.
| | - Michio Iwaoka
- Department of Chemistry, School of Science, Tokai University, Kitakaname, Hiratsuka-shi, Kanagawa 259-1292, Japan.
| |
Collapse
|
12
|
Arai K, Moriai K, Ogawa A, Iwaoka M. An Amphiphilic Selenide Catalyst Behaves Like a Hybrid Mimic of Protein Disulfide Isomerase and Glutathione Peroxidase 7. Chem Asian J 2014; 9:3464-71. [DOI: 10.1002/asia.201402726] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Indexed: 01/17/2023]
|
13
|
|
14
|
Kövér KE, Batta G. NMR investigation of disulfide containing peptides and proteins. AMINO ACIDS, PEPTIDES AND PROTEINS 2013:37-59. [DOI: 10.1039/9781849737081-00037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Peptides and proteins with disulfide bonds are abundant in all kingdoms and play essential role in many biological events. Because small disulfide-rich peptides (proteins) are usually difficult to crystallize, nuclear magnetic resonance (NMR) is by far one of the most powerful techniques for the determination of their solution structure. Besides the “static” three-dimensional structure, NMR has unique opportunities to acquire additional information about molecular dynamics and folding at atomic resolution. Nowadays it is becoming increasingly evident, that “excited”, “disordered” or “fuzzy” protein states may exhibit biological function and disulfide proteins are also promising targets for such studies. In this short two-three years overview those disulfide peptides and proteins were cited from the literature that were studied by NMR. Though we may have missed some, their structural diversity and complexity as well as their wide repertoire of biological functions is impressive. We emphasised especially antimicrobial peptides and peptide based toxins in addition to some biologically important other structures. Besides the general NMR methods we reviewed some contemporary techniques suitable for disclosing the peculiar properties of disulfide bonds. Interesting dynamics and folding studies of disulfide proteins were also mentioned. It is important to disclose the essential structure, dynamics, function aspects of disulfide proteins since this aids the design of new compounds with improved activity and reduced toxicity. Undoubtedly, NMR has the potential to accelerate the development of new disulfide peptides/proteins with pharmacological activity.
Collapse
|