1
|
Su D, Li W, Zhang Z, Cai H, Zhang L, Sun Y, Liu X, Tian Z. Discrepancy of Growth Toxicity of Polystyrene Nanoplastics on Soybean ( Glycine max) and Mung Bean ( Vigna radiata). TOXICS 2024; 12:155. [PMID: 38393250 PMCID: PMC10892715 DOI: 10.3390/toxics12020155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024]
Abstract
Nanoplastics, as a hot topic of novel contaminants, lack extensive concern in higher plants; especially the potential impact and mechanism of nanoplastics on legume crops remains elusive. In this study, the toxicity of polystyrene nanoplastics (PS-NPs, 200 nm) with diverse doses (control, 10, 50, 100, 200, 500 mg/L) to soybean and mung bean plants grown hydroponically for 7 d was investigated at both the macroscopic and molecular levels. The results demonstrated that the root length of both plants was markedly suppressed to varying degrees. Similarly, mineral elements (Fe, Zn) were notably decreased in soybean roots, consistent with Cu alteration in mung bean. Moreover, PS-NPs considerably elevated malondialdehyde (MDA) levels only in soybean roots. Enzyme activity data indicated mung bean exhibited significant damage only at higher doses of PS-NPs stress than soybean, implying mung bean is more resilient. Transcriptome analysis showed that PS-NPs stimulated the expression of genes associated with the antioxidant system in plant roots. Furthermore, starch and sucrose metabolism might play a key role in coping with PS-NPs to enhance soybean resistance, but the MAPK pathway was enriched in mung bean. Our findings provide valuable perspectives for an in-depth understanding of the performance of plants growing in waters contaminated by nanoplastics.
Collapse
Affiliation(s)
- Dan Su
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Wangwang Li
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Zhaowei Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Bioengineering and Health, Wuhan Textile University, Wuhan 430200, China
| | - Hui Cai
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Le Zhang
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Yuanlong Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaoning Liu
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, China
| | - Zhiquan Tian
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| |
Collapse
|
2
|
Zhang L, Chi M, Cheng Y, Chen Z, Cao Y, Zhao G. Static magnetic field assisted thawing improves cryopreservation of mouse whole ovaries. Bioeng Transl Med 2024; 9:e10613. [PMID: 38193129 PMCID: PMC10771557 DOI: 10.1002/btm2.10613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/19/2023] [Accepted: 10/01/2023] [Indexed: 01/10/2024] Open
Abstract
Ovarian tissue cryopreservation is considered to be the only means to preserve fertility for prepubertal girls and women whose cancer treatment cannot be postponed. However, ovarian tissues are inevitably damaged by oxidative stress during cryopreservation, which threatens follicle survival and development, and thus affects female fertility. Therefore, reducing tissue oxidative stress injury is one of the major challenges to achieving efficient cryopreservation of ovarian tissues, especially for whole ovaries. Here, we proposed a new method to improve the antioxidant capacity of whole ovaries during cryopreservation, static magnetic field assisted thawing. The results demonstrated that the antioxidant capacity of the ovarian tissue was significantly improved by static magnetic field treatment. In addition, ovarian tissue allograft transplantation was carried out, which successfully achieved vascular regeneration and maintained follicular development. The findings of this study not only provide a new reference for the preservation of female fertility, but also is a major step forward in the cryopreservation of tissues and organs. It will have good application prospects in the field of assisted reproduction and cryo-biomedicine.
Collapse
Affiliation(s)
- Liyuan Zhang
- School of Basic MedicineAnhui Medical UniversityHefeiChina
| | - Mengqiao Chi
- School of Basic MedicineAnhui Medical UniversityHefeiChina
| | - Yue Cheng
- School of Biomedical EngineeringAnhui Medical UniversityHefeiChina
| | - Zhongrong Chen
- School of Biomedical EngineeringAnhui Medical UniversityHefeiChina
| | - Yunxia Cao
- Department of Obstetrics and GynecologyReproductive Medicine Center, The First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University)HefeiChina
| | - Gang Zhao
- School of Basic MedicineAnhui Medical UniversityHefeiChina
- School of Biomedical EngineeringAnhui Medical UniversityHefeiChina
- Department of Electronic Engineering and Information ScienceUniversity of Science and Technology of ChinaHefeiChina
| |
Collapse
|
3
|
Tasić T, Lozić M, Glumac S, Stanković M, Milovanovich I, Djordjevich DM, Trbovich AM, Japundžić-Žigon N, De Luka SR. Static magnetic field on behavior, hematological parameters and organ damage in spontaneously hypertensive rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111085. [PMID: 32898814 DOI: 10.1016/j.ecoenv.2020.111085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/20/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
Previous studies showed contradictory results of static magnetic field (SMF) influence on behavior, hematological parameters and organ damage. The aim of this study was to investigate influence of subchronic continuous exposure to upward and downward oriented SMF of moderate intensity on behavior, hematological characteristics, heart and kidney tissue of spontaneously hypertensive rats. SH rats exposed to downward oriented SMF demonstrated lack of anxious-like behavior. SMF of either orientation caused decrease in the number of platelets in peripheral blood, granulocytes in the spleen and bone marrow and increase in the number of erythrocytes in the spleen, in both exposed groups. We also demonstrated that spontaneously hypertensive rats exposed to upward oriented SMF exhibited decreased lymphocytes count in blood, decreased bone marrow erythrocytes count and rats exposed to downward oriented SMF had increased lymphocytes count in bone marrow. The results showed adverse effect of differently oriented SMF on hematological parameters of spontaneously hypertensive rats. Also, exposure to different oriented SMF didn't affect their heart and kidney morphological characteristics.
Collapse
Affiliation(s)
- Tatjana Tasić
- Faculty of Dental Medicine, University of Belgrade, Serbia
| | - Maja Lozić
- Faculty of Medicine, University of Belgrade, Serbia
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Kthiri A, Hidouri S, Wiem T, Jeridi R, Sheehan D, Landouls A. Biochemical and biomolecular effects induced by a static magnetic field in Saccharomyces cerevisiae: Evidence for oxidative stress. PLoS One 2019; 14:e0209843. [PMID: 30608963 PMCID: PMC6319737 DOI: 10.1371/journal.pone.0209843] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 12/12/2018] [Indexed: 01/12/2023] Open
Abstract
Exposure to static magnetic fields (SMF) can cause changes in microorganism metabolism altering key subcellular functions. The purpose of this study was to investigate whether an applied SMF could induce biological effects on growth of Saccharomyces cerevisiae, and then to probe biochemical and bio-molecular responses. We found a decrease in growth and viability under SMF (250mT) after 6h with a significant decrease in colony forming units followed by an increase between 6 h and 9 h. Moreover, measurements of antioxidant enzyme activities (catalase, superoxide dismutase, glutathione peroxidase) demonstrated a particular profile suggesting oxidative stress. For instance, SOD and catalase activities increased in magnetized cultures after 9 h compared with unexposed samples. However, SMF exposure caused a decrease in glutathione peroxidase activity. Finally, SMF caused an increase in MDA levels as well as the content of protein carbonyl groups after 6 and 9 h of exposure.
Collapse
Affiliation(s)
- Ameni Kthiri
- Laboratory of Biochemistry and Molecular Biology, Carthage University, Faculty of Sciences of Bizerte, Zarzouna, Bizerte, Tunisia
- Environmental Research Institute and School of Biochemistry and Cell Biology, University College Cork, Western Gateway Building, Western Road, Cork, Ireland
| | - Slah Hidouri
- Laboratory of Biochemistry and Molecular Biology, Carthage University, Faculty of Sciences of Bizerte, Zarzouna, Bizerte, Tunisia
| | - Tahri Wiem
- Laboratory of Biochemistry and Molecular Biology, Carthage University, Faculty of Sciences of Bizerte, Zarzouna, Bizerte, Tunisia
| | - Roua Jeridi
- Laboratory of Biochemistry and Molecular Biology, Carthage University, Faculty of Sciences of Bizerte, Zarzouna, Bizerte, Tunisia
| | - David Sheehan
- Environmental Research Institute and School of Biochemistry and Cell Biology, University College Cork, Western Gateway Building, Western Road, Cork, Ireland
- Dept of Chemistry, College of Arts and Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- * E-mail:
| | - Ahmed Landouls
- Laboratory of Biochemistry and Molecular Biology, Carthage University, Faculty of Sciences of Bizerte, Zarzouna, Bizerte, Tunisia
| |
Collapse
|
5
|
Anti-oxidation and anti-aging activity of polysaccharide from Malus micromalus Makino fruit wine. Int J Biol Macromol 2019; 121:1203-1212. [DOI: 10.1016/j.ijbiomac.2018.10.096] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/27/2018] [Accepted: 10/14/2018] [Indexed: 12/24/2022]
|
6
|
Wang D, Zhang L, Shao G, Yang S, Tao S, Fang K, Zhang X. 6-mT 0-120-Hz magnetic fields differentially affect cellular ATP levels. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:28237-28247. [PMID: 30074140 DOI: 10.1007/s11356-018-2868-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/27/2018] [Indexed: 06/08/2023]
Abstract
Adenosine triphosphate (ATP), an indispensable molecule that provides energy for essentially all cellular processes, has been shown to be affected by some magnetic fields (MFs). Although people are frequently exposed to various static and power frequency MFs in their daily lives, the exact effects of these MFs of different frequencies have not been systematically investigated. Here, we tested 6-mT MFs with 0, 50, and 120 Hz for their effects on cellular ATP levels in 11 different cell lines. We found that the 6-mT static magnetic field (SMF) either does not affect or increase cellular ATP levels, while 6-mT 50-Hz MF either does not affect or decrease cellular ATP levels. In contrast, 6-mT 120-Hz MF has variable effects. We examined the mitochondrial membrane potential (MMP) as well as reactive oxygen species (ROS) in four different cell lines, but did not find their direct correlation with ATP levels. Although none of the ATP level changes induced by these three different frequencies of 6-mT MFs are dramatic, these results may be used to explain some differential cellular responses of various cell lines to different frequency MFs.
Collapse
Affiliation(s)
- Dongmei Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, China
- University of Science and Technology of China, Hefei, 230036, Anhui, China
| | - Lei Zhang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, China
- University of Science and Technology of China, Hefei, 230036, Anhui, China
| | - Guangze Shao
- First School of Clinical Medicine, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Shuo Yang
- First School of Clinical Medicine, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Shengwei Tao
- First School of Clinical Medicine, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Kun Fang
- First School of Clinical Medicine, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Xin Zhang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, China.
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, Anhui, China.
| |
Collapse
|
7
|
Impact of Static Magnetic Field on the Antioxidant Defence System of Mice Fibroblasts. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5053608. [PMID: 29789797 PMCID: PMC5896275 DOI: 10.1155/2018/5053608] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 02/25/2018] [Indexed: 12/18/2022]
Abstract
Results of research assessing the biological impact of static magnetic fields are controversial. So far, they have not provided a clear answer to their influence on cell functioning. Since the use of permanent magnets both in everyday life and in industry becomes more and more widespread, the investigations are continued in order to explain these controversies and to evaluate positive applications. The goal of current work was to assess the impact of static magnetic field of different intensities on redox homeostasis in cultures of fibroblasts. The use of permanent magnets allowed avoiding the thermal effects which are present in electromagnets. During the research we used 6 chambers, designed exclusively by us, with different values of field flux density (varying from 0.1 to 0.7 T). We have noted the decrease in the activity of superoxide dismutase (SOD) and glutathione peroxidase (GPx). The static magnetic fields did not modify the energy state of fibroblasts— adenosine triphosphate (ATP) concentration was stable, as well as the generation of malondialdehyde (MDA)—which is a marker of oxidative stress. Results of research suggest that static magnetic fields generated by permanent magnets do not cause oxidative stress in investigated fibroblasts and that they may show slight antioxidizing activity.
Collapse
|
8
|
Impact of fluoride and a static magnetic field on the gene expression that is associated with the antioxidant defense system of human fibroblasts. Chem Biol Interact 2018; 287:13-19. [DOI: 10.1016/j.cbi.2018.04.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/20/2018] [Accepted: 04/05/2018] [Indexed: 01/08/2023]
|
9
|
Wang D, Wang Z, Zhang L, Li Z, Tian X, Fang J, Lu Q, Zhang X. Cellular ATP levels are affected by moderate and strong static magnetic fields. Bioelectromagnetics 2018; 39:352-360. [PMID: 29709058 DOI: 10.1002/bem.22122] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 03/23/2018] [Indexed: 12/21/2022]
Abstract
Mitochondrion is the major cellular energy producing organelle that is at the boundary between chemical reactions and physical processes. Although mitochondria have been shown to be affected by physical methods such as nonthermal plasma, whether static magnetic field (SMF) could also affect them is still unclear. Here we used rat adrenal PC12 cells to compare SMFs of different intensities for their effects on ATP (adenosine-5'-triphosphate), the major energy source produced by mitochondria, which is essential for various cellular processes. Our results show that although 0.26 or 0.50 T SMFs did not affect ATP, 1 T and 9 T SMFs affected ATP level differently and time-dependently. Moreover, SMF-induced ATP level fluctuations are correlated with mitochondrial membrane potential changes. Our study provides insights not only into understanding various cellular effects of SMFs, but also the potential clinical applications of SMFs. Bioelectromagnetics. 39:352-360, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Dongmei Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,University of Science and Technology of China, Hefei, China
| | - Ze Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,University of Science and Technology of China, Hefei, China
| | - Lei Zhang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,University of Science and Technology of China, Hefei, China
| | - Zhiyuan Li
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - XiaoFei Tian
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,University of Science and Technology of China, Hefei, China
| | - Jun Fang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, Hefei, China
| | - Qingyou Lu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,University of Science and Technology of China, Hefei, China.,Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, Hefei, China
| | - Xin Zhang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| |
Collapse
|
10
|
Medina-Fernández FJ, Escribano BM, Padilla-Del-Campo C, Drucker-Colín R, Pascual-Leone Á, Túnez I. Transcranial magnetic stimulation as an antioxidant. Free Radic Res 2018; 52:381-389. [PMID: 29385851 DOI: 10.1080/10715762.2018.1434313] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the last decades, different transcranial magnetic stimulation protocols have been developed as a therapeutic tool against neurodegenerative and psychiatric diseases, although the biochemical, molecular and cellular mechanisms underlying these effects are not well known. Recent data show that those magnetic stimulation protocols showing beneficial effects could trigger an anti-oxidant action that would favour, at least partially, their therapeutic effect. We have aimed to review the molecular effects related to oxidative damage induced by this therapeutic strategy, as well as from them addressing a broader definition of the anti-oxidant concept.
Collapse
Affiliation(s)
- Francisco J Medina-Fernández
- a Departamento de Bioquímica y Biología Molecular, Facultad de Medicina y Enfermería , Universidad de Córdoba , Córdoba , Spain.,b Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC) , Córdoba , Spain
| | - Begoña M Escribano
- a Departamento de Bioquímica y Biología Molecular, Facultad de Medicina y Enfermería , Universidad de Córdoba , Córdoba , Spain.,c Departamento de Biología Celular, Fisiología e Inmunología , Universidad de Córdoba , Córdoba , Spain
| | | | - René Drucker-Colín
- e Departmento de Neuropatología Molecular , Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM) , Ciudad de México , DF , México
| | - Álvaro Pascual-Leone
- f Division of Cognitive Neurology, Department of Neurology , Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center and Harvard Medical School , Boston , MA , USA
| | - Isaac Túnez
- a Departamento de Bioquímica y Biología Molecular, Facultad de Medicina y Enfermería , Universidad de Córdoba , Córdoba , Spain.,b Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC) , Córdoba , Spain
| |
Collapse
|
11
|
Cichoń N, Bijak M, Miller E, Saluk J. Extremely low frequency electromagnetic field (ELF-EMF) reduces oxidative stress and improves functional and psychological status in ischemic stroke patients. Bioelectromagnetics 2017; 38:386-396. [DOI: 10.1002/bem.22055] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 04/04/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Natalia Cichoń
- Department of General Biochemistry; University of Lodz; Lodz Poland
| | - Michał Bijak
- Department of General Biochemistry; University of Lodz; Lodz Poland
| | - Elżbieta Miller
- Department of Physical Medicine; Medical University of Lodz; Lodz Poland
- Neurorehabilitation Ward; III General Hospital in Lodz; Lodz Poland
| | - Joanna Saluk
- Department of General Biochemistry; University of Lodz; Lodz Poland
| |
Collapse
|
12
|
Dornelles EB, Goncalves BD, Schott KL, Barbisan F, Unfer TC, Glanzner WG, Machado AK, Cadona FC, Azzolin VF, Montano MAE, Griner J, da Cruz IBM. Cytotoxic effects of moderate static magnetic field exposure on human periphery blood mononuclear cells are influenced by Val16Ala-MnSOD gene polymorphism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:5078-5088. [PMID: 28004364 DOI: 10.1007/s11356-016-8176-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/28/2016] [Indexed: 06/06/2023]
Abstract
Technological advancement has increasingly exposed humans to magnetic fields (MFs). However, more insights are necessary into the potential toxicity of MF exposure as a result of genetic variations related to oxidative metabolism. Therefore, the following study has assessed an in vitro cytotoxic effect of static magnetic field (SMF) (5 mT) on cells with Val16Ala polymorphism (AA, VA, and VV) in the manganese superoxide dismutase gene. Homozygous Val16Ala-superoxide dismutase 2 (SOD2) genotypes present oxidative imbalance that is associated with risk to several chronic degenerative diseases (VV produces less efficient and AA more efficient SOD2 enzyme). Blood samples from healthy adult subject carriers with different Val16Ala-SOD2 genotypes were obtained and exposed to MF at different times (0, 1, 3, 6 h). The cytotoxic effect as well as oxidative stress was evaluated after incubation of 24 h at 37 °C. In addition, apoptosis induction has been analyzed by flow cytometry as well as Bcl-2-associated X protein (BAX), B-cell lymphoma 2 (BCL-2), and caspases 8 and 3 gene expression. SMF cytotoxic effect has been observed in AA cells at all times of exposure, whereas AV cells presented higher mortality only after 6 h of exposure at SMF. Higher apoptosis induction has been observed in AA cells when compared to VV and AV cells. These results suggest a toxicogenetic SMF effect related to an imbalance in SOD2 activity.
Collapse
Affiliation(s)
- Eduardo B Dornelles
- Biological Science Graduate Program: Toxicological Biochemistry, Universidade Federal de Santa Maria, Av Roraima 1000, Prédio 19, Santa Maria, RS, 97105900, Brazil.
| | - Bayard D Goncalves
- Veterinary Medicine Graduate Program, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Karen Lilian Schott
- Biological Science Graduate Program: Toxicological Biochemistry, Universidade Federal de Santa Maria, Av Roraima 1000, Prédio 19, Santa Maria, RS, 97105900, Brazil
| | - Fernanda Barbisan
- Pharmacology Graduate Program, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Tais C Unfer
- Pharmacology Graduate Program, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Werner G Glanzner
- Veterinary Medicine Graduate Program, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Alencar K Machado
- Pharmacology Graduate Program, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Francine C Cadona
- Biological Science Graduate Program: Toxicological Biochemistry, Universidade Federal de Santa Maria, Av Roraima 1000, Prédio 19, Santa Maria, RS, 97105900, Brazil
| | | | - Marco Aurélio Echart Montano
- Health and Biosciences Post-Graduate Program, Universidade do Oeste de Santa Catarina, Rua Dirceu Giordani, 696, Xanxerê, 89820-000, SC, Brazil
| | - John Griner
- Biological Science Graduate Program: Toxicological Biochemistry, Universidade Federal de Santa Maria, Av Roraima 1000, Prédio 19, Santa Maria, RS, 97105900, Brazil
| | - Ivana B M da Cruz
- Biological Science Graduate Program: Toxicological Biochemistry, Universidade Federal de Santa Maria, Av Roraima 1000, Prédio 19, Santa Maria, RS, 97105900, Brazil
- Pharmacology Graduate Program, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
13
|
Cichoń N, Olejnik AK, Miller E, Saluk J. The multipotent action of electromagnetic field. Biologia (Bratisl) 2016. [DOI: 10.1515/biolog-2016-0142] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Pawłowska-Góral K, Kimsa-Dudek M, Synowiec-Wojtarowicz A, Orchel J, Glinka M, Gawron S. Effect of static magnetic fields and phloretin on antioxidant defense system of human fibroblasts. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:14989-14996. [PMID: 27080405 PMCID: PMC4956710 DOI: 10.1007/s11356-016-6653-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 04/05/2016] [Indexed: 06/05/2023]
Abstract
The available evidence from in vitro and in vivo studies is deemed not sufficient to draw conclusions about the potential health effects of static magnetic field (SMF) exposure. Therefore, the aim of the present study was to determine the influence of static magnetic fields and phloretin on the redox homeostasis of human dermal fibroblasts. Control fibroblasts and fibroblasts treated with phloretin were subjected to the influence of static magnetic fields. Three chambers with static magnetic fields of different intensities (0.4, 0.55, and 0.7 T) were used in the study. Quantification of superoxide dismutase 1 (SOD1), superoxide dismutase 2 (SOD2), glutathione peroxidase 1 (GPX1), microsomal glutathione S-transferase 1 (MGST1), glutathione reductase (GSR), and catalase (CAT) messenger RNAs (mRNAs) was performed by means of real-time reverse transcription PCR (QRT-PCR) technique. Superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) activities were measured using a commercially available kit. No significant differences were found in SOD1, SOD2, GPX1, MGST1, GSR, and CAT mRNA levels among the studied groups in comparison to the control culture without phloretin and without the magnet. There were also no changes in SOD, GPx, and CAT activities. In conclusion, our study indicated that static magnetic fields generated by permanent magnets do not exert a negative influence on the oxidative status of human dermal fibroblasts. Based on these studies, it may also be concluded that phloretin does not increase its antioxidant properties under the influence of static magnetic fields. However, SMF-induced modifications at the cellular and molecular level require further clarification.
Collapse
Affiliation(s)
- Katarzyna Pawłowska-Góral
- Department of Food and Nutrition, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Jednosci 8, 41-200, Sosnowiec, Poland
| | - Magdalena Kimsa-Dudek
- Department of Food and Nutrition, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Jednosci 8, 41-200, Sosnowiec, Poland.
| | - Agnieszka Synowiec-Wojtarowicz
- Department of Food and Nutrition, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Jednosci 8, 41-200, Sosnowiec, Poland
| | - Joanna Orchel
- Department of Molecular Biology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Jednosci 8, 41-200, Sosnowiec, Poland
| | - Marek Glinka
- Institute of Electrical Drives and Machines KOMEL, 188 Rozdzienskiego Street, 40-203, Katowice, Poland
| | - Stanisław Gawron
- Institute of Electrical Drives and Machines KOMEL, 188 Rozdzienskiego Street, 40-203, Katowice, Poland
| |
Collapse
|
15
|
Lai WY, Huang YC, Chang WJ, Wang HT, Fong TH, Lin CT, Huang HM. Static magnetic field attenuates lipopolysaccharide-induced multiple organ failure: A histopathologic study in mice. Int J Radiat Biol 2015; 91:135-41. [DOI: 10.3109/09553002.2015.959669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
16
|
Csillag A, Kumar BV, Szabó K, Szilasi M, Papp Z, Szilasi ME, Pázmándi K, Boldogh I, Rajnavölgyi É, Bácsi A, László JF. Exposure to inhomogeneous static magnetic field beneficially affects allergic inflammation in a murine model. J R Soc Interface 2014; 11:20140097. [PMID: 24647908 DOI: 10.1098/rsif.2014.0097] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Previous observations suggest that static magnetic field (SMF)-exposure acts on living organisms partly through reactive oxygen species (ROS) reactions. In this study, we aimed to define the impact of SMF-exposure on ragweed pollen extract (RWPE)-induced allergic inflammation closely associated with oxidative stress. Inhomogeneous SMF was generated with an apparatus validated previously providing a peak-to-peak magnetic induction of the dominant SMF component 389 mT by 39 T m(-1) lateral gradient in the in vivo and in vitro experiments, and 192 mT by 19 T m(-1) in the human study at the 3 mm target distance. Effects of SMF-exposure were studied in a murine model of allergic inflammation and also in human provoked skin allergy. We found that even a single 30-min exposure of mice to SMF immediately following intranasal RWPE challenge significantly lowered the increase in the total antioxidant capacity of the airways and decreased allergic inflammation. Repeated (on 3 consecutive days) or prolonged (60 min) exposure to SMF after RWPE challenge decreased the severity of allergic responses more efficiently than a single 30-min treatment. SMF-exposure did not alter ROS production by RWPE under cell-free conditions, while diminished RWPE-induced increase in the ROS levels in A549 epithelial cells. Results of the human skin prick tests indicated that SMF-exposure had no significant direct effect on provoked mast cell degranulation. The observed beneficial effects of SMF are likely owing to the mobilization of cellular ROS-eliminating mechanisms rather than direct modulation of ROS production by pollen NAD(P)H oxidases.
Collapse
Affiliation(s)
- Anikó Csillag
- Department of Immunology, Faculty of Medicine, University of Debrecen, , 98 Nagyerdei Boulevard, Debrecen 4012, Hungary
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|