1
|
Zhang L, Huang Y, Yang Y, Liao B, Hou C, Wang Y, Qin H, Zeng H, He Y, Gu J, Zhang R. TIMM9 as a prognostic biomarker in multiple cancers and its associated biological processes. Sci Rep 2024; 14:20568. [PMID: 39232081 PMCID: PMC11374795 DOI: 10.1038/s41598-024-71421-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024] Open
Abstract
TIMM9 has been identified as a mediator of essential functions in mitochondria, but its association with pan-cancer is poorly understood. We herein employed bioinformatics, computational chemistry techniques and experiments to investigate the role of TIMM9 in pan-cancer. Our analysis revealed that overexpression of TIMM9 was significantly associated with tumorigenesis, pathological stage progression, and metastasis. Missense mutations (particularly the S49L variant), copy number variations (CNV) and methylation alterations in TIMM9 were found to be associated with poor cancer prognosis. Moreover, TIMM9 was positively related with cell cycle progression, mitochondrial and ribosomal function, oxidative phosphorylation, TCA cycle activity, innate and adaptive immunity. Additionally, we discovered that TIMM9 could be regulated by cancer-associated signaling pathways, such as the mTOR pathway. Using molecular simulations, we identified ITFG1 as the protein that has the strongest physical association with TIMM9, which show a promising structural complement.
Collapse
Affiliation(s)
- Lisheng Zhang
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, 232 Outer Ring East Road, Guangzhou University City, Panyu District, Guangzhou, 510006, Guangdong, China
| | - Yan Huang
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, 232 Outer Ring East Road, Guangzhou University City, Panyu District, Guangzhou, 510006, Guangdong, China
| | - Yanting Yang
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, 232 Outer Ring East Road, Guangzhou University City, Panyu District, Guangzhou, 510006, Guangdong, China
| | - Birong Liao
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, 232 Outer Ring East Road, Guangzhou University City, Panyu District, Guangzhou, 510006, Guangdong, China
| | - Congyan Hou
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, 232 Outer Ring East Road, Guangzhou University City, Panyu District, Guangzhou, 510006, Guangdong, China
| | - Yiqi Wang
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, 232 Outer Ring East Road, Guangzhou University City, Panyu District, Guangzhou, 510006, Guangdong, China
| | - Huaiyu Qin
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, 232 Outer Ring East Road, Guangzhou University City, Panyu District, Guangzhou, 510006, Guangdong, China
| | - Huixiang Zeng
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, 232 Outer Ring East Road, Guangzhou University City, Panyu District, Guangzhou, 510006, Guangdong, China
| | - Yanli He
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, 232 Outer Ring East Road, Guangzhou University City, Panyu District, Guangzhou, 510006, Guangdong, China.
| | - Jiangyong Gu
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, 232 Outer Ring East Road, Guangzhou University City, Panyu District, Guangzhou, 510006, Guangdong, China.
| | - Ren Zhang
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, 232 Outer Ring East Road, Guangzhou University City, Panyu District, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
2
|
Kan KT, Wilcock J, Lu H. Role of Yme1 in mitochondrial protein homeostasis: from regulation of protein import, OXPHOS function to lipid synthesis and mitochondrial dynamics. Biochem Soc Trans 2024; 52:1539-1548. [PMID: 38864432 PMCID: PMC11346431 DOI: 10.1042/bst20240450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/13/2024]
Abstract
Mitochondria are essential organelles of eukaryotic cells and thus mitochondrial proteome is under constant quality control and remodelling. Yme1 is a multi-functional protein and subunit of the homo-hexametric complex i-AAA proteinase. Yme1 plays vital roles in the regulation of mitochondrial protein homeostasis and mitochondrial plasticity, ranging from substrate degradation to the regulation of protein functions involved in mitochondrial protein biosynthesis, energy production, mitochondrial dynamics, and lipid biosynthesis and signalling. In this mini review, we focus on discussing the current understanding of the roles of Yme1 in mitochondrial protein import via TIM22 and TIM23 pathways, oxidative phosphorylation complex function, as well as mitochondrial lipid biosynthesis and signalling, as well as a brief discussion of the role of Yme1 in modulating mitochondrial dynamics.
Collapse
Affiliation(s)
- Kwan Ting Kan
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PT, U.K
| | - Joel Wilcock
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PT, U.K
| | - Hui Lu
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PT, U.K
| |
Collapse
|
3
|
Quiñones LS, Gonzalez FS, Darden C, Khan M, Tripathi A, Smith JT, Davis J, Misra S, Chaudhuri M. Unique Interactions of the Small Translocases of the Mitochondrial Inner Membrane (Tims) in Trypanosoma brucei. Int J Mol Sci 2024; 25:1415. [PMID: 38338692 PMCID: PMC10855554 DOI: 10.3390/ijms25031415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/10/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
The infectious agent for African trypanosomiasis, Trypanosoma brucei, possesses a unique and essential translocase of the mitochondrial inner membrane, known as the TbTIM17 complex. TbTim17 associates with six small TbTims (TbTim9, TbTim10, TbTim11, TbTim12, TbTim13, and TbTim8/13). However, the interaction patterns of these smaller TbTims with each other and TbTim17 are not clear. Through yeast two-hybrid (Y2H) and co-immunoprecipitation analyses, we demonstrate that all six small TbTims interact with each other. Stronger interactions were found among TbTim8/13, TbTim9, and TbTim10. However, TbTim10 shows weaker associations with TbTim13, which has a stronger connection with TbTim17. Each of the small TbTims also interacts strongly with the C-terminal region of TbTim17. RNAi studies indicated that among all small TbTims, TbTim13 is most crucial for maintaining the steady-state levels of the TbTIM17 complex. Further analysis of the small TbTim complexes by size exclusion chromatography revealed that each small TbTim, except for TbTim13, is present in ~70 kDa complexes, possibly existing in heterohexameric forms. In contrast, TbTim13 is primarily present in the larger complex (>800 kDa) and co-fractionates with TbTim17. Altogether, our results demonstrate that, relative to other eukaryotes, the architecture and function of the small TbTim complexes are specific to T. brucei.
Collapse
Affiliation(s)
- Linda S. Quiñones
- Department of Microbiology, Immunology, and Physiology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (L.S.Q.); (F.S.G.); (M.K.); (A.T.)
| | - Fidel Soto Gonzalez
- Department of Microbiology, Immunology, and Physiology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (L.S.Q.); (F.S.G.); (M.K.); (A.T.)
| | - Chauncey Darden
- Department of Biochemistry, Cancer Biology, Neuroscience, and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (C.D.); (J.D.)
| | - Muhammad Khan
- Department of Microbiology, Immunology, and Physiology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (L.S.Q.); (F.S.G.); (M.K.); (A.T.)
| | - Anuj Tripathi
- Department of Microbiology, Immunology, and Physiology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (L.S.Q.); (F.S.G.); (M.K.); (A.T.)
| | - Joseph T. Smith
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA;
| | - Jamaine Davis
- Department of Biochemistry, Cancer Biology, Neuroscience, and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (C.D.); (J.D.)
| | - Smita Misra
- Department of Biomedical Science, School of Graduate Studies, Meharry Medical College, Nashville, TN 37208, USA;
| | - Minu Chaudhuri
- Department of Microbiology, Immunology, and Physiology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (L.S.Q.); (F.S.G.); (M.K.); (A.T.)
| |
Collapse
|
4
|
Quiñones Guillén LS, Gonzalez FS, Darden C, Khan M, Tripathi A, Smith JT, Cooley A, Paromov V, Davis J, Misra S, Chaudhuri M. Unique interactions and functions of the mitochondrial small Tims in Trypanosoma brucei. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.29.542777. [PMID: 37398442 PMCID: PMC10312748 DOI: 10.1101/2023.05.29.542777] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Trypanosoma brucei is an early divergent parasitic protozoan that causes a fatal disease, African trypanosomiasis. T. brucei possesses a unique and essential translocase of the mitochondrial inner membrane, the TbTIM17 complex. TbTim17 associates with 6 small TbTims, (TbTim9, TbTim10, TbTim11, TbTim12, TbTim13, and TbTim8/13). However, the interaction pattern of the small TbTims with each other and TbTim17 are not clear. Here, we demonstrated by yeast two-hybrid (Y2H) analysis that all six small TbTims interact with each other, but stronger interactions were found among TbTim8/13, TbTim9, and TbTim10. Each of the small TbTims also interact directly with the C-terminal region of TbTim17. RNAi studies indicated that among all small TbTims, TbTim13 is most crucial to maintain the steady-state levels of the TbTIM17 complex. Co-immunoprecipitation analyses from T. brucei mitochondrial extracts also showed that TbTim10 has a stronger association with TbTim9 and TbTim8/13, but a weaker association with TbTim13, whereas TbTim13 has a stronger connection with TbTim17. Analysis of the small TbTim complexes by size exclusion chromatography revealed that each small TbTim, except TbTim13, is present in ∼70 kDa complexes, which could be heterohexameric forms of the small TbTims. However, TbTim13 is primarily present in the larger complex (>800 kDa) and co-fractionated with TbTim17. Altogether, our results demonstrated that TbTim13 is a part of the TbTIM complex and the smaller complexes of the small TbTims likely interact with the larger complex dynamically. Therefore, relative to other eukaryotes, the architecture and function of the small TbTim complexes are specific in T. brucei .
Collapse
|
5
|
Chaudhuri M, Darden C, Soto Gonzalez F, Singha UK, Quinones L, Tripathi A. Tim17 Updates: A Comprehensive Review of an Ancient Mitochondrial Protein Translocator. Biomolecules 2020; 10:E1643. [PMID: 33297490 PMCID: PMC7762337 DOI: 10.3390/biom10121643] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023] Open
Abstract
The translocases of the mitochondrial outer and inner membranes, the TOM and TIMs, import hundreds of nucleus-encoded proteins into mitochondria. TOM and TIMs are multi-subunit protein complexes that work in cooperation with other complexes to import proteins in different sub-mitochondrial destinations. The overall architecture of these protein complexes is conserved among yeast/fungi, animals, and plants. Recent studies have revealed unique characteristics of this machinery, particularly in the eukaryotic supergroup Excavata. Despite multiple differences, homologues of Tim17, an essential component of one of the TIM complexes and a member of the Tim17/Tim22/Tim23 family, have been found in all eukaryotes. Here, we review the structure and function of Tim17 and Tim17-containing protein complexes in different eukaryotes, and then compare them to the single homologue of this protein found in Trypanosoma brucei, a unicellular parasitic protozoan.
Collapse
Affiliation(s)
- Minu Chaudhuri
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, 1005 Dr. D.B. Todd, Jr., Blvd, Nashville, TN 37208, USA; (C.D.); (F.S.G.); (U.K.S.); (L.Q.); (A.T.)
| | | | | | | | | | | |
Collapse
|
6
|
Roberts RF, Bayne AN, Goiran T, Lévesque D, Boisvert FM, Trempe JF, Fon EA. Proteomic Profiling of Mitochondrial-Derived Vesicles in Brain Reveals Enrichment of Respiratory Complex Sub-assemblies and Small TIM Chaperones. J Proteome Res 2020; 20:506-517. [PMID: 33242952 DOI: 10.1021/acs.jproteome.0c00506] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The generation of mitochondrial-derived vesicles (MDVs) is implicated in a plethora of vital cell functions, from mitochondrial quality control to peroxisomal biogenesis. The discovery of distinct subtypes of MDVs has revealed the selective inclusion of mitochondrial cargo in response to varying stimuli. However, the true scope and variety of MDVs is currently unclear, and unbiased approaches have yet to be used to understand their biology. Furthermore, as mitochondrial dysfunction has been implicated in many neurodegenerative diseases, it is essential to understand MDV pathways in the nervous system. To address this, we sought to identify the cargo in brain MDVs. We used an in vitro budding assay and proteomic approach to identify proteins selectively enriched in MDVs. 72 proteins were identified as MDV-enriched, of which 31% were OXPHOS proteins. Interestingly, the OXPHOS proteins localized to specific modules of the respiratory complexes, hinting at the inclusion of sub-assemblies in MDVs. Small TIM chaperones were also highly enriched in MDVs, linking mitochondrial chaperone-mediated protein transport to MDV formation. As the two Parkinson's disease genes PINK1 and Parkin have been previously implicated in MDV biogenesis in response to oxidative stress, we compared the MDV proteomes from the brains of wild-type mice with those of PINK1-/- and Parkin-/- mice. No significant difference was found, suggesting that PINK1- and Parkin-dependent MDVs make up a small proportion of all MDVs in the brain. Our findings demonstrate a previously uncovered landscape of MDV complexity and provide a foundation from which further novel MDV functions can be discovered. Data are available via ProteomeXchange with identifier PXD020197.
Collapse
Affiliation(s)
- Rosalind F Roberts
- McGill Parkinson Program, Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec H3A 2B4, Canada
| | - Andrew N Bayne
- Department of Pharmacology & Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, Quebec H3G 1Y6, Canada
| | - Thomas Goiran
- McGill Parkinson Program, Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec H3A 2B4, Canada
| | - Dominique Lévesque
- Department of Anatomy and Cell Biology, Université de Sherbrooke, 3201 rue Jean-Mignault, Sherbrooke, Quebec J1E 4K8, Canada
| | - François-Michel Boisvert
- Department of Anatomy and Cell Biology, Université de Sherbrooke, 3201 rue Jean-Mignault, Sherbrooke, Quebec J1E 4K8, Canada
| | - Jean-François Trempe
- Department of Pharmacology & Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, Quebec H3G 1Y6, Canada
| | - Edward A Fon
- McGill Parkinson Program, Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|
7
|
Ceh-Pavia E, Tang X, Liu Y, Heyes DJ, Zhao B, Xiao P, Lu H. Redox characterisation of Erv1, a key component for protein import and folding in yeast mitochondria. FEBS J 2019; 287:2281-2291. [PMID: 31713999 PMCID: PMC7318334 DOI: 10.1111/febs.15136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 10/08/2019] [Accepted: 11/10/2019] [Indexed: 11/29/2022]
Abstract
The mitochondrial import and assembly (MIA) pathway plays a vitally important role in import and oxidative folding of mitochondrial proteins. Erv1, a member of the FAD-dependent Erv1/ALR disulphide bond generating enzyme family, is a key player of the MIA pathway. Although considerable progress has been made, the molecular mechanism of electron transfer within Erv1 is still not fully understood. The reduction potentials of the three redox centres were previously determined to be -320 mV for the shuttle disulphide, -150 mV for the active-site disulphide and -215 mV for FAD cofactor. However, it is unknown why FAD of Erv1 has such a low potential compared with other sulfhydryl oxidases, and why the shuttle disulphide has a potential as low as many of the stable structural disulphides of the substrates of MIA pathway. In this study, the three reduction potentials of Erv1 were reassessed using the wild-type and inactive mutants of Erv1 under anaerobic conditions. Our results show that the standard potentials for the shuttle and active-site disulphides are approximately -250 mV and -215 ~ -260 mV, respectively, and the potential for FAD cofactor is -148 mV. Our results support a model that both disulphide bonds are redox-active, and electron flow in Erv1 is thermodynamically favourable. Furthermore, the redox behaviour of Erv1 was confirmed, for the first time using Mia40, the physiological electron donor of Erv1. Together with previous studies on proteins of MIA pathway, we conclude that electron flow in the MIA pathway is a thermodynamically favourable, smoothly downhill process for all steps. DATABASE: Erv1: EC 1.8.3.2.
Collapse
Affiliation(s)
- Efrain Ceh-Pavia
- Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, UK
| | - Xiaofan Tang
- Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, UK.,School of Materials, University of Manchester, UK
| | - Yawen Liu
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, China
| | - Derren J Heyes
- Manchester Institute of Biotechnology, University of Manchester, UK
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, China
| | - Ping Xiao
- School of Materials, University of Manchester, UK
| | - Hui Lu
- Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, UK
| |
Collapse
|
8
|
Tang X, Ang SK, Ceh-Pavia E, Heyes DJ, Lu H. Kinetic characterisation of Erv1, a key component for protein import and folding in yeast mitochondria. FEBS J 2019; 287:1220-1231. [PMID: 31569302 PMCID: PMC7155059 DOI: 10.1111/febs.15077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/22/2019] [Accepted: 09/29/2019] [Indexed: 12/04/2022]
Abstract
Yeast (Saccharomyces cerevisiae) essential for respiration and viability 1 (Erv1; EC number http://www.chem.qmul.ac.uk/iubmb/enzyme/1/8/3/2.html), a member of the flavin adenine dinucleotide‐dependent Erv1/ALR disulphide bond generating enzyme family, works together with Mia40 to catalyse protein import and oxidative folding in the mitochondrial intermembrane space. Erv1/ALR functions either as an oxidase or cytochrome c reductase by passing electrons from a thiol substrate to molecular oxygen (O2) or cytochrome c, respectively. However, the substrate specificity for oxygen and cytochrome c is not fully understood. In this study, the oxidase and cytochrome c reductase kinetics of yeast Erv1 were investigated in detail, under aerobic and anaerobic conditions, using stopped‐flow absorption spectroscopy and oxygen consumption analysis. Using DTT as an electron donor, our results show that cytochrome c is ~ 7‐ to 15‐fold more efficient than O2 as electron acceptors for yeast Erv1, and that O2 is a competitive inhibitor of Erv1 cytochrome c reductase activity. In addition, Mia40, the physiological thiol substrate of Erv1, was used as an electron donor for Erv1 in a detailed enzyme kinetic study. Different enzyme kinetic kcat and Km values were obtained with Mia40 compared to DTT, suggesting that Mia40 modulates Erv1 enzyme kinetics. Taken together, this study shows that Erv1 is a moderately active enzyme with the ability to use both O2 and cytochrome c as the electron acceptors, indicating that Erv1 contributes to mitochondrial hydrogen peroxide production. Our results also suggest that Mia40‐Erv1 system may involve in regulation of the redox state of glutathione in the mitochondrial intermembrane space. Erv1 EC number http://www.chem.qmul.ac.uk/iubmb/enzyme/1/8/3/2.html.
Collapse
Affiliation(s)
- Xiaofan Tang
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK.,School of Materials, University of Manchester, UK
| | - Swee Kim Ang
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Efrain Ceh-Pavia
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Derren J Heyes
- Manchester Institute of Biotechnology, University of Manchester, UK
| | - Hui Lu
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
| |
Collapse
|
9
|
Chen L, Liu YC, Tan H, Zhang Y, Xu J, Liu WL, Li ZY, Li WP. Santacruzamate A Ameliorates AD-Like Pathology by Enhancing ER Stress Tolerance Through Regulating the Functions of KDELR and Mia40-ALR in vivo and in vitro. Front Cell Neurosci 2019; 13:61. [PMID: 30886573 PMCID: PMC6409322 DOI: 10.3389/fncel.2019.00061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 02/06/2019] [Indexed: 11/13/2022] Open
Abstract
Aggregated amyloid-β protein (Aβ) and Aβ-induced neuronal apoptosis have been implicated as critical factors in the pathophysiology of Alzheimer's disease (AD). Certain preclinical results have indicated that the increased accumulation of protein aggregates in AD-affected neurons activates the unfolded protein response (UPR), a pathological phenomenon, which predominantly mediates the aberrant endoplasmic reticulum (ER) stress and apoptotic cascades in neuronal cells. In the present study, we confirmed that Santacruzamate A (STA, a natural product isolated from a Panamanian marine cyanobacterium) attenuates Aβ protein fragment 25-35 (Aβ25-35)-induced toxicity in PC12 cells and rescues cognitive deficits in APPswe/PS1dE9 mice by enhancing ER stress tolerance. We first demonstrated the anti-apoptotic effects of STA by evaluating caspase-3 activity, annexin V/propidium iodide (PI) staining, and terminal deoxynucleotidyl transferase dUTP nick end labeling staining. Behavioral testing of STA-treated APPswe/PS1dE9 mice showed that the pronounced memory impairments were ameliorated and that the consolidated memories were stably maintained over a 2-week period. The mechanistic studies provided evidence that STA inhibited Aβ25-35-induced UPR and ER stress by regulating the ER retention signal (KDEL) receptor, which reinforced the retention of resident chaperones in the ER lumen. Furthermore, STA regulated the expression of the mitochondrial intermembrane space assembly protein 40 (Mia40) and augmenter of liver regeneration (ALR), which ultimately attenuated the mitochondrial fission and apoptosis pathways. Together, our present findings suggest that the KDEL receptor and Mia40-ALR play a role in mitigating Aβ25-35-induced neurotoxicity, which might in turn positively regulate learning and memory. These observations support that STA may be a promising agent for reversing the progression of AD.
Collapse
Affiliation(s)
- Lei Chen
- Shenzhen Key Laboratory of Neurosurgery, Brain Center, Shenzhen Second People’s Hospital, Shenzhen University 1st Affiliated Hospital, Shenzhen, China
| | | | - Hui Tan
- Shenzhen Key Laboratory of Neurosurgery, Brain Center, Shenzhen Second People’s Hospital, Shenzhen University 1st Affiliated Hospital, Shenzhen, China
| | - Yuan Zhang
- Shenzhen Key Laboratory of Neurosurgery, Brain Center, Shenzhen Second People’s Hospital, Shenzhen University 1st Affiliated Hospital, Shenzhen, China
| | - Ji Xu
- Shenzhen Key Laboratory of Neurosurgery, Brain Center, Shenzhen Second People’s Hospital, Shenzhen University 1st Affiliated Hospital, Shenzhen, China
| | - Wen-lan Liu
- Shenzhen Key Laboratory of Neurosurgery, Brain Center, Shenzhen Second People’s Hospital, Shenzhen University 1st Affiliated Hospital, Shenzhen, China
| | - Zong-yang Li
- Shenzhen Key Laboratory of Neurosurgery, Brain Center, Shenzhen Second People’s Hospital, Shenzhen University 1st Affiliated Hospital, Shenzhen, China
| | - Wei-ping Li
- Shenzhen Key Laboratory of Neurosurgery, Brain Center, Shenzhen Second People’s Hospital, Shenzhen University 1st Affiliated Hospital, Shenzhen, China
| |
Collapse
|
10
|
Heinemeyer T, Stemmet M, Bardien S, Neethling A. Underappreciated Roles of the Translocase of the Outer and Inner Mitochondrial Membrane Protein Complexes in Human Disease. DNA Cell Biol 2018; 38:23-40. [PMID: 30481057 DOI: 10.1089/dna.2018.4292] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mitochondria are critical for cellular survival, and for their proper functioning, translocation of ∼1500 proteins across the mitochondrial membranes is required. The translocase of the outer (TOMM) and inner mitochondrial membrane (TIMM) complexes are major components of this translocation machinery. Through specific processes, preproteins and other molecules are imported, translocated, and directed to specific mitochondrial compartments for their function. In this study, we review the association of subunits of these complexes with human disease. Pathogenic mutations have been identified in the TIMM8A (DDP) and DNAJC19 (TIMM14) genes and are linked to Mohr-Tranebjærg syndrome and dilated cardiomyopathy syndrome (with and without ataxia), respectively. Polymorphisms in TOMM40 have been associated with Alzheimer's disease, frontotemporal lobar degeneration, Parkinson's disease with dementia, dementia with Lewy bodies, nonpathological cognitive aging, and various cardiovascular-related traits. Furthermore, reduced protein expression levels of several complex subunits have been associated with Parkinson's disease, Meniere's disease, and cardiovascular disorders. However, increased mRNA and protein levels of complex subunits are found in cancers. This review highlights the importance of the mitochondrial import machinery in human disease and stresses the need for further studies. Ultimately, this knowledge may prove to be critical for the development of therapeutic modalities for these conditions.
Collapse
Affiliation(s)
- Thea Heinemeyer
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University , Cape Town, South Africa
| | - Monique Stemmet
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University , Cape Town, South Africa
| | - Soraya Bardien
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University , Cape Town, South Africa
| | - Annika Neethling
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University , Cape Town, South Africa
| |
Collapse
|
11
|
Holze C, Michaudel C, Mackowiak C, Haas DA, Benda C, Hubel P, Pennemann FL, Schnepf D, Wettmarshausen J, Braun M, Leung DW, Amarasinghe GK, Perocchi F, Staeheli P, Ryffel B, Pichlmair A. Oxeiptosis, a ROS-induced caspase-independent apoptosis-like cell-death pathway. Nat Immunol 2017; 19:130-140. [PMID: 29255269 PMCID: PMC5786482 DOI: 10.1038/s41590-017-0013-y] [Citation(s) in RCA: 246] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 11/17/2017] [Indexed: 12/13/2022]
Abstract
Reactive oxygen species (ROS) are generated by virally-infected cells however the physiological significance of ROS generated under these conditions is unclear. Here we show that inflammation and cell death induced by exposure of mice or cells to sources of ROS is not altered in the absence of canonical ROS-sensing pathways or known cell death pathways. ROS-induced cell death signaling involves interaction between the cellular ROS sensor and antioxidant factor KEAP1, the phosphatase PGAM5 and the proapoptotic factor AIFM1. Pgam5−/− mice show exacerbated lung inflammation and proinflammatory cytokines in an ozone exposure model. Similarly, challenge with influenza A virus leads to increased virus infiltration, lymphocytic bronchiolitis and reduced survival of Pgam5−/− mice. This pathway, which we term ‘oxeiptosis’, is a ROS-sensitive, caspase independent, non-inflammatory cell death pathway and is important to protect against inflammation induced by ROS or ROS-generating agents such as viral pathogens.
Collapse
Affiliation(s)
- Cathleen Holze
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried, Munich, Germany
| | - Chloé Michaudel
- INEM, Experimental Molecular Immunology, UMR7355 CNRS and University, Orleans, France
| | - Claire Mackowiak
- INEM, Experimental Molecular Immunology, UMR7355 CNRS and University, Orleans, France
| | - Darya A Haas
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried, Munich, Germany
| | - Christian Benda
- Department of Structural Cell Biology, Max-Planck Institute of Biochemistry, Martinsried, Munich, Germany
| | - Philipp Hubel
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried, Munich, Germany
| | - Friederike L Pennemann
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried, Munich, Germany
| | - Daniel Schnepf
- Institute of Virology, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Jennifer Wettmarshausen
- Department of Biochemistry, Gene Center Munich, Munich, Germany.,Institute for Diabetes and Obesity, Helmholtz Zentrum Munchen, Neuherberg, Germany
| | - Marianne Braun
- EM-Histo Lab, Max-Planck Institute of Neurobiology, Martinsried, Munich, Germany
| | - Daisy W Leung
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Fabiana Perocchi
- Department of Biochemistry, Gene Center Munich, Munich, Germany.,Institute for Diabetes and Obesity, Helmholtz Zentrum Munchen, Neuherberg, Germany
| | - Peter Staeheli
- Institute of Virology, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bernhard Ryffel
- INEM, Experimental Molecular Immunology, UMR7355 CNRS and University, Orleans, France.,Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Andreas Pichlmair
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried, Munich, Germany. .,School of Medicine, Institute of Virology, Technical University of Munich, Munich, Germany. .,German Center for Infection Research (DZIF), Munich partner site, Munich, Germany.
| |
Collapse
|
12
|
Weems E, Singha UK, Smith JT, Chaudhuri M. The divergent N-terminal domain of Tim17 is critical for its assembly in the TIM complex in Trypanosoma brucei. Mol Biochem Parasitol 2017; 218:4-15. [PMID: 28965880 DOI: 10.1016/j.molbiopara.2017.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 09/18/2017] [Accepted: 09/25/2017] [Indexed: 10/18/2022]
Abstract
Trypanosoma brucei Tim17(TbTim17), the single member of the Tim17/23/22 protein family, is an essential component of the translocase of the mitochondrial inner membrane (TIM). In spite of the conserved secondary structure, the primary sequence of TbTim17, particularly the N-terminal hydrophilic region, is significantly divergent. In order to understand the function of this region we expressed two N-terminal deletion mutants (Δ20 and Δ30) of TbTim17 in T. brucei. Both of these mutants of TbTim17 were targeted to mitochondria, however, they failed to complement the growth defect of TbTim17 RNAi cells. In addition, the import defect of other nuclear encoded proteins into TbTim17 knockdown mitochondria were not restored by expression of the N-terminal deletion mutants but complemented by knock-in of the full-length protein. Further analysis revealed that Δ20-TbTim17 and Δ30-TbTim17 mutants were not localized in the mitochondrial inner membrane. Analysis of the protein complexes in the wild type and mutant mitochondria by two-dimensional Blue-native/SDS-PAGE revealed that none of these mutants are assembled into the TbTim17 protein complex. However, FL-TbTim17 was integrated into the mitochondrial inner membrane and assembled into TbTim17 complex. Co-immunoprecipitation analysis showed that unlike the FL-TbTim17, mutant proteins are not associated with the endogenous TbTim17 as well as its interacting partner TbTim62, a novel trypanosome specific Tim. Together, these results show that the N-terminal domain of TbTim17 plays unique and essential roles for its sorting and assembly into the TbTim17 protein complex.
Collapse
Affiliation(s)
- Ebony Weems
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, TN, 37209, United States
| | - Ujjal K Singha
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, TN, 37209, United States
| | - Joseph T Smith
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, TN, 37209, United States
| | - Minu Chaudhuri
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, TN, 37209, United States.
| |
Collapse
|
13
|
Straub SP, Stiller SB, Wiedemann N, Pfanner N. Dynamic organization of the mitochondrial protein import machinery. Biol Chem 2017; 397:1097-1114. [PMID: 27289000 DOI: 10.1515/hsz-2016-0145] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 05/17/2016] [Indexed: 01/12/2023]
Abstract
Mitochondria contain elaborate machineries for the import of precursor proteins from the cytosol. The translocase of the outer mitochondrial membrane (TOM) performs the initial import of precursor proteins and transfers the precursors to downstream translocases, including the presequence translocase and the carrier translocase of the inner membrane, the mitochondrial import and assembly machinery of the intermembrane space, and the sorting and assembly machinery of the outer membrane. Although the protein translocases can function as separate entities in vitro, recent studies revealed a close and dynamic cooperation of the protein import machineries to facilitate efficient transfer of precursor proteins in vivo. In addition, protein translocases were found to transiently interact with distinct machineries that function in the respiratory chain or in the maintenance of mitochondrial membrane architecture. Mitochondrial protein import is embedded in a regulatory network that ensures protein biogenesis, membrane dynamics, bioenergetic activity and quality control.
Collapse
|
14
|
Rampello AJ, Glynn SE. Identification of a Degradation Signal Sequence within Substrates of the Mitochondrial i-AAA Protease. J Mol Biol 2017; 429:873-885. [PMID: 28214511 DOI: 10.1016/j.jmb.2017.02.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/10/2017] [Accepted: 02/11/2017] [Indexed: 01/05/2023]
Abstract
The i-AAA protease is a component of the mitochondrial quality control machinery that regulates respiration, mitochondrial dynamics, and protein import. The protease is required to select specific substrates for degradation from among the diverse complement of proteins present in mitochondria, yet the rules that govern this selection are unclear. Here, we reconstruct the yeast i-AAA protease, Yme1p, to examine the in vitro degradation of two intermembrane space chaperone subunits, Tim9 and Tim10. Yme1p degrades Tim10 more rapidly than Tim9 despite high sequence and structural similarity, and loss of Tim10 is accelerated by the disruption of conserved disulfide bonds within the substrate. An unstructured N-terminal region of Tim10 is necessary and sufficient to target the substrate to the protease through recognition of a short phenylalanine-rich motif, and the presence of similar motifs in other small Tim proteins predicts robust degradation by the protease. Together, these results identify the first specific degron sequence within a native i-AAA protease substrate.
Collapse
Affiliation(s)
- Anthony J Rampello
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794-5215, USA
| | - Steven E Glynn
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794-5215, USA.
| |
Collapse
|
15
|
Lindahl PA, Moore MJ. Labile Low-Molecular-Mass Metal Complexes in Mitochondria: Trials and Tribulations of a Burgeoning Field. Biochemistry 2016; 55:4140-53. [PMID: 27433847 DOI: 10.1021/acs.biochem.6b00216] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Iron, copper, zinc, manganese, cobalt, and molybdenum play important roles in mitochondrial biochemistry, serving to help catalyze reactions in numerous metalloenzymes. These metals are also found in labile "pools" within mitochondria. Although the composition and cellular function of these pools are largely unknown, they are thought to be comprised of nonproteinaceous low-molecular-mass (LMM) metal complexes. Many problems must be solved before these pools can be fully defined, especially problems stemming from the lability of such complexes. This lability arises from inherently weak coordinate bonds between ligands and metals. This is an advantage for catalysis and trafficking, but it makes characterization difficult. The most popular strategy for investigating such pools is to detect them using chelator probes with fluorescent properties that change upon metal coordination. Characterization is limited because of the inevitable destruction of the complexes during their detection. Moreover, probes likely react with more than one type of metal complex, confusing analyses. An alternative approach is to use liquid chromatography (LC) coupled with inductively coupled plasma mass spectrometry (ICP-MS). With help from a previous lab member, the authors recently developed an LC-ICP-MS approach to analyze LMM extracts from yeast and mammalian mitochondria. They detected several metal complexes, including Fe580, Fe1100, Fe1500, Cu5000, Zn1200, Zn1500, Mn1100, Mn2000, Co1200, Co1500, and Mo780 (numbers refer to approximate masses in daltons). Many of these may be used to metalate apo-metalloproteins as they fold inside the organelle. The LC-based approach also has challenges, e.g., in distinguishing artifactual metal complexes from endogenous ones, due to the fact that cells must be disrupted to form extracts before they are passed through chromatography columns prior to analysis. Ultimately, both approaches will be needed to characterize these intriguing complexes and to elucidate their roles in mitochondrial biochemistry.
Collapse
Affiliation(s)
- Paul A Lindahl
- Department of Chemistry, Texas A&M University , College Station, Texas 77843-3255, United States.,Department of Biochemistry and Biophysics, Texas A&M University , College Station, Texas 77843-2128, United States
| | - Michael J Moore
- Department of Chemistry, Texas A&M University , College Station, Texas 77843-3255, United States
| |
Collapse
|
16
|
Mitochondrial Tim9 protects Tim10 from degradation by the protease Yme1. Biosci Rep 2015; 35:BSR20150038. [PMID: 26182355 PMCID: PMC4438305 DOI: 10.1042/bsr20150038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 02/19/2015] [Indexed: 11/17/2022] Open
Abstract
Translocase of IM (inner membrane; Tim)9 and Tim10 are essential homologue proteins of the mitochondrial intermembrane space (IMS) and form a stable hexameric Tim9-Tim10 complex there. Redox-switch of the four conserved cysteine residues plays a key role during the biogenesis of these proteins and, in turn, the Tim proteins play a vital chaperone-like role during import of mitochondrial membrane proteins. However, the functional mechanism of the small Tim chaperones is far from solved and it is unclear whether the individual proteins play specific roles or the complex functions as a single unit. In the present study, we examined the requirement and role for the individual disulfide bonds of Tim9 on cell viability, complex formation and stability using yeast genetic, biochemical and biophysical methods. Loss of the Tim9 inner disulfide bond led to a temperature-sensitive phenotype and degradation of both Tim9 and Tim10. The growth phenotype could be suppressed by deletion of the mitochondrial i-AAA (ATPases associated with diverse cellular activities) protease Yme1, and this correlates strongly with stabilization of the Tim10 protein regardless of Tim9 levels. Formation of both disulfide bonds is not essential for Tim9 function, but it can facilitate the formation and improve the stability of the hexameric Tim9-Tim10 complex. Furthermore, our results suggest that the primary function of Tim9 is to protect Tim10 from degradation by Yme1 via assembly into the Tim9-Tim10 complex. We propose that Tim10, rather than the hexameric Tim9-Tim10 complex, is the functional form of these proteins.
Collapse
|
17
|
Jakob RP, Koch JR, Burmann BM, Schmidpeter PAM, Hunkeler M, Hiller S, Schmid FX, Maier T. Dimeric Structure of the Bacterial Extracellular Foldase PrsA. J Biol Chem 2014; 290:3278-92. [PMID: 25525259 DOI: 10.1074/jbc.m114.622910] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Secretion of proteins into the membrane-cell wall space is essential for cell wall biosynthesis and pathogenicity in Gram-positive bacteria. Folding and maturation of many secreted proteins depend on a single extracellular foldase, the PrsA protein. PrsA is a 30-kDa protein, lipid anchored to the outer leaflet of the cell membrane. The crystal structure of Bacillus subtilis PrsA reveals a central catalytic parvulin-type prolyl isomerase domain, which is inserted into a larger composite NC domain formed by the N- and C-terminal regions. This domain architecture resembles, despite a lack of sequence conservation, both trigger factor, a ribosome-binding bacterial chaperone, and SurA, a periplasmic chaperone in Gram-negative bacteria. Two main structural differences are observed in that the N-terminal arm of PrsA is substantially shortened relative to the trigger factor and SurA and in that PrsA is found to dimerize in a unique fashion via its NC domain. Dimerization leads to a large, bowl-shaped crevice, which might be involved in vivo in protecting substrate proteins from aggregation. NMR experiments reveal a direct, dynamic interaction of both the parvulin and the NC domain with secretion propeptides, which have been implicated in substrate targeting to PrsA.
Collapse
Affiliation(s)
- Roman P Jakob
- From the Biozentrum, Universität Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland and
| | - Johanna R Koch
- the Laboratorium für Biochemie and Bayreuther Zentrum für Molekulare Biowissenschaften, Universität Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| | - Björn M Burmann
- From the Biozentrum, Universität Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland and
| | - Philipp A M Schmidpeter
- the Laboratorium für Biochemie and Bayreuther Zentrum für Molekulare Biowissenschaften, Universität Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| | - Moritz Hunkeler
- From the Biozentrum, Universität Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland and
| | - Sebastian Hiller
- From the Biozentrum, Universität Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland and
| | - Franz X Schmid
- the Laboratorium für Biochemie and Bayreuther Zentrum für Molekulare Biowissenschaften, Universität Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| | - Timm Maier
- From the Biozentrum, Universität Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland and
| |
Collapse
|
18
|
The disease-associated mutation of the mitochondrial thiol oxidase Erv1 impairs cofactor binding during its catalytic reaction. Biochem J 2014; 464:449-59. [DOI: 10.1042/bj20140679] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Erv1 is a mitochondrial FAD-dependent thiol oxidase. We show that the Erv1 R182H mutant impairs cofactor binding to its catalytic intermediates, providing a model for molecular basis of the functional defect of the disease-associated mutation.
Collapse
|
19
|
Mitochondrial thiol oxidase Erv1: both shuttle cysteine residues are required for its function with distinct roles. Biochem J 2014; 460:199-210. [PMID: 24625320 PMCID: PMC4019985 DOI: 10.1042/bj20131540] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Erv1 (essential for respiration and viability 1), is an essential component of the MIA (mitochondrial import and assembly) pathway, playing an important role in the oxidative folding of mitochondrial intermembrane space proteins. In the MIA pathway, Mia40, a thiol oxidoreductase with a CPC motif at its active site, oxidizes newly imported substrate proteins. Erv1 a FAD-dependent thiol oxidase, in turn reoxidizes Mia40 via its N-terminal Cys30–Cys33 shuttle disulfide. However, it is unclear how the two shuttle cysteine residues of Erv1 relay electrons from the Mia40 CPC motif to the Erv1 active-site Cys130–Cys133 disulfide. In the present study, using yeast genetic approaches we showed that both shuttle cysteine residues of Erv1 are required for cell growth. In organelle and in vitro studies confirmed that both shuttle cysteine residues were indeed required for import of MIA pathway substrates and Erv1 enzyme function to oxidize Mia40. Furthermore, our results revealed that the two shuttle cysteine residues of Erv1 are functionally distinct. Although Cys33 is essential for forming the intermediate disulfide Cys33–Cys130′ and transferring electrons to the redox active-site directly, Cys30 plays two important roles: (i) dominantly interacts and receives electrons from the Mia40 CPC motif; and (ii) resolves the Erv1 Cys33–Cys130 intermediate disulfide. Taken together, we conclude that both shuttle cysteine residues are required for Erv1 function, and play complementary, but distinct, roles to ensure rapid turnover of active Erv1. Erv1 is a sulfydryl oxidase, an essential component of mitochondrial MIA pathway. The present study shows that both shuttle cysteine residues of Erv1 are required for its function, they play complementary, but distinct, roles to ensure rapid turnover of active enzyme.
Collapse
|