1
|
Merlin S, Follenzi A. Transcriptional Targeting and MicroRNA Regulation of Lentiviral Vectors. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 12:223-232. [PMID: 30775404 PMCID: PMC6365353 DOI: 10.1016/j.omtm.2018.12.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Gene expression regulation is the result of complex interactions between transcriptional and post-transcriptional controls, resulting in cell-type-specific gene expression patterns that are determined by the developmental and differentiation stage of pathophysiological conditions. Understanding the complexity of gene expression regulatory networks is fundamental to gene therapy, an approach which has the potential to treat and cure inherited disorders by delivering the correct gene to patient specific cells or tissues by means of both viral and non-viral vectors. Besides the issues of biosafety, in recent years efforts have focused on achieving a robust and sustained transgene expression, which attains a phenotypic correction in several diseases, while avoiding transgene-related adverse effects, such as overexpression-associated cytotoxicity and/or immune responses to the transgene. In this sense, the use of cell-type-specific promoters and microRNA target sequences (miRTs) in gene transfer expression cassettes have allowed for a restricted expression after gene transfer in several studies. This review will focus on the use of transcriptional and post-transcriptional regulation to achieve a highly specific and safe transgene expression, as well as their application in ex vivo and in vivo gene therapeutic approaches.
Collapse
Affiliation(s)
- Simone Merlin
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Novara, Italy
| | - Antonia Follenzi
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
2
|
Alwahsh SM, Rashidi H, Hay DC. Liver cell therapy: is this the end of the beginning? Cell Mol Life Sci 2018; 75:1307-1324. [PMID: 29181772 PMCID: PMC5852182 DOI: 10.1007/s00018-017-2713-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 11/08/2017] [Accepted: 11/13/2017] [Indexed: 12/13/2022]
Abstract
The prevalence of liver diseases is increasing globally. Orthotopic liver transplantation is widely used to treat liver disease upon organ failure. The complexity of this procedure and finite numbers of healthy organ donors have prompted research into alternative therapeutic options to treat liver disease. This includes the transplantation of liver cells to promote regeneration. While successful, the routine supply of good quality human liver cells is limited. Therefore, renewable and scalable sources of these cells are sought. Liver progenitor and pluripotent stem cells offer potential cell sources that could be used clinically. This review discusses recent approaches in liver cell transplantation and requirements to improve the process, with the ultimate goal being efficient organ regeneration. We also discuss the potential off-target effects of cell-based therapies, and the advantages and drawbacks of current pre-clinical animal models used to study organ senescence, repopulation and regeneration.
Collapse
Affiliation(s)
- Salamah M Alwahsh
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK.
| | - Hassan Rashidi
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - David C Hay
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK.
| |
Collapse
|
3
|
Cameron K, Tan R, Schmidt-Heck W, Campos G, Lyall MJ, Wang Y, Lucendo-Villarin B, Szkolnicka D, Bates N, Kimber SJ, Hengstler JG, Godoy P, Forbes SJ, Hay DC. Recombinant Laminins Drive the Differentiation and Self-Organization of hESC-Derived Hepatocytes. Stem Cell Reports 2015; 5:1250-1262. [PMID: 26626180 PMCID: PMC4682209 DOI: 10.1016/j.stemcr.2015.10.016] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 10/28/2015] [Accepted: 10/29/2015] [Indexed: 12/19/2022] Open
Abstract
Stem cell-derived somatic cells represent an unlimited resource for basic and translational science. Although promising, there are significant hurdles that must be overcome. Our focus is on the generation of the major cell type of the human liver, the hepatocyte. Current protocols produce variable populations of hepatocytes that are the product of using undefined components in the differentiation process. This serves as a significant barrier to scale-up and application. To tackle this issue, we designed a defined differentiation process using recombinant laminin substrates to provide instruction. We demonstrate efficient hepatocyte specification, cell organization, and significant improvements in cell function and phenotype. This is driven in part by the suppression of unfavorable gene regulatory networks that control cell proliferation and migration, pluripotent stem cell self-renewal, and fibroblast and colon specification. We believe that this represents a significant advance, moving stem cell-based hepatocytes closer toward biomedical application.
Collapse
Affiliation(s)
- Kate Cameron
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Rosanne Tan
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Wolfgang Schmidt-Heck
- Leibniz Institute for Natural Product Research and Infection Biology eV-Hans-Knöll Institute, 07743 Jena, Germany
| | - Gisela Campos
- IfADo-Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, Ardeystraße 67, 44139 Dortmund, Germany
| | - Marcus J Lyall
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Yu Wang
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | | | - Dagmara Szkolnicka
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Nicola Bates
- Faculty of Life Sciences, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Susan J Kimber
- Faculty of Life Sciences, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Jan G Hengstler
- IfADo-Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, Ardeystraße 67, 44139 Dortmund, Germany
| | - Patricio Godoy
- IfADo-Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, Ardeystraße 67, 44139 Dortmund, Germany
| | - Stuart J Forbes
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - David C Hay
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK.
| |
Collapse
|
4
|
Holtzinger A, Streeter PR, Sarangi F, Hillborn S, Niapour M, Ogawa S, Keller G. New markers for tracking endoderm induction and hepatocyte differentiation from human pluripotent stem cells. Development 2015; 142:4253-65. [PMID: 26493401 DOI: 10.1242/dev.121020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 10/13/2015] [Indexed: 12/13/2022]
Abstract
The efficient generation of hepatocytes from human pluripotent stem cells (hPSCs) requires the induction of a proper endoderm population, broadly characterized by the expression of the cell surface marker CXCR4. Strategies to identify and isolate endoderm subpopulations predisposed to the liver fate do not exist. In this study, we generated mouse monoclonal antibodies against human embryonic stem cell-derived definitive endoderm with the goal of identifying cell surface markers that can be used to track the development of this germ layer and its specification to a hepatic fate. Through this approach, we identified two endoderm-specific antibodies, HDE1 and HDE2, which stain different stages of endoderm development and distinct derivative cell types. HDE1 marks a definitive endoderm population with high hepatic potential, whereas staining of HDE2 tracks with developing hepatocyte progenitors and hepatocytes. When used in combination, the staining patterns of these antibodies enable one to optimize endoderm induction and hepatic specification from any hPSC line.
Collapse
Affiliation(s)
- Audrey Holtzinger
- McEwen Centre for Regenerative Medicine, University Health Network, Toronto, Ontario, Canada M5G 1L7
| | - Philip R Streeter
- Oregon Stem Cell Center, Oregon Health & Science University, Portland, OR 97239-3098, USA
| | - Farida Sarangi
- McEwen Centre for Regenerative Medicine, University Health Network, Toronto, Ontario, Canada M5G 1L7
| | - Scott Hillborn
- McEwen Centre for Regenerative Medicine, University Health Network, Toronto, Ontario, Canada M5G 1L7
| | - Maryam Niapour
- McEwen Centre for Regenerative Medicine, University Health Network, Toronto, Ontario, Canada M5G 1L7
| | - Shinichiro Ogawa
- McEwen Centre for Regenerative Medicine, University Health Network, Toronto, Ontario, Canada M5G 1L7
| | - Gordon Keller
- McEwen Centre for Regenerative Medicine, University Health Network, Toronto, Ontario, Canada M5G 1L7 Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada M5G 2M9 Princess Margaret Cancer Centre, Toronto, Ontario, Canada M5T 2M9
| |
Collapse
|
5
|
Suter-Dick L, Alves PM, Blaauboer BJ, Bremm KD, Brito C, Coecke S, Flick B, Fowler P, Hescheler J, Ingelman-Sundberg M, Jennings P, Kelm JM, Manou I, Mistry P, Moretto A, Roth A, Stedman D, van de Water B, Beilmann M. Stem cell-derived systems in toxicology assessment. Stem Cells Dev 2015; 24:1284-96. [PMID: 25675366 DOI: 10.1089/scd.2014.0540] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Industrial sectors perform toxicological assessments of their potential products to ensure human safety and to fulfill regulatory requirements. These assessments often involve animal testing, but ethical, cost, and time concerns, together with a ban on it in specific sectors, make appropriate in vitro systems indispensable in toxicology. In this study, we summarize the outcome of an EPAA (European Partnership of Alternatives to Animal Testing)-organized workshop on the use of stem cell-derived (SCD) systems in toxicology, with a focus on industrial applications. SCD systems, in particular, induced pluripotent stem cell-derived, provide physiological cell culture systems of easy access and amenable to a variety of assays. They also present the opportunity to apply the vast repository of existing nonclinical data for the understanding of in vitro to in vivo translation. SCD systems from several toxicologically relevant tissues exist; they generally recapitulate many aspects of physiology and respond to toxicological and pharmacological interventions. However, focused research is necessary to accelerate implementation of SCD systems in an industrial setting and subsequent use of such systems by regulatory authorities. Research is required into the phenotypic characterization of the systems, since methods and protocols for generating terminally differentiated SCD cells are still lacking. Organotypical 3D culture systems in bioreactors and microscale tissue engineering technologies should be fostered, as they promote and maintain differentiation and support coculture systems. They need further development and validation for their successful implementation in toxicity testing in industry. Analytical measures also need to be implemented to enable compound exposure and metabolism measurements for in vitro to in vivo extrapolation. The future of SCD toxicological tests will combine advanced cell culture technologies and biokinetic measurements to support regulatory and research applications. However, scientific and technical hurdles must be overcome before SCD in vitro methods undergo appropriate validation and become accepted in the regulatory arena.
Collapse
Affiliation(s)
- Laura Suter-Dick
- 1University of Applied Sciences Northwestern Switzerland, School of Life Sciences, Muttenz, Switzerland
| | - Paula M Alves
- 2iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,3Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Bas J Blaauboer
- 4Division of Toxicology, Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| | - Klaus-Dieter Bremm
- 5Bayer Pharma AG, Global Drug Discovery-Global Early Development, Wuppertal, Germany
| | - Catarina Brito
- 2iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,3Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Sandra Coecke
- 6European Commission Joint Research Centre, Institute for Health and Consumer Protection, EURL ECVAM, Ispra, Italy
| | - Burkhard Flick
- 7BASF SE, Experimental Toxicology and Ecology, Ludwigshafen, Germany
| | | | - Jürgen Hescheler
- 9Institut for Neurophysiology, University of Cologne, Cologne, Germany
| | | | - Paul Jennings
- 11Division of Physiology, Department of Physiology and Medical Physics, Innsbruck Medical University, Innsbruck, Austria
| | | | - Irene Manou
- 13European Partnership for Alternative Approaches to Animal Testing (EPAA), B-Brussels, Belgium
| | - Pratibha Mistry
- 14Syngenta Ltd., Product Safety, Jealott's Hill International Research Station, Berkshire, United Kingdom
| | - Angelo Moretto
- 15Dipartimento di Scienze Biochimiche e Cliniche, Università degli Studi di Milano, Milano, Italy.,16Centro Internazionale per gli Antiparassitari e la Prevenzione Sanitaria, Luigi Sacco Hospital, Milano, Italy
| | - Adrian Roth
- 17F. Hoffmann-La Roche Ltd., Innovation Center Basel, Pharmaceutical Sciences, Basel, Switzerland
| | - Donald Stedman
- 18Pfizer Worldwide Research and Development, Cambridge, Massachusetts
| | - Bob van de Water
- 19Division of Toxicology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | | |
Collapse
|
6
|
Zhou X, Sun P, Lucendo-Villarin B, Angus A, Szkolnicka D, Cameron K, Farnworth S, Patel A, Hay D. Modulating innate immunity improves hepatitis C virus infection and replication in stem cell-derived hepatocytes. Stem Cell Reports 2014; 3:204-14. [PMID: 25068132 PMCID: PMC4110790 DOI: 10.1016/j.stemcr.2014.04.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 04/28/2014] [Accepted: 04/29/2014] [Indexed: 02/05/2023] Open
Abstract
In this study, human embryonic stem cell-derived hepatocytes (hESC-Heps) were investigated for their ability to support hepatitis C virus (HCV) infection and replication. hESC-Heps were capable of supporting the full viral life cycle, including the release of infectious virions. Although supportive, hESC-Hep viral infection levels were not as great as those observed in Huh7 cells. We reasoned that innate immune responses in hESC-Heps may lead to the low level of infection and replication. Upon further investigation, we identified a strong type III interferon response in hESC-Heps that was triggered by HCV. Interestingly, specific inhibition of the JAK/STAT signaling pathway led to an increase in HCV infection and replication in hESC-Heps. Of note, the interferon response was not evident in Huh7 cells. In summary, we have established a robust cell-based system that allows the in-depth study of virus-host interactions in vitro.
Collapse
Affiliation(s)
- Xiaoling Zhou
- Shantou University Medical College, Shantou 515041, People’s Republic of China
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow G11 5JR, UK
| | - Pingnan Sun
- Shantou University Medical College, Shantou 515041, People’s Republic of China
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow G11 5JR, UK
| | | | - Allan G.N. Angus
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow G11 5JR, UK
| | - Dagmara Szkolnicka
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Kate Cameron
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Sarah L. Farnworth
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Arvind H. Patel
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow G11 5JR, UK
- Corresponding author
| | - David C. Hay
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
- Corresponding author
| |
Collapse
|