1
|
Qureshi M, Mokkawes T, Cao Y, de Visser SP. Mechanism of the Oxidative Ring-Closure Reaction during Gliotoxin Biosynthesis by Cytochrome P450 GliF. Int J Mol Sci 2024; 25:8567. [PMID: 39201254 PMCID: PMC11354885 DOI: 10.3390/ijms25168567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
During gliotoxin biosynthesis in fungi, the cytochrome P450 GliF enzyme catalyzes an unusual C-N ring-closure step while also an aromatic ring is hydroxylated in the same reaction cycle, which may have relevance to drug synthesis reactions in biotechnology. However, as the details of the reaction mechanism are still controversial, no applications have been developed yet. To resolve the mechanism of gliotoxin biosynthesis and gain insight into the steps leading to ring-closure, we ran a combination of molecular dynamics and density functional theory calculations on the structure and reactivity of P450 GliF and tested a range of possible reaction mechanisms, pathways and models. The calculations show that, rather than hydrogen atom transfer from the substrate to Compound I, an initial proton transfer transition state is followed by a fast electron transfer en route to the radical intermediate, and hence a non-synchronous hydrogen atom abstraction takes place. The radical intermediate then reacts by OH rebound to the aromatic ring to form a biradical in the substrate that, through ring-closure between the radical centers, gives gliotoxin products. Interestingly, the structure and energetics of the reaction mechanisms appear little affected by the addition of polar groups to the model and hence we predict that the reaction can be catalyzed by other P450 isozymes that also bind the same substrate. Alternative pathways, such as a pathway starting with an electrophilic attack on the arene to form an epoxide, are high in energy and are ruled out.
Collapse
Affiliation(s)
| | | | | | - Sam P. de Visser
- Manchester Institute of Biotechnology, Department of Chemical Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK (Y.C.)
| |
Collapse
|
2
|
Liu S, Xia S, Yue D, Sun H, Hirao H. The Bonding Nature of Fe–CO Complexes in Heme Proteins. Inorg Chem 2022; 61:17494-17504. [DOI: 10.1021/acs.inorgchem.2c02387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Shuyang Liu
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong518172, P. R. China
| | - Songyan Xia
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong518172, P. R. China
| | - Dongxiao Yue
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong518172, P. R. China
| | - Haoran Sun
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong518172, P. R. China
| | - Hajime Hirao
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong518172, P. R. China
| |
Collapse
|
3
|
Liu S, Hirao H. Energy Decomposition Analysis of the Nature of Coordination Bonding at the Heme Iron Center in Cytochrome P450 Inhibition. Chem Asian J 2022; 17:e202200360. [PMID: 35514038 DOI: 10.1002/asia.202200360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/26/2022] [Indexed: 11/11/2022]
Abstract
Drug compounds or their metabolic intermediates (MIs) sometimes inhibit the function of cytochrome P450 enzymes (P450s) by forming a coordination bond with the Fe(III) heme or Fe(II) heme of P450s. Such inhibition is one of the major causes of drug-drug interactions (DDIs), a subject of longstanding academic and practical interest. However, such coordination bonding is not fully understood at the quantum mechanical level, thus hampering rational improvement of the accuracy of DDI-related predictions. In this work, we employed density functional theory (DFT) and the generalized Kohn-Sham energy decomposition analysis (GKS-EDA) scheme to investigate the nature of the coordination bonding formed in the reversible and quasi-irreversible inhibition of P450s. The GKS-EDA results highlighted a previously unrecognized role of the electron correlation effect in P450 inhibition. The correlation effect tends to be larger in Fe(II) complexes of MI-type inhibitors and is particularly prominent for the nitrosoalkane ligand. An additional natural bond orbital (NBO) analysis provided insight into the relative significance of the σ donation and π backdonation effects in various heme-inhibitor complexes.
Collapse
Affiliation(s)
- Shuyang Liu
- The Chinese University of Hong Kong - Shenzhen, School of Life and Health Sciences, CHINA
| | - Hajime Hirao
- The Chinese University of Hong Kong - Shenzhen, School of Life and Health Sciences, …, Shenzhen, CHINA
| |
Collapse
|
4
|
Chen H, Zhou A, Sun D, Zhao Y, Wang Y. Theoretical Investigation on the Elusive Reaction Mechanism of Spirooxindole Formation Mediated by Cytochrome P450s: A Nascent Feasible Charge-Shift C-O Bond Makes a Difference. J Phys Chem B 2021; 125:8419-8430. [PMID: 34313131 DOI: 10.1021/acs.jpcb.1c04088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Spirooxindoles are pivotal biofunctional groups widely distributed in natural products and clinic drugs. However, construction of such subtle chiral skeletons is a long-standing challenge to both organic and bioengineering scientists. The knowledge of enzymatic spirooxindole formation in nature may inspire rational design of new catalysts. To this end, we presented a theoretical investigation on the elusive mechanism of the spiro-ring formation at the 3-position of oxindole mediated by cytochrome P450 enzymes (P450). Our calculated results demonstrated that the electrophilic attack of CpdI, the active species of P450, to the substrate, shows regioselectivity, i.e., the attack at the C9 position forms a tetrahedral intermediate involving an unusual feasible charge-shift C9δ+-Oδ- bond, while the attack at the C1 position forms an epoxide intermediate. The predominant route is the first route with the charge-shift bonding intermediate due to holding a relatively lower barrier by >5 kcal mol-1 than the epoxide route, which fits the experimental observations. Such a delocalized charge-shift bond facilitates the formation of a spiro-ring mainly through elongation of the C1-C9 bond to eliminate the aromatization of the tricyclic beta-carboline. Our theoretical results shed profound mechanistic insights for the first time into the elusive spirooxindole formation mediated by P450s.
Collapse
Affiliation(s)
- Huanhuan Chen
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, Zhejiang, China.,Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Anran Zhou
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, Zhejiang, China.,Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Dongru Sun
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, Zhejiang, China.,Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, Zhejiang, China.,Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Yong Wang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, Zhejiang, China.,Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| |
Collapse
|
5
|
Jaladanki CK, Khatun S, Gohlke H, Bharatam PV. Reactive Metabolites from Thiazole-Containing Drugs: Quantum Chemical Insights into Biotransformation and Toxicity. Chem Res Toxicol 2021; 34:1503-1517. [PMID: 33900062 DOI: 10.1021/acs.chemrestox.0c00450] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Drugs containing thiazole and aminothiazole groups are known to generate reactive metabolites (RMs) catalyzed by cytochrome P450s (CYPs). These RMs can covalently modify essential cellular macromolecules and lead to toxicity and induce idiosyncratic adverse drug reactions. Molecular docking and quantum chemical hybrid DFT study were carried out to explore the molecular mechanisms involved in the biotransformation of thiazole (TZ) and aminothiazole (ATZ) groups leading to RM epoxide, S-oxide, N-oxide, and oxaziridine. The energy barrier required for the epoxidation is 13.63 kcal/mol, that is lower than that of S-oxidation, N-oxidation, and oxaziridine formation (14.56, 17.90, and 20.20, kcal/mol respectively). The presence of the amino group in ATZ further facilitates all the metabolic pathways, for example, the barrier for the epoxidation reaction is reduced by ∼2.5 kcal/mol. Some of the RMs/their isomers are highly electrophilic and tend to form covalent bonds with nucleophilic amino acids, finally leading to the formation of metabolic intermediate complexes (MICs). The energy profiles of these competitive pathways have also been explored.
Collapse
Affiliation(s)
- Chaitanya K Jaladanki
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector -67, S. A. S. Nagar (Mohali), 160 062 Punjab, India
| | - Samima Khatun
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector -67, S. A. S. Nagar (Mohali), 160 062 Punjab, India
| | - Holger Gohlke
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.,Forschungszentrum Jülich GmbH, John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), and Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Wilhelm-Johnen-Straße, 52425 Jülich, Germany
| | - Prasad V Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector -67, S. A. S. Nagar (Mohali), 160 062 Punjab, India
| |
Collapse
|
6
|
Mirzaei MS, Ivanov MV, Taherpour AA, Mirzaei S. Mechanism-Based Inactivation of Cytochrome P450 Enzymes: Computational Insights. Chem Res Toxicol 2021; 34:959-987. [PMID: 33769041 DOI: 10.1021/acs.chemrestox.0c00483] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mechanism-based inactivation (MBI) refers to the metabolic bioactivation of a xenobiotic by cytochrome P450s to a highly reactive intermediate which subsequently binds to the enzyme and leads to the quasi-irreversible or irreversible inhibition. Xenobiotics, mainly drugs with specific functional units, are the major sources of MBI. Two possible consequences of MBI by medicinal compounds are drug-drug interaction and severe toxicity that are observed and highlighted by clinical experiments. Today almost all of these latent functional groups (e.g., thiophene, furan, alkylamines, etc.) are known, and their features and mechanisms of action, owing to the vast experimental and theoretical studies, are determined. In the past decade, molecular modeling techniques, mostly density functional theory, have revealed the most feasible mechanism that a drug undergoes by P450 enzymes to generate a highly reactive intermediate. In this review, we provide a comprehensive and detailed picture of computational advances toward the elucidation of the activation mechanisms of various known groups with MBI activity. To this aim, we briefly describe the computational concepts to carry out and analyze the mechanistic investigations, and then, we summarize the studies on compounds with known inhibition activity including thiophene, furan, alkylamines, terminal acetylene, etc. This study can be reference literature for both theoretical and experimental (bio)chemists in several different fields including rational drug design, the process of toxicity prevention, and the discovery of novel inhibitors and catalysts.
Collapse
Affiliation(s)
- M Saeed Mirzaei
- Department of Organic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran 67149-67346
| | - Maxim V Ivanov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Avat Arman Taherpour
- Department of Organic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran 67149-67346.,Medical Biology Research Centre, University of Medical Sciences, Kermanshah, Iran 67149-67346
| | - Saber Mirzaei
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
7
|
Jaladanki CK, Gahlawat A, Rathod G, Sandhu H, Jahan K, Bharatam PV. Mechanistic studies on the drug metabolism and toxicity originating from cytochromes P450. Drug Metab Rev 2020; 52:366-394. [DOI: 10.1080/03602532.2020.1765792] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Chaitanya K. Jaladanki
- Department of Medicinal Chemistry and Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab, India
| | - Anuj Gahlawat
- Department of Medicinal Chemistry and Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab, India
| | - Gajanan Rathod
- Department of Medicinal Chemistry and Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab, India
| | - Hardeep Sandhu
- Department of Medicinal Chemistry and Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab, India
| | - Kousar Jahan
- Department of Medicinal Chemistry and Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab, India
| | - Prasad V. Bharatam
- Department of Medicinal Chemistry and Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab, India
| |
Collapse
|
8
|
Fu Z, Yang L, Sun D, Qu Z, Zhao Y, Gao J, Wang Y. Coupled electron and proton transfer in the piperidine drug metabolism pathway by the active species of cytochromes P450. Dalton Trans 2020; 49:11099-11107. [DOI: 10.1039/c9dt03056e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
KS-DFT and MSDFT studies reveal a novel CEPT step that triggers ring contraction of piperidines by P450.
Collapse
Affiliation(s)
- Zhiqiang Fu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE)
- School of Environmental Science and Technology
- Dalian University of Technology
- Dalian 116024
- China
| | - Lili Yang
- Laboratory of Theoretical and Computational Chemistry
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130023
- China
| | - Dongru Sun
- Institute of Drug Discovery Technology
- Ningbo University
- Ningbo 315211
- China
| | - Zexing Qu
- Laboratory of Theoretical and Computational Chemistry
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130023
- China
| | - Yufen Zhao
- Institute of Drug Discovery Technology
- Ningbo University
- Ningbo 315211
- China
| | - Jiali Gao
- Department of Chemistry and Supercomputing Institute
- University of Minnesota
- Minneapolis
- USA
- Institute of Systems and Physical Biology
| | - Yong Wang
- Institute of Drug Discovery Technology
- Ningbo University
- Ningbo 315211
- China
| |
Collapse
|
9
|
Emhoff KA, Balaraman L, Salem AM, Mudarmah KI, Boyd WC. Coordination chemistry of organic nitric oxide derivatives. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.06.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Theoretical study on the mechanism of N- and α-carbon oxidation of lapatinib catalyzed by cytochrome P450 monooxygenase. J Mol Model 2019; 25:225. [PMID: 31312984 DOI: 10.1007/s00894-019-4125-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 07/07/2019] [Indexed: 10/26/2022]
Abstract
Lapatinib, an orally active dual tyrosine kinase inhibitor, is efficacious in combination therapy with capecitabine for advanced metastatic breast cancer. Despite its importance, it has been associated with hepatotoxicity observed in clinical trials and postmarketing surveillance. The mechanisms of hepatotoxicity at the chemical and cellular levels may link to drug metabolism. In this study, the N- and α-carbon oxidation processes of lapatinib catalyzed by CYP3A4 were explored by density functional theory method. The calculation results show that oxidation of C6 is the primary metabolic process and carboxylic acid is the main metabolic product. Both hydroxylation of C8 and subsequent formation of primary amines are feasible. However, it is not easy for the primary amines to form active metabolites nitroso, which indicates that there are other paths for the production of nitroso. Carboxylic acid is not the main metabolite of N7 oxidation because of higher hydrolysis energy barrier of intermediate nitrone. It is worthy to study subsequent N-hydroxylation and its downstream reaction, which may be the main pathway for the formation of nitroso. These results lay the foundation for drug design and optimization.
Collapse
|
11
|
Vickers C, Backfisch G, Oellien F, Piel I, Lange UEW. Enzymatic Late‐Stage Oxidation of Lead Compounds with Solubilizing Biomimetic Docking/Protecting groups. Chemistry 2018; 24:17936-17947. [DOI: 10.1002/chem.201802331] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 09/12/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Clare Vickers
- Neuroscience Discovery, Medicinal ChemistryAbbVie (Deutschland) GmbH & Co. KG Knollstrasse D-67061 Ludwigshafen Germany
| | - Gisela Backfisch
- Development Sciences, DMPK and Bioanalytical ResearchAbbVie (Deutschland) GmbH & Co. KG Knollstrasse D-67061 Ludwigshafen Germany
| | - Frank Oellien
- Neuroscience Discovery, Medicinal ChemistryAbbVie (Deutschland) GmbH & Co. KG Knollstrasse D-67061 Ludwigshafen Germany
| | - Isabel Piel
- Neuroscience Discovery, Medicinal ChemistryAbbVie (Deutschland) GmbH & Co. KG Knollstrasse D-67061 Ludwigshafen Germany
| | - Udo E. W. Lange
- Neuroscience Discovery, Medicinal ChemistryAbbVie (Deutschland) GmbH & Co. KG Knollstrasse D-67061 Ludwigshafen Germany
| |
Collapse
|
12
|
Jaladanki CK, Shaikh A, Bharatam PV. Biotransformation of Isoniazid by Cytochromes P450: Analyzing the Molecular Mechanism using Density Functional Theory. Chem Res Toxicol 2017; 30:2060-2073. [DOI: 10.1021/acs.chemrestox.7b00129] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chaitanya K. Jaladanki
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector -67, S. A. S. Nagar, Mohali, 160 062 Punjab, India
| | - Akbar Shaikh
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector -67, S. A. S. Nagar, Mohali, 160 062 Punjab, India
| | - Prasad V. Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector -67, S. A. S. Nagar, Mohali, 160 062 Punjab, India
| |
Collapse
|
13
|
Zhang X, Li XX, Liu Y, Wang Y. Suicide Inhibition of Cytochrome P450 Enzymes by Cyclopropylamines via a Ring-Opening Mechanism: Proton-Coupled Electron Transfer Makes a Difference. Front Chem 2017; 5:3. [PMID: 28197402 PMCID: PMC5281577 DOI: 10.3389/fchem.2017.00003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 01/10/2017] [Indexed: 01/27/2023] Open
Abstract
N-benzyl-N-cyclopropylamine (BCA) has been attracting great interests for decades for its partial suicide inactivation role to cytochrome P450 (P450) via a ring-opening mechanism besides acting as a role of normal substrates. Understanding the mechanism of such partial inactivation is vital to the clinical drug design. Thus, density functional theoretical (DFT) calculations were carried out on such P450-catalyzed reactions, not only on the metabolic pathway, but on the ring-opening inactivation one. Our theoretical results demonstrated that, in the metabolic pathway, besides the normal carbinolamine, an unexpected enamine was formed via the dual hydrogen abstraction (DHA) process, in which the competition between rotation of the H-abstracted substrate radical and the rotation of hydroxyl group of the protonated Cpd II moiety plays a significant role in product branch; In the inactivation pathway, the well-noted single electron transfer (SET) mechanism-involved process was invalidated for its high energy barrier, a proton-coupled electron transfer [PCET(ET)] mechanism plays a role. Our results are consistent with other related theoretical works on heteroatom-hydrogen (X-H, X = O, N) activation and revealed new features. The revealed mechanisms will play a positive role in relative drug design.
Collapse
Affiliation(s)
- Xiaoqian Zhang
- College of Physics and Materials Science, Henan Normal University Xinxiang, China
| | - Xiao-Xi Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou, China
| | - Yufang Liu
- College of Physics and Materials Science, Henan Normal University Xinxiang, China
| | - Yong Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou, China
| |
Collapse
|
14
|
Thangamani D, Shankar R, Vijayakumar S, Kolandaivel P. Mechanism and kinetics of the atmospheric degradation of 2-formylcinnamaldehyde with O3 and hydroxyl OH radicals – a theoretical study. Mol Phys 2016. [DOI: 10.1080/00268976.2016.1214293] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- D. Thangamani
- Defence Research & Development Organization, Bharathiar University Center for Life Sciences, Coimbatore, India
| | - R. Shankar
- Department of Physics, Bharathiar University, Coimbatore, India
| | - S. Vijayakumar
- Department of Medical Physics, Bharathiar University, Coimbatore, India
| | - P. Kolandaivel
- Department of Physics, Bharathiar University, Coimbatore, India
| |
Collapse
|
15
|
Li XX, Wang Y, Zheng QC, Zhang HX. Detoxification of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) by cytochrome P450 enzymes: A theoretical investigation. J Inorg Biochem 2015; 154:21-8. [PMID: 26544505 DOI: 10.1016/j.jinorgbio.2015.10.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 10/12/2015] [Accepted: 10/19/2015] [Indexed: 11/24/2022]
Abstract
Two types of detoxification routes, N-demethylation to form 4-phenyl-1,2,3,6-tetrahydropyridine (PTP) and aromatic hydroxylation to generate 4-(4'-hydroxyphenyl)-1-methyl-1,2,3,6-tetrahydropyridine (MPTP-OH), for 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mediated by Compound I (Cpd I) of cytochrome P450 are investigated theoretically using hybrid density functional calculations. Quantum chemical results reveal that for the N-demethylation, the initial C-H bond activation is achieved via a hydrogen atom transfer (HAT) mechanism. This is followed by a subsequent O-rebound to yield the carbinolamine intermediate. Due to the nature of pericyclic reaction, the generated carbinolamine decomposes in a non-enzymatic aqueous environment with the assistance of water molecules, forming amine and hydrated formaldehyde. For the aromatic hydroxylation, an initial addition of Cpd I to the substrate occurs mainly through a side-on approach with a subsequent proton shuttle to form the phenol product. A comparison of the energy barriers for both routes indicates that the N-demethylation (7.5/5.7kcal/mol for the quartet/doublet state in solvent) is thermodynamically more favorable than the aromatic hydroxylation process (14.9/14.8kcal/mol for the quartet/doublet state in solvent). This trend is in good agreement with the experimental product distribution, viz., the N-demethylation product PTP is more than the aromatic hydroxylation product MPTP-OH. Taken together, these observations not only enrich our knowledge on the mechanistic details of the N-dealkylation and the aromatic hydroxylation by P450s, but also provide certain insights into the metabolism of other analogous toxins.
Collapse
Affiliation(s)
- Xiao-Xi Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China; State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, People's Republic of China
| | - Yong Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Qing-Chuan Zheng
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130023, People's Republic of China; State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, People's Republic of China.
| | - Hong-Xing Zhang
- State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, People's Republic of China
| |
Collapse
|
16
|
Xu K, Wang Y, Hirao H. Estrogen Formation via H-Abstraction from the O–H Bond of gem-Diol by Compound I in the Reaction of CYP19A1: Mechanistic Scenario Derived from Multiscale QM/MM Calculations. ACS Catal 2015. [DOI: 10.1021/acscatal.5b00510] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kai Xu
- Division
of Chemistry and Biological Chemistry, School of Physical and Mathematical
Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Yong Wang
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research
Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
| | - Hajime Hirao
- Division
of Chemistry and Biological Chemistry, School of Physical and Mathematical
Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| |
Collapse
|
17
|
Chuanprasit P, Goh SH, Hirao H. Benzyne Formation in the Mechanism-Based Inactivation of Cytochrome P450 by 1-Aminobenzotriazole and N-Benzyl-1-Aminobenzotriazole: Computational Insights. ACS Catal 2015. [DOI: 10.1021/acscatal.5b00423] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pratanphorn Chuanprasit
- Division of Chemistry and
Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Shu Hui Goh
- Division of Chemistry and
Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Hajime Hirao
- Division of Chemistry and
Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| |
Collapse
|
18
|
An attempt to evaluate the effect of proton-coupled electron transfer on the H-abstraction step of the reaction between 1,1-dimethylhydrazine and cytochrome P450 compound I. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2014.12.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Hirao H, Thellamurege N, Zhang X. Applications of density functional theory to iron-containing molecules of bioinorganic interest. Front Chem 2014; 2:14. [PMID: 24809043 PMCID: PMC4010748 DOI: 10.3389/fchem.2014.00014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 03/10/2014] [Indexed: 12/29/2022] Open
Abstract
The past decades have seen an explosive growth in the application of density functional theory (DFT) methods to molecular systems that are of interest in a variety of scientific fields. Owing to its balanced accuracy and efficiency, DFT plays particularly useful roles in the theoretical investigation of large molecules. Even for biological molecules such as proteins, DFT finds application in the form of, e.g., hybrid quantum mechanics and molecular mechanics (QM/MM), in which DFT may be used as a QM method to describe a higher prioritized region in the system, while a MM force field may be used to describe remaining atoms. Iron-containing molecules are particularly important targets of DFT calculations. From the viewpoint of chemistry, this is mainly because iron is abundant on earth, iron plays powerful (and often enigmatic) roles in enzyme catalysis, and iron thus has the great potential for biomimetic catalysis of chemically difficult transformations. In this paper, we present a brief overview of several recent applications of DFT to iron-containing non-heme synthetic complexes, heme-type cytochrome P450 enzymes, and non-heme iron enzymes, all of which are of particular interest in the field of bioinorganic chemistry. Emphasis will be placed on our own work.
Collapse
Affiliation(s)
- Hajime Hirao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological UniversitySingapore, Singapore
| | | | | |
Collapse
|
20
|
Li XX, Zheng QC, Wang Y, Zhang HX. Theoretical insights into the reductive metabolism of CCl4 by cytochrome P450 enzymes and the CCl4-dependent suicidal inactivation of P450. Dalton Trans 2014; 43:14833-40. [DOI: 10.1039/c4dt02065k] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The one-electron reduction product, ˙CCl3, irreversibly inactivates P450 via covalently binding to the meso-carbon, whereas the two successive one-electron reductions product, :CCl2, reversibly inhibits P450 by coordinating to iron.
Collapse
Affiliation(s)
- Xiao-Xi Li
- State Key Laboratory of Theoretical and Computational Chemistry
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130023, People's Republic of China
- Dalian Institute of Chemical Physics
| | - Qing-Chuan Zheng
- State Key Laboratory of Theoretical and Computational Chemistry
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130023, People's Republic of China
| | - Yong Wang
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023, People's Republic of China
| | - Hong-Xing Zhang
- State Key Laboratory of Theoretical and Computational Chemistry
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130023, People's Republic of China
| |
Collapse
|