1
|
Okonkwo CE, Adeyanju AA, Onyeaka H, Nwonuma CO, Olaniran AF, Alejolowo OO, Inyinbor AA, Oluyori AP, Zhou C. A review on rebaudioside M: The next generation steviol glycoside and noncaloric sweetener. J Food Sci 2024. [PMID: 39323262 DOI: 10.1111/1750-3841.17401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/06/2024] [Accepted: 09/01/2024] [Indexed: 09/27/2024]
Abstract
So far, the use of artificial low-calorie sweeteners, like sucralose, saccharin, and so on, to replace the conventional-based sugars has not succeeded due to the long-term adverse health effects, for example, hypertension, and not well-known safety stand. In this review, we discussed the next generation SvGl (rebaudioside M [Reb M]), their biosynthetic pathway in plant, high-yield production via microbial fermentation and enzyme engineering, physicochemical properties, taste modification, kinetic metabolism, application in food and beverages, safety and toxicological evaluation, regulation and dosage recommendation, and health benefits. In stevia, the biosynthesis of stevia glycosides, especially Reb M, is derived from the bifurcation of the pathway leading to gibberellin, followed by subsequent enzymatic modification of rubusoside. Reb M is more economically produced via microbial fermentation of modified yeast Yarrowia lipolytica and enzymatic bioconversion of rebaudioside A (Reb A) or Reb E. Reb M can serve as a suitable alternative to the conventional-based sugars.
Collapse
Affiliation(s)
- Clinton E Okonkwo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University, Al Ain, UAE
| | - Adeyemi A Adeyanju
- Department of Food Science and Microbiology, College of Pure and Applied Science, Landmark University, Omu-Aran, Kwara State, Nigeria
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Charles Obiora Nwonuma
- Department of Biochemistry, College of Pure and Applied Sciences, Landmark University, Omu-Aran, Kwara State, Nigeria
| | - Abiola F Olaniran
- Department of Food Science and Microbiology, College of Pure and Applied Science, Landmark University, Omu-Aran, Kwara State, Nigeria
| | - Omokolade Oluwaseyi Alejolowo
- Department of Biochemistry, College of Pure and Applied Sciences, Landmark University, Omu-Aran, Kwara State, Nigeria
| | - Adejumoke A Inyinbor
- Physical Sciences Department, Industrial Chemistry Programme, Landmark University, Omu-Aran, Kwara State, Nigeria
| | - Abimbola Peter Oluyori
- Physical Sciences Department, Industrial Chemistry Programme, Landmark University, Omu-Aran, Kwara State, Nigeria
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
2
|
Yang L, Yang M, Deng Z, Hou X, Zheng X, Ping Q, Rao Y, Shi J, Zhang Y. Selective synthesis of rebaudioside M2 through structure-guided engineering of glycosyltransferase UGT94D1. Front Bioeng Biotechnol 2024; 12:1334427. [PMID: 38375456 PMCID: PMC10875103 DOI: 10.3389/fbioe.2024.1334427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/12/2024] [Indexed: 02/21/2024] Open
Abstract
Rebaudioside M2 (Reb M2), a novel steviol glycoside derivative, has limited industrial applications due to its low synthetic yield and selectivity. Herein, we identify UGT94D1 as a selective glycosyltransferase for rebaudioside D (Reb D), leading to the production of a mono β-1,6-glycosylated derivative, Reb M2. A variant UGT94D1-F119I/D188P was developed through protein engineering. This mutant exhibited a 6.33-fold improvement in catalytic efficiency, and produced Reb M2 with 92% yield. Moreover, molecular dynamics simulations demonstrated that UGT94D1-F119I/D188P exhibited a shorter distance between the nucleophilic oxygen (OH6) of the substrate Reb D and uridine diphosphate glucose, along with an increased Ophosphate-C1-Oacceptor angle, thus improving the catalytic activity of the enzyme. Therefore, this study provides an efficient method for the selective synthesis of Reb M2 and paves the way for its applications in various fields.
Collapse
Affiliation(s)
- Lifeng Yang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, China
| | - Mengliang Yang
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zhiwei Deng
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiaodong Hou
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiangting Zheng
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Qian Ping
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Yijian Rao
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jinsong Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Yan Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| |
Collapse
|
3
|
Heise NV, Heisig J, Meier K, Csuk R, Mueller T. F16 Hybrids Derived from Steviol or Isosteviol Are Accumulated in the Mitochondria of Tumor Cells and Overcome Drug Resistance. Molecules 2024; 29:381. [PMID: 38257294 PMCID: PMC10821019 DOI: 10.3390/molecules29020381] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/06/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Steviol and isosteviol were prepared from the commercially available sweetener stevioside and converted into lipophilic F16 hybrids. Their cytotoxicity was determined in SRB assays and showed to depend on both the substitution pattern of the aromatic substituent as well as on the spacer length. Therefore, compound 25 held an IC50 (A2780) of 180 nM, thus surpassing the activity of comparable rhodamine hybrids. Several of the compounds were also able to overcome drug resistance in the A2780/A2780cis model. Extra staining experiments showed a similar subcellular accumulation pattern of the F16 hybrids as a well-established mitocan, hence proving preferential mitochondrial accumulation but also some other accumulation in other cellular areas.
Collapse
Affiliation(s)
- Niels V. Heise
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes, Str. 2, D-06120 Halle (Saale), Germany; (N.V.H.); (J.H.)
| | - Julia Heisig
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes, Str. 2, D-06120 Halle (Saale), Germany; (N.V.H.); (J.H.)
| | - Kristof Meier
- Hematology/Oncology, Medical Faculty, University Clinic for Internal Medicine IV, Martin-Luther University Halle-Wittenberg, Ernst-Grube Str. 40, D-06120 Halle (Saale), Germany; (K.M.); (T.M.)
| | - René Csuk
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes, Str. 2, D-06120 Halle (Saale), Germany; (N.V.H.); (J.H.)
| | - Thomas Mueller
- Hematology/Oncology, Medical Faculty, University Clinic for Internal Medicine IV, Martin-Luther University Halle-Wittenberg, Ernst-Grube Str. 40, D-06120 Halle (Saale), Germany; (K.M.); (T.M.)
| |
Collapse
|
4
|
Approaches toward the Separation, Modification, Identification and Scale up Purification of Tetracyclic Diterpene Glycosides from Stevia rebaudiana (Bertoni) Bertoni. Molecules 2021; 26:molecules26071915. [PMID: 33805445 PMCID: PMC8036900 DOI: 10.3390/molecules26071915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 11/16/2022] Open
Abstract
Stevia rebaudiana (Bertoni) Bertoni is a plant species native to Brazil and Paraguay well-known by the sweet taste of their leaves. Since the recognition of rebaudioside A and other steviol glycosides as generally recognized as safe by the United States Food and Drug Administration in 2008 and grant of marketing approval by the European Union in 2011, the species has been widely cultivated and studied in several countries. Several efforts have been dedicated to the isolation and structure elucidation of minor components searching for novel non-caloric sugar substitutes with improved organoleptic properties. The present review provides an overview of the main chemical approaches found in the literature for identification and structural differentiation of diterpene glycosides from Stevia rebaudiana: High-performance Thin-Layer Chromatography, High-Performance Liquid Chromatography, Electrospray Ionization Mass Spectrometry and Nuclear Magnetic Resonance Spectroscopy. Modification of diterpene glycosides by chemical and enzymatic reactions together with some strategies to scale up of the purification process saving costs are also discussed. A list of natural diterpene glycosides, some examples of chemically modified and of enzymatically modified diterpene glycosides reported from 1931 to February 2021 were compiled using the scientific databases Google Scholar, ScienceDirect and PubMed.
Collapse
|
5
|
Pholphana N, Panomvana D, Rangkadilok N, Suriyo T, Puranajoti P, Ungtrakul T, Pongpun W, Thaeopattha S, Songvut P, Satayavivad J. Andrographis paniculata: Dissolution investigation and pharmacokinetic studies of four major active diterpenoids after multiple oral dose administration in healthy Thai volunteers. JOURNAL OF ETHNOPHARMACOLOGY 2016; 194:513-521. [PMID: 27702690 DOI: 10.1016/j.jep.2016.09.058] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 09/28/2016] [Accepted: 09/30/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Andrographis paniculata is included in 'The National List of Essential Herbal Drugs A.D. 1999' of Thailand as an herbal drug for the treatment of common cold symptoms and non-infectious diarrhea. The therapeutic activities of A. paniculata are attributed to four major active diterpenoids: andrographolide (1), 14-deoxy-11, 12-didehydroandrographolide (2), neoandrographolide (3), and 14-deoxyandrographolide (4). However, the pharmacokinetic studies in humans of this plant were performed after a single oral dose administration and reported the parameters related to be of only 1. AIM OF THE STUDY This study aims to determine the pharmacokinetic parameters of four major active diterpenoids after multiple oral dose administration of A. paniculata capsules in healthy volunteers. The dissolution testing of these four diterpenoids was also performed. MATERIALS AND METHOD The dissolution testing of four major active diterpenoids was conducted in pH 1.2, pH 4.5, and pH 6.8 for 10-100min. The pharmacokinetic study of these active diterpenoids was designed as an open-label, multiple oral dose administration of A. paniculata capsules in 20 healthy Thai volunteers at 1:1 ratio of female and male. Each volunteer was given four A. paniculata capsules each time which contained 1, 2, 3, and 4 in the quantities of 32.64, 5.40, 3.60, and 3.84mg, respectively, three times a day for three consecutive days. On the fourth day, after the first dose of the day was administered, blood samples were collected at the predefined time points. The validated LC-MS/MS method was used to simultaneously determine the concentrations of these diterpenoids in the human plasma samples. The pharmacokinetic parameters of each active diterpenoid were determined. RESULTS All four major active diterpenoids have been completely dissolved in the simulated pH of gastrointestinal tract within 60min of dissolution. The dissolution profiles were found to be highest in pH 6.8 and lowest in pH 1.2, especially for 3. In the pharmacokinetic study, although 1 was administered at the highest dose among these four diterpenoids, 2 exhibited the highest maximum concentrations (Cmax) of 44.89ng/mL and area under the plasma concentration-time curve (AUC) of 128.17h×ng/mL. Compound 1 had the second highest Cmax and AUC as 32.41ng/mL and 55.23h×ng/mL, respectively. The relative systemic exposure, represented by the dose normalized AUC [(h×ng/mL)/(mg/kg)], of 2 was approximately 14 times higher than that of 1, while those of 3 and 4 were approximately 1.5 and 1.6 times higher, respectively. Cmax, AUC, apparent volume of distribution, and apparent clearance of 2 were found to be significant difference between female and male. However, when these parameters were calculated as dose normalized basis, no statistically significant difference was found. CONCLUSION The four major active diterpenoids in the A. paniculata capsules were soluble in all studied dissolution media. The pharmacokinetic parameters of these active diterpenoids in the present study could be applied for dose optimization of A. paniculata product in order to obtain good therapeutic efficacy and reduce the possible side effects that may occur from different active diterpenoids in this medicinal plant.
Collapse
Affiliation(s)
- Nanthanit Pholphana
- Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Duangchit Panomvana
- Translational Research Unit, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Nuchanart Rangkadilok
- Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok 10210, Thailand; Environmental Toxicology Program, Chulabhorn Graduate Institute, Bangkok 10210, Thailand
| | - Tawit Suriyo
- Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Porranee Puranajoti
- Translational Research Unit, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | | | | | - Saichit Thaeopattha
- Translational Research Unit, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Phanit Songvut
- Translational Research Unit, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Jutamaad Satayavivad
- Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok 10210, Thailand; Environmental Toxicology Program, Chulabhorn Graduate Institute, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology, Office of Higher Education Commission, Ministry of Education, Bangkok 10400, Thailand.
| |
Collapse
|
6
|
Gerwig GJ, Te Poele EM, Dijkhuizen L, Kamerling JP. Stevia Glycosides: Chemical and Enzymatic Modifications of Their Carbohydrate Moieties to Improve the Sweet-Tasting Quality. Adv Carbohydr Chem Biochem 2016; 73:1-72. [PMID: 27816105 DOI: 10.1016/bs.accb.2016.05.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Stevia glycosides, extracted from the leaves of the plant Stevia rebaudiana Bertoni, display an amazing high degree of sweetness. As processed plant products, they are considered as excellent bio-alternatives for sucrose and artificial sweeteners. Being noncaloric and having beneficial properties for human health, they are the subject of an increasing number of studies for applications in food and pharmacy. However, one of the main obstacles for the successful commercialization of Stevia sweeteners, especially in food, is their slight bitter aftertaste and astringency. These undesirable properties may be reduced or eliminated by modifying the carbohydrate moieties of the steviol glycosides. A promising procedure is to subject steviol glycosides to enzymatic glycosylation, thereby introducing additional monosaccharide residues into the molecules. Depending on the number and positions of the monosaccharide units, the taste quality and sweetness potency of the compounds will vary. Many studies have been performed already, and this review summarizes the structures of native steviol glycosides and the recent data of modifications of the carbohydrate moieties that have been published to provide an overview of the current progress.
Collapse
Affiliation(s)
- Gerrit J Gerwig
- Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands
| | - Evelien M Te Poele
- Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands
| | - Lubbert Dijkhuizen
- Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands
| | - Johannis P Kamerling
- Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands
| |
Collapse
|
7
|
|
8
|
Prakash I, Bunders C, Devkota KP, Charan RD, Hartz RM, Sears TL, Snyder TM, Ramirez C. Degradation Products of Rubusoside under Acidic Conditions. Nat Prod Commun 2015. [DOI: 10.1177/1934578x1501000404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A natural sweetener, Rubusoside (1), subjected to extreme pH and temperature conditions, resulted in the isolation and structural elucidation of one novel rubusoside degradant (7), together with seven known degradants (2-6 and 8-9). 1D and 2D NMR spectroscopy (1H, 13C, COSY, HSQC-DEPT, HMBC, and NOESY) and mass spectral data were used to fully characterize the degradant 7.
Collapse
Affiliation(s)
- Indra Prakash
- The Coca-Cola Company, One Coca-Cola Plaza, Atlanta, GA 30313, USA
| | - Cynthia Bunders
- The Coca-Cola Company, One Coca-Cola Plaza, Atlanta, GA 30313, USA
| | | | | | | | - Tracy L. Sears
- AMRI-Albany, Analytical Development, Albany, NY 12212, USA
| | - Tara M. Snyder
- AMRI-Albany, Analytical Development, Albany, NY 12212, USA
| | | |
Collapse
|
9
|
Development of Next Generation Stevia Sweetener: Rebaudioside M. Foods 2014; 3:162-175. [PMID: 28234311 PMCID: PMC5302307 DOI: 10.3390/foods3010162] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 02/18/2014] [Accepted: 02/19/2014] [Indexed: 11/17/2022] Open
Abstract
This work aims to review and showcase the unique properties of rebaudioside M as a natural non-caloric potential sweetener in food and beverage products. To determine the potential of rebaudioside M, isolated from Stevia rebaudiana Bertoni, as a high potency sweetener, we examined it with the Beidler Model. This model estimated that rebaudioside M is 200–350 times more potent than sucrose. Numerous sensory evaluations of rebaudioside M’s taste attributes illustrated that this steviol glycoside possesses a clean, sweet taste with a slightly bitter or licorice aftertaste. The major reaction pathways in aqueous solutions (pH 2–8) for rebaudioside M are similar to rebaudioside A. Herein we demonstrate that rebaudioside M could be of great interest to the global food industry because it is well-suited for blending and is functional in a wide variety of food and beverage products.
Collapse
|