1
|
Sokolová M, Šestáková H, Truksa M, Šafařík M, Hadravová R, Bouř P, Šebestík J. Photochemical synthesis of pink silver and its use for monitoring peptide nitration via surface enhanced Raman spectroscopy (SERS). Amino Acids 2022; 54:1261-1274. [PMID: 35731286 DOI: 10.1007/s00726-022-03178-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/31/2022] [Indexed: 12/01/2022]
Abstract
Oxidative stress may cause extended tyrosine posttranslational modifications of peptides and proteins. The 3-nitro-L-tyrosine (Nit), which is typically formed, affects protein behavior during neurodegenerative processes, such as Alzheimer's and Parkinson's diseases. Such metabolic products may be conveniently detected at very low concentrations by surface enhanced Raman spectroscopy (SERS). Previously, we have explored the SERS detection of the Nit NO2 bending vibrational bands in a presence of hydrogen chloride (Niederhafner et al., Amino Acids 53:517-532, 2021, ibid). In this article, we describe performance of a new SERS substrate, "pink silver", synthesized photochemically. It provides SERS even without the HCl induction, and the acid further decreases the detection limit about 9 times. Strong SERS bands were observed in the asymmetric (1550-1475 cm-1) and symmetric (1360-1290 cm-1) NO stretching in the NO2 group. The bending vibration was relatively weak, but appeared stronger when HCl was added. The band assignments were supported by density functional theory modeling.
Collapse
Affiliation(s)
- Marina Sokolová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, 16610, Prague 6, Czech Republic
| | - Hana Šestáková
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, 16610, Prague 6, Czech Republic
| | - Martin Truksa
- Mensa Gymnázium O.P.S., Španielova 1111/19, 163 00, Prague 6, Czech Republic
| | - Martin Šafařík
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, 16610, Prague 6, Czech Republic
| | - Romana Hadravová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, 16610, Prague 6, Czech Republic
| | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, 16610, Prague 6, Czech Republic
| | - Jaroslav Šebestík
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, 16610, Prague 6, Czech Republic. .,Mensa Gymnázium O.P.S., Španielova 1111/19, 163 00, Prague 6, Czech Republic.
| |
Collapse
|
2
|
Zhang P, Guergues J, Alleyne AR, Cirino TJ, Nadeau O, Figueroa AM, Stacy HM, Suzuki T, McLaughlin JP, Stevens SM, Liu B. Novel Histone Modifications in Microglia Derived from a Mouse Model of Chronic Pain. Proteomics 2022; 22:e2100137. [PMID: 35081661 DOI: 10.1002/pmic.202100137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 11/06/2022]
Abstract
As the resident immune cells in the central nervous system, microglia play an important role in the maintenance of its homeostasis. Dysregulation of microglia has been associated with the development and maintenance of chronic pain. However, the relevant molecular pathways remain poorly defined. In this study, we used a mass spectrometry-based proteomic approach to screen potential changes of histone protein modifications in microglia isolated from the brain of control and cisplatin-induced neuropathic pain adult C57BL/6J male mice. We identified several novel microglial histone modifications associated with pain including statistically significantly decreased histone H3.1 lysine 27 mono-methylation (H3.1K27me1, 54.8% of control) and lysine 56 tri-methylation (7.5% of control), as well as a trend suggesting increased histone 3 tyrosine 41 nitration. We further investigated the functional role of H3.1K27me1 and found that treatment of cultured microglial cells for 4 consecutive days with 1-10 μM of NCDM-64, a potent and selective inhibitor of lysine demethylase 7A, an enzyme responsible for the demethylation of H3K27me1, dose-dependently elevated its levels with a greater than a 2-fold increase observed at 10 μM compared to vehicle-treated control cells. Moreover, pre-treatment of mice with NCDM-64 (10 or 25 mg/kg/day, i.p.) prior to cisplatin treatment prevented the development of neuropathic pain in mice. The identification of specific chromatin marks in microglia associated with chronic pain may yield critical insight into the contribution of microglia to the development and maintenance of pain, and opens new avenues for the development of novel non-opioid therapeutics for the effective management of chronic pain. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA
| | - Jennifer Guergues
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Amy R Alleyne
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA
| | - Thomas J Cirino
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA
| | - Owen Nadeau
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT, USA
| | - Ariana M Figueroa
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA
| | - Heather M Stacy
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA
| | - Takayoshi Suzuki
- The Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Jay P McLaughlin
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA
| | - Stanley M Stevens
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Bin Liu
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA
| |
Collapse
|
3
|
Fedorova TN, Logvinenko AA, Poleshchuk VV, Muzychuk OA, Shabalina AA, Illarioshkin SN. Significance of Oxidative Damage to Proteins and DNA in the Blood of Patients with Parkinson’s Disease in Assessing the Severity of the Disease. NEUROCHEM J+ 2021. [DOI: 10.1134/s1819712421020057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Kriss CL, Duro N, Nadeau OW, Guergues J, Chavez-Chiang O, Culver-Cochran AE, Chaput D, Varma S, Stevens SM. Site-specific identification and validation of hepatic histone nitration in vivo: Implications for alcohol-induced liver injury. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4713. [PMID: 33942435 DOI: 10.1002/jms.4713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/29/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
Oxidative and nitrative stress have been implicated in the molecular mechanisms underlying a variety of biological processes and disease states including cancer, aging, cardiovascular disease, neurological disorders, diabetes, and alcohol-induced liver injury. One marker of nitrative stress is the formation of 3-nitrotyrosine, or protein tyrosine nitration (PTN), which has been observed during inflammation and tissue injury; however, the role of PTN in the progression or possibly the pathogenesis of disease is still unclear. We show in a model of alcohol-induced liver injury that an increase in PTN occurs in hepatocyte nuclei within the liver of wild-type male C57BL/6J mice following chronic ethanol exposure (28 days). High-resolution mass spectrometric analysis of isolated hepatic nuclei revealed several novel sites of tyrosine nitration on histone proteins. Histone nitration sites were validated by tandem mass spectrometry (MS/MS) analysis of representative synthetic nitropeptides equivalent in sequence to the respective nitrotyrosine sites identified in vivo. We further investigated the potential structural impact of the novel histone H3 Tyr41 (H3Y41) nitration site identified using molecular dynamics (MD) simulations. MD simulations of the nitrated and non-nitrated forms of histone H3Y41 showed significant structural changes at the DNA interface upon H3Y41 nitration. The results from this study suggest that, in addition to other known post-translational modifications that occur on histone proteins (e.g., acetylation and methylation), PTN could induce chromatin structural changes, possibly affecting gene transcription processes associated with the development of alcohol-induced liver injury.
Collapse
Affiliation(s)
- Crystina L Kriss
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 E. Fowler Ave, Tampa, FL, 33620, USA
- Department of Cardiovascular Regeneration, Houston Methodist Research Institute, 6607 Bertner Ave, Houston, TX, 77030, USA
| | - Nalvi Duro
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 E. Fowler Ave, Tampa, FL, 33620, USA
| | - Owen W Nadeau
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 261 Mountain View Dr, Colchester, VT, 05446, USA
| | - Jennifer Guergues
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 261 Mountain View Dr, Colchester, VT, 05446, USA
- MSRC Proteomics Core Laboratory, Vanderbilt University, Medical Research Building III, Nashville, TN, 37232, USA
| | - Omar Chavez-Chiang
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 E. Fowler Ave, Tampa, FL, 33620, USA
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, SRB-3, Tampa, FL, 33612, USA
| | - Ashley E Culver-Cochran
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 E. Fowler Ave, Tampa, FL, 33620, USA
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Dale Chaput
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 E. Fowler Ave, Tampa, FL, 33620, USA
| | - Sameer Varma
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 E. Fowler Ave, Tampa, FL, 33620, USA
| | - Stanley M Stevens
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 E. Fowler Ave, Tampa, FL, 33620, USA
| |
Collapse
|
5
|
Nilamyani AN, Auliah FN, Moni MA, Shoombuatong W, Hasan MM, Kurata H. PredNTS: Improved and Robust Prediction of Nitrotyrosine Sites by Integrating Multiple Sequence Features. Int J Mol Sci 2021; 22:2704. [PMID: 33800121 PMCID: PMC7962192 DOI: 10.3390/ijms22052704] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/15/2022] Open
Abstract
Nitrotyrosine, which is generated by numerous reactive nitrogen species, is a type of protein post-translational modification. Identification of site-specific nitration modification on tyrosine is a prerequisite to understanding the molecular function of nitrated proteins. Thanks to the progress of machine learning, computational prediction can play a vital role before the biological experimentation. Herein, we developed a computational predictor PredNTS by integrating multiple sequence features including K-mer, composition of k-spaced amino acid pairs (CKSAAP), AAindex, and binary encoding schemes. The important features were selected by the recursive feature elimination approach using a random forest classifier. Finally, we linearly combined the successive random forest (RF) probability scores generated by the different, single encoding-employing RF models. The resultant PredNTS predictor achieved an area under a curve (AUC) of 0.910 using five-fold cross validation. It outperformed the existing predictors on a comprehensive and independent dataset. Furthermore, we investigated several machine learning algorithms to demonstrate the superiority of the employed RF algorithm. The PredNTS is a useful computational resource for the prediction of nitrotyrosine sites. The web-application with the curated datasets of the PredNTS is publicly available.
Collapse
Affiliation(s)
- Andi Nur Nilamyani
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan; (A.N.N.); (F.N.A.)
| | - Firda Nurul Auliah
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan; (A.N.N.); (F.N.A.)
| | - Mohammad Ali Moni
- WHO Collaborating Centre on eHealth, UNSW Digital Health, School of Public Health and Community Medicine, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2052, Australia;
| | - Watshara Shoombuatong
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand;
| | - Md Mehedi Hasan
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan; (A.N.N.); (F.N.A.)
- Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Hiroyuki Kurata
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan; (A.N.N.); (F.N.A.)
| |
Collapse
|
6
|
Bandookwala M, Sengupta P. 3-Nitrotyrosine: a versatile oxidative stress biomarker for major neurodegenerative diseases. Int J Neurosci 2020; 130:1047-1062. [PMID: 31914343 DOI: 10.1080/00207454.2020.1713776] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Reactive oxygen species are generated as a by-product of routine biochemical reactions. However, dysfunction of the antioxidant system or mutations in gene function may result in the elevated production of the pro-oxidant species. Modified endogenous molecules due to chemical interactions with increased levels of reactive oxygen and nitrogen species in the cellular microenvironment can be termed as biomarkers of oxidative stress. 3-Nitrotyrosine is one such promising biomarker of oxidative stress formed due to nitration of protein-bound and free tyrosine residues by reactive peroxynitrite molecules. Nitration of proteins at the subcellular level results in conformational alterations that damage the cytoskeleton and result in neurodegeneration. In this review, we summarized the role of oxidative/nitrosative processes as a contributing factor for progressive neurodegeneration in Alzheimer's disease, Parkinson's disease, Huntington's disease, Lou Gehrig's disease and Prion disease. The selective tyrosine protein nitration of the major marker proteins in related pathologies has been discussed. The alteration in 3-Nitrotyrosine profile occurs well before any symptoms appear and can be considered as a potential target for early diagnosis of neurodegenerative diseases. Furthermore, the reduction in 3-Nitrotyrosine levels in response to treatment with neuroprotective has been highlighted which is indicative of the importance of this particular marker in oxidative stress-related brain and central nervous system pathologies.
Collapse
Affiliation(s)
- Maria Bandookwala
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat, India
| | - Pinaki Sengupta
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat, India
| |
Collapse
|
7
|
Urmey AR, Zondlo NJ. Design of a Protein Motif Responsive to Tyrosine Nitration and an Encoded Turn-Off Sensor of Tyrosine Nitration. Biochemistry 2019; 58:2822-2833. [PMID: 31140788 PMCID: PMC6688601 DOI: 10.1021/acs.biochem.9b00334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tyrosine nitration is a protein post-translational modification that is predominantly non-enzymatic and is observed to be increased under conditions of nitrosative stress and in numerous disease states. A small protein motif (14-18 amino acids) responsive to tyrosine nitration has been developed. In this design, nitrotyrosine replaced the conserved Glu12 of an EF-hand metal-binding motif. Thus, the non-nitrated peptide bound terbium weakly. In contrast, tyrosine nitration resulted in a 45-fold increase in terbium affinity. Nuclear magnetic resonance spectroscopy indicated direct binding of nitrotyrosine to the metal and EF-hand-like metal contacts in this designed peptide. Nitrotyrosine is an efficient quencher of fluorescence. To develop a sensor of tyrosine nitration, the initial design was modified to incorporate Glu residues at EF-hand positions 9 and 16 as additional metal-binding residues, to increase the terbium affinity of the peptide with unmodified tyrosine. This peptide with a tyrosine at residue 12 bound terbium and effectively sensitized terbium luminescence. Tyrosine nitration resulted in a 180-fold increase in terbium affinity ( Kd = 1.6 μM) and quenching of terbium luminescence. This sequence was incorporated as an encoded protein tag and applied as a turn-off fluorescent protein sensor of tyrosine nitration. The sensor was responsive to nitration by peroxynitrite, with fluorescence quenched upon nitration. The greater terbium affinity upon tyrosine nitration resulted in a large dynamic range and sensitivity to substoichiometric nitration. An improved approach for the synthesis of peptides containing nitrotyrosine was also developed, via the in situ silyl protection of nitrotyrosine. This work represents the first designed, encodable protein motif that is responsive to tyrosine nitration.
Collapse
Affiliation(s)
- Andrew R. Urmey
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Neal J. Zondlo
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
8
|
Bandookwala M, Thakkar D, Sengupta P. Advancements in the Analytical Quantification of Nitroxidative Stress Biomarker 3-Nitrotyrosine in Biological Matrices. Crit Rev Anal Chem 2019; 50:265-289. [DOI: 10.1080/10408347.2019.1623010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Maria Bandookwala
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat, India
| | - Disha Thakkar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat, India
| | - Pinaki Sengupta
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat, India
| |
Collapse
|
9
|
Hasan MM, Khatun MS, Mollah MNH, Yong C, Dianjing G. NTyroSite: Computational Identification of Protein Nitrotyrosine Sites Using Sequence Evolutionary Features. Molecules 2018; 23:E1667. [PMID: 29987232 PMCID: PMC6099560 DOI: 10.3390/molecules23071667] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/28/2018] [Accepted: 06/28/2018] [Indexed: 02/06/2023] Open
Abstract
Nitrotyrosine is a product of tyrosine nitration mediated by reactive nitrogen species. As an indicator of cell damage and inflammation, protein nitrotyrosine serves to reveal biological change associated with various diseases or oxidative stress. Accurate identification of nitrotyrosine site provides the important foundation for further elucidating the mechanism of protein nitrotyrosination. However, experimental identification of nitrotyrosine sites through traditional methods are laborious and expensive. In silico prediction of nitrotyrosine sites based on protein sequence information are thus highly desired. Here, we report a novel predictor, NTyroSite, for accurate prediction of nitrotyrosine sites using sequence evolutionary information. The generated features were optimized using a Wilcoxon-rank sum test. A random forest classifier was then trained using these features to build the predictor. The final NTyroSite predictor achieved an area under a receiver operating characteristics curve (AUC) score of 0.904 in a 10-fold cross-validation test. It also significantly outperformed other existing implementations in an independent test. Meanwhile, for a better understanding of our prediction model, the predominant rules and informative features were extracted from the NTyroSite model to explain the prediction results. We expect that the NTyroSite predictor may serve as a useful computational resource for high-throughput nitrotyrosine site prediction. The online interface of the software is publicly available at https://biocomputer.bio.cuhk.edu.hk/NTyroSite/.
Collapse
Affiliation(s)
- Md Mehedi Hasan
- School of Life Sciences and the State Key Lab of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong.
| | - Mst Shamima Khatun
- Laboratory of Bioinformatics, Department of Statistics, University of Rajshahi, Rajshahi 6205, Bangladesh.
| | - Md Nurul Haque Mollah
- Laboratory of Bioinformatics, Department of Statistics, University of Rajshahi, Rajshahi 6205, Bangladesh.
| | - Cao Yong
- Department of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen Graduate School, Shenzhen 518000, China.
| | - Guo Dianjing
- School of Life Sciences and the State Key Lab of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
10
|
Determination of 3-nitrotyrosine in food protein suspensions. Talanta 2017; 171:81-89. [DOI: 10.1016/j.talanta.2017.04.059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/19/2017] [Accepted: 04/25/2017] [Indexed: 12/30/2022]
|
11
|
Teixeira D, Fernandes R, Prudêncio C, Vieira M. 3-Nitrotyrosine quantification methods: Current concepts and future challenges. Biochimie 2016; 125:1-11. [PMID: 26921794 DOI: 10.1016/j.biochi.2016.02.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 02/22/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Measurement of 3-nitrotyrosine (3-NT) in biological samples can be used as a biomarker of nitrosative stress, since it is very stable and suitable for analysis. Increased 3-NT levels in biological samples have been associated with several physiological and pathological conditions. Different methods have been described for the detection and quantification of this molecule, such as (i) immunological methods; (ii) liquid chromatography, namely high-pressure liquid chromatography (HPLC)-based methods that use ultraviolet-visible (UV/VIS) absorption, electrochemical (ECD) and diode array (DAD) detection, liquid chromatography-mass spectrometry (LC-MS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS); (iii) gas chromatography, such as gas chromatography-mass spectrometry (GC-MS) and gas chromatography-tandem mass spectrometry (GC-MS/MS). METHODS A literature review on nitrosative stress, protein nitration, as well as 3-NT quantification methods was carried out. RESULTS This review covers the different methods for analysis of 3-NT that have been developed during the last years as well as the latest advances in this field. Overall, all methods present positive and negative aspects, although it is clear that chromatography-based methods present good sensitivity and specificity. Regarding this, GC-based methods exhibit the highest sensibility in the quantification of 3-NT, although it requires a prior time consuming derivatization step. Conversely, HPLC does not require such derivatization step, despite being not as accurate as GC. CONCLUSION It becomes clear that all the methods described during this literature review, although accurate for 3-NT quantification, need to be improved regarding both sensitivity and specificity. Moreover, optimization of the protocols that have been described is clearly needed.
Collapse
Affiliation(s)
- Dulce Teixeira
- Ciências Químicas e das Biomoléculas, Centro de Investigação em Saúde e Ambiente, Escola Superior de Tecnologia da Saúde do Porto, Instituto Politécnico do Porto, Portugal
| | - Rúben Fernandes
- Ciências Químicas e das Biomoléculas, Centro de Investigação em Saúde e Ambiente, Escola Superior de Tecnologia da Saúde do Porto, Instituto Politécnico do Porto, Portugal; I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
| | - Cristina Prudêncio
- Ciências Químicas e das Biomoléculas, Centro de Investigação em Saúde e Ambiente, Escola Superior de Tecnologia da Saúde do Porto, Instituto Politécnico do Porto, Portugal; I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
| | - Mónica Vieira
- Ciências Químicas e das Biomoléculas, Centro de Investigação em Saúde e Ambiente, Escola Superior de Tecnologia da Saúde do Porto, Instituto Politécnico do Porto, Portugal; I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.
| |
Collapse
|