1
|
Dókus LE, Yousef M, Bánóczi Z. Modulators of calpain activity: inhibitors and activators as potential drugs. Expert Opin Drug Discov 2020; 15:471-486. [DOI: 10.1080/17460441.2020.1722638] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Levente Endre Dókus
- Department of Organic Chemistry, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Mo’ath Yousef
- Department of Organic Chemistry, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Zoltán Bánóczi
- Department of Organic Chemistry, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
2
|
Averna M, Casazza AA, Martines A, Pedrazzi M, Franchi A, De Tullio R, Perego P, Melloni E. Cell protection from Ca 2+-overloading by bioactive molecules extracted from olive pomace. Nat Prod Res 2018; 33:1449-1455. [PMID: 29298502 DOI: 10.1080/14786419.2017.1422181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We are reporting in the present study that molecules extracted from olive pomace prevent cell death induced by Ca2+-overloading in different cell types. Exposure of cells to these molecules counteracts the Ca2+-induced cell damages by reducing the activation of the Ca2+-dependent protease calpain, acting possibly through the modification of the permeability to Ca2+ of the plasma membrane. The purification step by RP-HPLC suggests that effective compound(s), differing from the main biophenols known to be present in the olive pomace extract, could be responsible for this effect. Our observations suggest that bioactive molecules present in the olive pomace could be potential candidates for therapeutic applications in pathologies characterised by alterations of intracellular Ca2+ homeostasis.
Collapse
Affiliation(s)
- Monica Averna
- a Department of Experimental Medicine (DIMES) - Biochemistry Section , University of Genoa , Genova , Italy
| | - Alessandro A Casazza
- b Department of Civil, Chemical and Environmental Engineering , University of Genoa , Genova , Italy
| | - Antonino Martines
- a Department of Experimental Medicine (DIMES) - Biochemistry Section , University of Genoa , Genova , Italy
| | - Marco Pedrazzi
- a Department of Experimental Medicine (DIMES) - Biochemistry Section , University of Genoa , Genova , Italy
| | - Alice Franchi
- a Department of Experimental Medicine (DIMES) - Biochemistry Section , University of Genoa , Genova , Italy
| | - Roberta De Tullio
- a Department of Experimental Medicine (DIMES) - Biochemistry Section , University of Genoa , Genova , Italy.,c Center of Excellence for Biomedical Research (CEBR) , University of Genoa , Genova , Italy
| | - Patrizia Perego
- b Department of Civil, Chemical and Environmental Engineering , University of Genoa , Genova , Italy
| | - Edon Melloni
- a Department of Experimental Medicine (DIMES) - Biochemistry Section , University of Genoa , Genova , Italy.,c Center of Excellence for Biomedical Research (CEBR) , University of Genoa , Genova , Italy
| |
Collapse
|
3
|
Li M, Wen F, Zhao S, Wang P, Li S, Zhang Y, Zheng N, Wang J. Exploring the Molecular Basis for Binding of Inhibitors by Threonyl-tRNA Synthetase from Brucella abortus: A Virtual Screening Study. Int J Mol Sci 2016; 17:E1078. [PMID: 27447614 PMCID: PMC4964454 DOI: 10.3390/ijms17071078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/19/2016] [Accepted: 06/29/2016] [Indexed: 01/18/2023] Open
Abstract
Targeting threonyl-tRNA synthetase (ThrRS) of Brucella abortus is a promising approach to developing small-molecule drugs against bovine brucellosis. Using the BLASTp algorithm, we identified ThrRS from Escherichia coli (EThrRS, PDB ID 1QF6), which is 51% identical to ThrRS from Brucella abortus (BaThrRS) at the amino acid sequence level. EThrRS was used as the template to construct a BaThrRS homology model which was optimized using molecular dynamics simulations. To determine the residues important for substrate ATP binding, we identified the ATP-binding regions of BaThrRS, docked ATP to the protein, and identified the residues whose side chains surrounded bound ATP. We then used the binding site of ATP to virtually screen for BaThrRS inhibitors and got seven leads. We further characterized the BaThrRS-binding site of the compound with the highest predicted inhibitory activity. Our results should facilitate future experimental effects to find novel drugs for use against bovine brucellosis.
Collapse
Affiliation(s)
- Ming Li
- Ministry of Agriculture Laboratory of Quality & Safety Risk Assessment for Dairy Products (Beijing), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Ministry of Agriculture-Milk and Dairy Product Inspection Center (Beijing), Beijing 100193, China.
| | - Fang Wen
- Ministry of Agriculture Laboratory of Quality & Safety Risk Assessment for Dairy Products (Beijing), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Ministry of Agriculture-Milk and Dairy Product Inspection Center (Beijing), Beijing 100193, China.
| | - Shengguo Zhao
- Ministry of Agriculture Laboratory of Quality & Safety Risk Assessment for Dairy Products (Beijing), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Ministry of Agriculture-Milk and Dairy Product Inspection Center (Beijing), Beijing 100193, China.
| | - Pengpeng Wang
- Ministry of Agriculture Laboratory of Quality & Safety Risk Assessment for Dairy Products (Beijing), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Ministry of Agriculture-Milk and Dairy Product Inspection Center (Beijing), Beijing 100193, China.
| | - Songli Li
- Ministry of Agriculture Laboratory of Quality & Safety Risk Assessment for Dairy Products (Beijing), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Ministry of Agriculture-Milk and Dairy Product Inspection Center (Beijing), Beijing 100193, China.
| | - Yangdong Zhang
- Ministry of Agriculture Laboratory of Quality & Safety Risk Assessment for Dairy Products (Beijing), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Ministry of Agriculture-Milk and Dairy Product Inspection Center (Beijing), Beijing 100193, China.
| | - Nan Zheng
- Ministry of Agriculture Laboratory of Quality & Safety Risk Assessment for Dairy Products (Beijing), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Ministry of Agriculture-Milk and Dairy Product Inspection Center (Beijing), Beijing 100193, China.
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Jiaqi Wang
- Ministry of Agriculture Laboratory of Quality & Safety Risk Assessment for Dairy Products (Beijing), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Ministry of Agriculture-Milk and Dairy Product Inspection Center (Beijing), Beijing 100193, China.
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
4
|
Understanding the interaction determinants of CAPN1 inhibition by CAST4 from bovines using molecular modeling techniques. Molecules 2014; 19:14316-51. [PMID: 25215589 PMCID: PMC6271145 DOI: 10.3390/molecules190914316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/21/2014] [Accepted: 09/01/2014] [Indexed: 11/17/2022] Open
Abstract
HCV-induced CAPN activation and its effects on virus-infected cells in a host-immune system have been studied recently. It has been shown that the HCV-nonstructural 5A protein acts as both an inducer and a substrate for host CAPN protease; it participates in suppressing the TNF-α-induced apoptosis response and downstream IFN-induced antiviral processes. However, little is known regarding the disturbance of antiviral responses generated by bovine CAPN activation by BVDV, which is a surrogate model of HCV and is one of the most destructive diseases leading to great economic losses in cattle herds worldwide. This is also thought to be associated with the effects of either small CAPN inhibitors or the natural inhibitor CAST. They mainly bind to the binding site of CAPN substrate proteins and competitively inhibit the binding of the enzyme substrates to possibly defend against the two viruses (HCV and BVDV) for anti-viral immunity. To devise a new stratagem to discover lead candidates for an anti-BVDV drug, we first attempted to understand the bovine CAPN-CAST interaction sites and the interaction constraints of local binding architectures, were well reflected in the geometry between the pharmacophore features and its shape constraints identified using our modeled bovine CAPN1/CAST4 complex structures. We propose a computer-aided molecular design of an anti-BVDV drug as a mimetic CAST inhibitor to develop a rule-based screening function for adjusting the puzzle of relationship between bovine CAPN1 and the BVDV nonstructural proteins from all of the data obtained in the study.
Collapse
|