1
|
Samir H, Samir M, Radwan F, Mandour AS, El-Sherbiny HR, Ahmed AE, Al Syaad KM, Al-Saeed FA, Watanabe G. Effect of pre-treatment of melatonin on superovulation response, circulatory hormones, and miRNAs in goats during environmental heat stress conditions. Vet Res Commun 2024; 48:459-474. [PMID: 37831382 DOI: 10.1007/s11259-023-10239-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/10/2023] [Indexed: 10/14/2023]
Abstract
Environmental heat stress has a deleterious impact on farm animal reproductive performance. The purpose of this study was to see how the addition of melatonin affected the efficacy of the superovulation regimen in goats in hot climatic conditions. Sixteen Shiba goats were synchronized and divided into two equal groups (n = 8, each): the melatonin group, which received a single S/C dose of melatonin, and a control group, treated with one ml of corn oil only. Ultrasonographic assessment of ovarian structures (Graafian follicles; GFs and corpus lutea; CLs) morphometry and hemodynamics were performed during the estrous phase of the superovulation (D0) and at day7 after ovulation (D7) of the superovulation regimen. The peripheral reproductive hormones were measured, and microRNAs were characterized. The mean diameter and the total-colored area of GFs during the D0 were significantly (P˂0.05) higher in the melatonin group (5.42 ± 0.11 mm and 1592.20 ± 45.26 pixels, respectively) compared to the control group (4.62 ± 0.12 mm and 1052.55 ± 29.47 pixels, respectively). Concentrations of LH and E2 increased significantly (P˂0.05) in the melatonin group (1.06 ± 0.06 ng/ml and 46.34 ± 2.77 pg/ml, respectively) compared to the control group (0.75 ± 0.12 ng/ml and 29.33 ± 1.89 pg/ml, respectively). At D7, the melatonin-received goats attained greater values in the mean count (6.75 ± 0.33, P˂0.005), diameters (6.08 ± 0.12 mm, P˂0.01), and total-colored area (17137.30 ± 128.53 pixels, P˂0.01) of detected CLs and progesterone concentrations (4.08 ± 0.24 ng/ml) compared to control goats (4.00 ± 0.28, 4.50 ± 0.19 mm, 11156.87 ± 117.90 pixels, and 2.90 ± 0.18 ng/ml respectively). MiRNA expression analysis was identified during both stages denoting several up and downregulated miRNA candidates among the studied groups. In conclusion, incorporating melatonin enhanced the efficiency of the superovulation regimen in goats under hot climatic conditions.
Collapse
Affiliation(s)
- Haney Samir
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-Cho, Fuchu, Tokyo, 183-8509, Japan.
| | - Mohamed Samir
- Department of Zoonoses, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
- Immunogenetics Department, Pirbright Institute, Woking, UK
| | - Faten Radwan
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-Cho, Fuchu, Tokyo, 183-8509, Japan
- Veterinarian graduated from the Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya, 13736, Egypt
| | - Ahmed S Mandour
- Department of Animal Medicine (Internal Medicine), Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Hossam R El-Sherbiny
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Ahmed Ezzat Ahmed
- Biology Department, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Khalid M Al Syaad
- Biology Department, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Fatimah A Al-Saeed
- Biology Department, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Gen Watanabe
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-Cho, Fuchu, Tokyo, 183-8509, Japan
| |
Collapse
|
2
|
Ratchamak R, Thananurak P, Boonkum W, Semaming Y, Chankitisakul V. The Melatonin Treatment Improves the Ovarian Responses After Superstimulation in Thai-Holstein Crossbreeds Under Heat Stress Conditions. Front Vet Sci 2022; 9:888039. [PMID: 35573411 PMCID: PMC9096612 DOI: 10.3389/fvets.2022.888039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/01/2022] [Indexed: 11/13/2022] Open
Abstract
The effect of heat stress with melatonin treatment on the superovulatory responses and embryo characteristics in Thai-Holstein crossbreeds under heat stress conditions was examined. Six non-lactating cows (replication = 4; n = 24) were assigned to one of 2 treatments in double cross-over design. All cows were superstimulated with traditional treatment. Melatonin group (n = 12): cows received intramuscularly injection 18 mg/50 kg. simultaneously with GnRH injection, while those in the control group (n = 12) received none. Bloods samples were taken to determine lipid peroxidation (MDA) and the activity of the antioxidant enzymes (superoxide dismutase; SOD). The experiment was conducted from April to September, which determined severe heat stress (the mean temperature-humidity index above 77). The results revealed that numbers of large follicles and corpora lutea were higher in the melatonin group than in the control group (p < 0.01). Numbers of recovered ova/embryos, fertilized ova, and transferable embryos were higher in the melatonin group (p < 0.01); meanwhile, more degenerated embryos were found in the control group (p < 0.01). Increased activity of the antioxidant enzymes SOD after melatonin administration decreased MDA levels (p < 0.05). In summary, melatonin administration benefited the ovarian response and embryo quality in superstimulated Thai-Holstein crossbreed affected by heat stress.
Collapse
Affiliation(s)
- Ruthaiporn Ratchamak
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | - Pachara Thananurak
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | - Wuttigrai Boonkum
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
- Network Center for Animal Breeding and Omics Research, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | - Yoswaris Semaming
- Program in Veterinary Technology, Faculty of Technology, Udon Thani Rajabhat University, Udon Thani, Thailand
| | - Vibuntita Chankitisakul
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
- Network Center for Animal Breeding and Omics Research, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
- *Correspondence: Vibuntita Chankitisakul
| |
Collapse
|
3
|
Towards Improving the Outcomes of Multiple Ovulation and Embryo Transfer in Sheep, with Particular Focus on Donor Superovulation. Vet Sci 2022; 9:vetsci9030117. [PMID: 35324845 PMCID: PMC8953989 DOI: 10.3390/vetsci9030117] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/22/2022] [Accepted: 03/01/2022] [Indexed: 02/05/2023] Open
Abstract
Considerable improvements in sheep multiple ovulation and embryo transfer (MOET)protocols have been made; however, unlike for cattle, MOET is poorly developed in sheep, and thus has not been broadly applicable as a routine procedure. The tightly folded nature of the ewe cervix, the inconsistent ovarian response to various superovulatory treatments, and the requirement of labor to handle animals, particularly during large-scale production, has limited the implementation of successful MOET in sheep. Moreover, several extrinsic factors (e.g., sources, the purity of gonadotrophins and their administration) and intrinsic factors (e.g., breed, age, nutrition, reproductive status) severely limit the practicability of MOET in sheep and other domestic animals. In this review, we summarize the effects of different superovulatory protocols, and their respective ovarian responses, in terms of ovulation rate, and embryo recovery and transfer. Furthermore, various strategies, such as inhibin immunization, conventional superovulation protocols, and melatonin implants for improving the ovarian response, are discussed in detail. Other reproductive techniques and their relative advantages and disadvantages, such as artificial insemination (AI), and donor embryo recovery and transfer to the recipient through different procedures, which must be taken into consideration for achieving satisfactory results during any MOET program in sheep, are also summarized in this article.
Collapse
|
4
|
Yang M, Guan S, Tao J, Zhu K, Lv D, Wang J, Li G, Gao Y, Wu H, Liu J, Cao L, Fu Y, Ji P, Lian Z, Zhang L, Liu G. Melatonin promotes male reproductive performance and increases testosterone synthesis in mammalian Leydig cells†. Biol Reprod 2021; 104:1322-1336. [PMID: 33709108 DOI: 10.1093/biolre/ioab046] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 03/09/2021] [Indexed: 01/16/2023] Open
Abstract
Leydig cells play a critical role in male reproductive physiology, and their dysfunction is usually associated with male infertility. Melatonin has an important protective and regulatory role in these cells. However, the lack of suitable animal models impedes us from addressing the impact of endogenous melatonin on these cells. In the current study, by using arylalkylamine N-acetyltransferase (AANAT) overexpression transgenic sheep and AANAT knockout mice, we confirmed the regulatory effects of endogenously occurring melatonin on Leydig cells as well as its beneficial effects on male reproductive performance. The results showed that the endogenously elevated melatonin level was correlated with decreased Leydig cell apoptosis, increased testosterone production, and improved quality of sperm in melatonin-enriched transgenic mammals. Signal transduction analysis indicated that melatonin targeted the mitochondrial apoptotic Bax/Bcl2 pathway and thus suppressed Leydig cell apoptosis. In addition, melatonin upregulated the expression of testosterone synthesis-related genes of Steroidogenic Acute Regulatory Protein (StAR), Steroidogenic factor 1 (SF1), and Transcription factor GATA-4 (Gata4) in Leydig cells. This action was primarily mediated by the melatonin nuclear receptor RAR-related orphan receptor alpha (RORα) since blockade of this receptor suppressed the effect of melatonin on testosterone synthesis. All of these actions of melatonin cause Leydig cells to generate more testosterone, which is necessary for spermatogenesis in mammals. In contrast, AANAT knockout animals have dysfunctional Leydig cells and reduced reproductive performance.
Collapse
Affiliation(s)
- Minghui Yang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shengyu Guan
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jingli Tao
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China.,College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Kuanfeng Zhu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dongying Lv
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jing Wang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Guangdong Li
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yuefeng Gao
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hao Wu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jinghao Liu
- Laboratory Animal Centre, Peking University, Beijing, China
| | - Lin Cao
- Beijing Institute of Feed Control, Beijing Municipal Bureau of Agriculture and Rural Affairs, Beijing, China
| | - Yao Fu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Pengyun Ji
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhengxing Lian
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lu Zhang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Guoshi Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Exogenous Melatonin Improves the Reproductive Outcomes of Yearling Iberian Red Deer ( Cervus elaphus hispanicus) Hinds. Animals (Basel) 2021; 11:ani11010224. [PMID: 33477633 PMCID: PMC7831485 DOI: 10.3390/ani11010224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Increasing the reproductive performance of hinds is considered to be a key factor of overall farm deer productivity. In the case of yearling hinds, this aspect becomes more important, as a delay in the pubertal onset will compromise the reproductive performance of the entire herd (decreased fertility), and these yearling hinds will carry this ‘late’ condition throughout their reproductive life. The aim of this study was to explore the use of melatonin implants on yearling Iberian red deer (Cervus elaphus hispanicus) hinds to improve their fertility outcomes, advance the calving date and the calves’ weight, and to prevent the negative impact of yearling hinds’ low liveweight on their reproductive outcomes. Melatonin implants (18 mg), administered three-fold (two implants each time) every 30 days before the breeding season, rendered significantly higher fertility rates (regardless of the yearling hind’s weight) and heavier calves, and advanced the calving date in the yearling hinds by 15 days compared to non-treated hinds. In addition, halving the number of yearling hinds that received melatonin provided a similar benefit to a large-scale treatment of the whole herd, which indicates female-to-female stimulation of the ovarian activity. Taken together, this protocol for melatonin treatment simplifies its administration, reduces its costs, and assures the enhancement of the reproductive productivity of the entire farm. Abstract The aim of this study was to assess the effect of melatonin implants on the reproductive performance of yearling Iberian red deer (Cervus elaphus hispanicus) hinds. It also explored exogenous melatonin administration as a tool to minimize the negative effect of a low yearling hind’s liveweight on their reproductive efficiency. In addition, the effect of melatonin-treated yearling hinds on non-treated hinds was studied in order to provide a practical and economical protocol to improve farms’ productivity. A total of 4520 Iberian red deer hinds belonging to the same farm were included in this study. Melatonin (108 mg/hind) implants were administered three-fold every 30 days before the breeding season. Fertility rates, calves’ weights and calving dates were registered for each hind. The results showed that exogenous melatonin increased significantly (p < 0.05) the calves’ weight (32.39 ± 1.07 kg vs. 27.65 ± 1.11 kg for Weight 1calf (July) and 46.59 ± 1.50 kg vs. 41.79 ± 1.54 kg for Weight 2calf (August, at weaning)) and advanced the calving date by 15 days in yearling hinds compared to the non-treated group. In addition, the administration of melatonin implants before the breeding season was able to minimize the negative effect of low yearling hinds’ liveweight (Weight 1hind) on their future reproductive outcomes, as the fertility rates increased by 46% and the calves’ weight increased by 7 kg after the melatonin treatment, regardless of the yearlings’ weight. Finally, when both experimental groups (melatonin and non-treated) were kept separate, higher fertility rates (76.73 ± 7.18% vs. 66.94 ± 7.41%) were observed for the melatonin-treated hinds compared to the non-treated hinds. However, when both groups of yearling hinds were maintained together, no significant differences were observed in their fertility outcomes (78.13 ± 21.26% vs. 78.12 ± 23.32%). Therefore, melatonin implants may be used in yearling Iberian red deer hinds as a management tool to improve their reproductive productivity.
Collapse
|
6
|
Song Y, Wu H, Wang X, Haire A, Zhang X, Zhang J, Wu Y, Lian Z, Fu J, Liu G, Wusiman A. Melatonin improves the efficiency of super-ovulation and timed artificial insemination in sheep. PeerJ 2019; 7:e6750. [PMID: 31086729 PMCID: PMC6487178 DOI: 10.7717/peerj.6750] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/11/2019] [Indexed: 12/14/2022] Open
Abstract
It has been well proved that melatonin participates in the regulation of the seasonal reproduction of ewes. However, the effects of short term treatment of melatonin on ewe's ovulation are still to be clarified. In this study, the effects of melatonin on the number of embryos harvested from superovulation, and the pregnant rate in recipients after embryo transferred have been investigated. Hu sheep with synchronous estrus treatment were given melatonin subcutaneously injection (0, 5, and 10 mg/ewe, respectively). It was found that the estrogen level in the group of 5 mg melatonin was significantly higher than that of other two groups at the time of sperm insemination (p < 0.05). The pregnant rate and number of lambs in the group of 5 mg melatonin treatment was also significantly higher than that of the rests of the groups (P < 0.05). In another study, 31 Suffolk ewes as donors and 103 small-tailed han sheep ewes as recipients were used to produce pronuclear embryo and embryo transfer. Melatonin (5 mg) was given to the donors during estrus. The results showed that, the number of pronuclear embryos and the pregnancy rate were also significantly higher in melatonin group than that in the control group. In addition, 28 donors and 44 recipient ewes were used to produce morula/blastocyst and embryo transferring. Melatonin (5 mg) was given during estrus. The total number of embryos harvested (7.40 ± 1.25/ewe vs. 3.96 ± 0.73/ewe, P < 0.05) and the pregnant rate (72.3 ± 4.6% vs. 54.7 ± 4.0%, P < 0.05) and number of lambs were also increased in melatonin group compared to the control group. Collectively, the results have suggested that melatonin treatment 36 hours after CIDR withdrawal could promote the number and quality of embryos in vivo condition and increased the pregnant rate and number of lambs.
Collapse
Affiliation(s)
- Yukun Song
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Hao Wu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, Beijing, China
| | - Xuguang Wang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Aerman Haire
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Xiaosheng Zhang
- Institute of Animal Husbandry and Veterinary, Academy of Agricultural Sciences of Tianjin, Tianjin, Tianjin, China
| | - Jinlong Zhang
- Institute of Animal Husbandry and Veterinary, Academy of Agricultural Sciences of Tianjin, Tianjin, Tianjin, China
| | - Yingjie Wu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, Beijing, China
| | - Zhengxing Lian
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, Beijing, China
| | - Juncai Fu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, Beijing, China
| | - Guoshi Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, Beijing, China
| | - Abulizi Wusiman
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| |
Collapse
|
7
|
Zhao X, Wang D, Wu Z, Pan B, Yang H, Zeng C, Zhang M, Liu G, Han H, Zhou G. Female Reproductive Performance in the Mouse: Effect of Oral Melatonin. Molecules 2018; 23:molecules23081845. [PMID: 30044372 PMCID: PMC6222631 DOI: 10.3390/molecules23081845] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 12/20/2022] Open
Abstract
Although melatonin has some of the broadest ranges of actions on the physiology of vertebrates, especially on their reproductive processes, the mechanism by which melatonin regulates animal reproduction is still incompletely understood. This study was designed to determine the effect of oral melatonin on the reproductive performance of female mice. Female ICR mice (7 weeks old) were given melatonin-containing water (3, 30 and 300 μg/mL; melatonin) or water only (control) until 10 weeks of age. Then, some of the mice were successfully mated (confirmed by vaginal plugs), and the number of live births and their weights were recorded. Some mice were used for a histological analysis of the number of follicles in the ovaries. Others were used for oocyte collection after superovulation, and in vitro fertilization (IVF) was performed. The mRNA expression of the apopotosis-related genes (BAX, BCL2) in the IVF embryos were analyzed. After melatonin administration, the mice showed similar serum melatonin levels to that of the control. The number of antral follicles per mm² unit area in the 30 μg/mL melatonin-treated group (14.60) was significantly higher than that of the control (7.78), which was lower than that of the 3 μg/mL melatonin-treated group (12.29). The litter size was significantly higher in the 3 μg/mL melatonin-treated group (15.5) than in the control (14.3). After IVF, the hatched blastocyst formation rate in the 30 μg/mL melatonin-treated group (85.70%) was significantly higher than that of the control (72.10%), and it was the same for the BCL2/BAX expression ratio. Although oral melatonin did not appear to have an effect on the serum melatonin rhythm in the mouse, melatonin did increase litter size at the 3 μg/mL dose level, and improved the developmental competency of IVF embryos at the 30 μg/mL level.
Collapse
Affiliation(s)
- Xiaoxue Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Dian Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Zhenzheng Wu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Bo Pan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Haoxuan Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Changjun Zeng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Ming Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Guoshi Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Hongbing Han
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Guangbin Zhou
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
8
|
Yu K, Deng SL, Sun TC, Li YY, Liu YX. Melatonin Regulates the Synthesis of Steroid Hormones on Male Reproduction: A Review. Molecules 2018; 23:molecules23020447. [PMID: 29462985 PMCID: PMC6017169 DOI: 10.3390/molecules23020447] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 02/10/2018] [Accepted: 02/14/2018] [Indexed: 12/15/2022] Open
Abstract
Melatonin is a ubiquitous molecule and exhibits different effects in long-day and short-day breeding animals. Testosterone, the main resource of androgens in the testis, is produced by Leydig cells but regulated mainly by cytokine secreted by Sertoli cells. Melatonin acts as a local modulator of the endocrine activity in Leydig cells. In Sertoli cells, melatonin influences cellular proliferation and energy metabolism and, consequently, can regulate steroidogenesis. These suggest melatonin as a key player in the regulation of steroidogenesis. However, the melatonin-induced regulation of steroid hormones may differ among species, and the literature data indicate that melatonin has important effects on steroidogenesis and male reproduction.
Collapse
Affiliation(s)
- Kun Yu
- National Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Shou-Long Deng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Tie-Cheng Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yuan-Yuan Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yi-Xun Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
9
|
Deng SL, Wang ZP, Jin C, Kang XL, Batool A, Zhang Y, Li XY, Wang XX, Chen SR, Chang CS, Cheng CY, Lian ZX, Liu YX. Melatonin promotes sheep Leydig cell testosterone secretion in a co-culture with Sertoli cells. Theriogenology 2017; 106:170-177. [PMID: 29073541 DOI: 10.1016/j.theriogenology.2017.10.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 10/15/2017] [Accepted: 10/16/2017] [Indexed: 10/18/2022]
Abstract
Leydig cells synthesize and secrete testosterone, and are regulated by Sertoli cells. These two cell types may work together to regulate testicular androgen production. Studies have shown that Leydig cell androgen synthesis can be dramatically enhanced by Sertoli cells in the presence of melatonin, which can regulate the secretory function of Leydig and Sertoli cells. However, the molecular mechanism of melatonin-regulated Leydig cell androgen production via Sertoli cells remains unclear. Here, we found that 10-7 M melatonin increased testosterone production in co-cultured Leydig and Sertoli cells isolated from sheep. Melatonin increased the expression of stem cell factor and insulin-like growth factor-1 and decreased estrogen synthesis in Sertoli cells. Melatonin promoted insulin-like growth factor-1 and decreased estrogen content via the membrane melatonin receptor 1. It also enhanced stem cell factor expression via the retinoic acid receptor-related orphan receptor alpha. Addition of PD98059, a MEK inhibitor, to Sertoli cell culture demonstrated that the melatonin upregulation of insulin-like growth factor-1 and downregulation of estrogen may be through the MEK/extracellular signal-regulated kinase pathway. Together, these results suggest that melatonin may function through modulating melatonin receptor 1-regulated insulin-like growth factor-1 expression, as well as melatonin receptor 1-induced suppression of estrogen synthesis to increase androgen production in co-cultured Leydig and Sertoli cells.
Collapse
Affiliation(s)
- Shou-Long Deng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Zhi-Peng Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China; University of the Chinese Academy of Sciences, Beijing 100101, PR China
| | - Cheng Jin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China; University of the Chinese Academy of Sciences, Beijing 100101, PR China
| | - Xiao-Long Kang
- College of Agriculture, Ningxia University, Yinchuan 750021, PR China
| | - Aalia Batool
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China; University of the Chinese Academy of Sciences, Beijing 100101, PR China
| | - Yan Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Xiao-Yu Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China; University of the Chinese Academy of Sciences, Beijing 100101, PR China
| | - Xiu-Xia Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Su-Ren Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Chawn-Shang Chang
- George Whipple Laboratory for Cancer Research, Departments of Pathology, The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY 14623, USA
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, NY 10065, USA
| | - Zheng-Xing Lian
- Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China.
| | - Yi-Xun Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China.
| |
Collapse
|
10
|
Melatonin Scavenger Properties against Oxidative and Nitrosative Stress: Impact on Gamete Handling and In Vitro Embryo Production in Humans and Other Mammals. Int J Mol Sci 2017; 18:ijms18061119. [PMID: 28613231 PMCID: PMC5485943 DOI: 10.3390/ijms18061119] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/19/2017] [Accepted: 05/21/2017] [Indexed: 11/17/2022] Open
Abstract
Oxidative and nitrosative stress are common problems when handling gametes in vitro. In vitro development in mammalian embryos is highly affected by culture conditions, especially by reactive oxygen species (ROS) and reactive nitrogen species (RNS), because their absence or overproduction causes embryo arrest and changes in gene expression. Melatonin in gamete co-incubation during in vitro fertilization (IVF) has deleterious or positive effects, depending on the concentration used in the culture medium, demonstrating the delicate balance between antioxidant and pro-oxidant activity. Further research is needed to better understand the possible impact of melatonin on the different IVP steps in humans and other mammals, especially in seasonal breeds where this neuro-hormone system highly regulates its reproduction physiology.
Collapse
|