1
|
Cheng L, Shi Z, Yue Y, Wang Y, Qin Y, Zhao W, Hu Y, Li Q, Guo M, An L, Wang S, Tian J. Dietary supplementation with N-acetyl-L-cysteine ameliorates hyperactivated ERK signaling in the endometrium that is linked to poor pregnancy outcomes following ovarian stimulation in pigs. J Anim Sci Biotechnol 2024; 15:148. [PMID: 39501409 PMCID: PMC11539329 DOI: 10.1186/s40104-024-01109-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/26/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Exogenous gonadotropin-controlled ovarian stimulation is the critical step in animal reproductive management, such as pig, sheep, bovine and other species. It helps synchronize ovulation or stimulate multiple ovulations. However, a number of evidence indicated an unexpected decrease in pregnancy outcomes following ovarian stimulation. This study aimed to explore the underlying mechanism of the pregnancy defect and develop a practical rescue strategy. RESULTS Compared with those in the control group, gilts that underwent ovarian stimulation showed a decrease in pregnancy rate, farrowing rate, and total number of piglets born. Stimulated gilts also showed an increase in estradiol (E2) levels. The supraphysiological E2 level was correlated with the decrease in the number of piglets born. Furthermore, we found that high levels of E2 impair uterine receptivity, as shown by the overproliferation of endometrial epithelial cells. In vitro mechanistic studies demonstrated that high levels of E2 hyperactivate FGF-FGFR-ERK signaling cascade in the uterine endometrium, and in turn induces overproliferation of endometrial epithelial cells. Of note, N-acetyl-L-cysteine (NAC) supplementation effectively inhibits ERK hyperphosphorylation and ameliorates endometrial epithelial overproliferation. Importantly, in vivo experiments indicated that dietary NAC supplementation, compared with ovarian stimulation group, improves the uterine receptivity in gilts, and significantly increases the pregnancy rate and total number of piglets born. CONCLUSIONS Ovarian stimulation-induced supraphysiological levels of E2 impairs uterine receptivity by hyperactivating FGF-FGFR-ERK signaling cascade, thereby reducing pregnancy rate and litter size. Supplementing NAC to a conventional diet for gilts ameliorates hyperactivated ERK signaling and improves uterine receptivity, thus rescuing adverse pregnancy outcomes following ovarian stimulation.
Collapse
Affiliation(s)
- Linghua Cheng
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Zhicheng Shi
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yuan Yue
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yue Wang
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yusheng Qin
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Wei Zhao
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yupei Hu
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Qin Li
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Min Guo
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Lei An
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Shumin Wang
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Jianhui Tian
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
2
|
Sun K, Li H, Dong Y, Cao L, Li D, Li J, Zhang M, Yan D, Yang B. The Use of Identified Hypoxia-related Genes to Generate Models for Predicting the Prognosis of Cerebral Ischemia‒reperfusion Injury and Developing Treatment Strategies. Mol Neurobiol 2024:10.1007/s12035-024-04433-9. [PMID: 39230867 DOI: 10.1007/s12035-024-04433-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 08/08/2024] [Indexed: 09/05/2024]
Abstract
Cerebral ischemia‒reperfusion injury (CIRI) is a type of secondary brain damage caused by reperfusion after ischemic stroke due to vascular obstruction. In this study, a CIRI diagnostic model was established by identifying hypoxia-related differentially expressed genes (HRDEGs) in patients with CIRI. The ischemia‒reperfusion injury (IRI)-related datasets were downloaded from the Gene Expression Omnibus (GEO) database ( http://www.ncbi.nlm.nih.gov/geo ), and hypoxia-related genes in the Gene Cards database were identified. After the datasets were combined, hypoxia-related differentially expressed genes (HRDEGs) expressed in CIRI patients were identified. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of the HRDEGs were performed using online tools. Gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA) were performed with the combined gene dataset. CIRI diagnostic models based on HRDEGs were constructed via least absolute shrinkage and selection operator (LASSO) regression analysis and a support vector machine (SVM) algorithm. The efficacy of the 9 identified hub genes for CIRI diagnosis was evaluated via mRNA‒microRNA (miRNA) interaction, mRNA-RNA-binding protein (RBP) network interaction, immune cell infiltration, and receiver operating characteristic (ROC) curve analyses. We then performed logistic regression analysis and constructed logistic regression models based on the expression of the 9 HRDEGs. We next established a nomogram and calibrated the prediction data. Finally, the clinical utility of the constructed logistic regression model was evaluated via decision curve analysis (DCA). This study revealed 9 critical genes with high diagnostic value, offering new insights into the diagnosis and selection of therapeutic targets for patients with CIRI. : Not applicable.
Collapse
Affiliation(s)
- Kaiwen Sun
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Hongwei Li
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Yang Dong
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Lei Cao
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Dongpeng Li
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Jinghong Li
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Manxia Zhang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Dongming Yan
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China.
| | - Bo Yang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
3
|
Moztarzadeh S, Vargas-Robles H, Schnoor M, Radeva MY, Waschke J, Garcia-Ponce A. Erk1/2 is not required for endothelial barrier establishment despite its requirement for cAMP-dependent Rac1 activation in heart endothelium. Tissue Barriers 2024:2398875. [PMID: 39230159 DOI: 10.1080/21688370.2024.2398875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 09/05/2024] Open
Abstract
The contribution of Erk1/2 to endothelial barrier regulation is convoluted and differs depending on the vascular bed. We explored the effects of Erk1/2 inhibition on endothelial barrier maintenance and its relationship with cAMP-dependent barrier strengthening. Thus, myocardial endothelial cells (MyEnd) were isolated and protein expression, localization and activity of structural and signaling molecules involved in maintenance of endothelial function were investigated by Western blot, immunostainings and G-LISA, respectively. The transendothelial electrical resistance (TEER) from confluent MyEnd monolayers was measured and used as a direct indicator of barrier integrity in vitro. Miles assay was performed to evaluate vascular permeability in vivo. Erk1/2 inhibition with U0126 affected neither the structural organization of adherens or tight junctions nor the protein level of their components, However, TEER drop significantly upon U0126 application, but the effect was transitory as the barrier function recovered 30 min after treatment. Erk1/2 inhibition delayed cAMP-mediated barrier strengthening but did not prevent barrier fortification despite diminishing Rac1 activation. Moreover, Erk1/2 inhibition, induced vascular leakage that could be prevented by local cAMP elevation in vivo. Our data demonstrate that Erk1/2 is required to prevent vascular permeability but is not critical for cAMP-mediated barrier enhancement.
Collapse
Affiliation(s)
- Sina Moztarzadeh
- Chair of Vegetative Anatomy, Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Hilda Vargas-Robles
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, México
| | - Michael Schnoor
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, México
| | - Mariya Y Radeva
- Chair of Vegetative Anatomy, Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Jens Waschke
- Chair of Vegetative Anatomy, Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Alexander Garcia-Ponce
- Chair of Vegetative Anatomy, Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| |
Collapse
|
4
|
Xu Q, Zhao W, Yan M, Mei H. Neutrophil reverse migration. J Inflamm (Lond) 2022; 19:22. [PMID: 36424665 PMCID: PMC9686117 DOI: 10.1186/s12950-022-00320-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022] Open
Abstract
The behavior of neutrophils is very important for the resolution of inflammation and tissue repair. People have used advanced imaging techniques to observe the phenomenon of neutrophils leaving the injured or inflammatory site and migrating back into blood vessels in transgenic zebrafish and mice, which is called neutrophil reverse migration. Numerous studies have shown that neutrophil reverse migration is a double-edged sword. On the one hand, neutrophil reverse migration can promote the resolution of local inflammation by accelerating the clearance of neutrophils from local wounds. On the other hand, neutrophils re-enter the circulatory system may lead to the spread of systemic inflammation. Therefore, accurate regulation of neutrophil reverse migration is of great significance for the treatment of various neutrophil- mediated diseases. However, the mechanism of neutrophil reverse migration and its relationship with inflammation resolution is unknown. In this review, we reviewed the relevant knowledge of neutrophil reverse migration to elucidate the potential mechanisms and factors influencing reverse migration and its impact on inflammation in different disease processes.
Collapse
Affiliation(s)
- Qichao Xu
- grid.417384.d0000 0004 1764 2632Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, 109 Xueyuan Road, Wenzhou, Zhejiang Province People’s Republic of China 325027 ,grid.417384.d0000 0004 1764 2632Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, China
| | - Wenqi Zhao
- grid.417384.d0000 0004 1764 2632Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, 109 Xueyuan Road, Wenzhou, Zhejiang Province People’s Republic of China 325027 ,grid.417384.d0000 0004 1764 2632Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, China
| | - Mingyang Yan
- grid.417384.d0000 0004 1764 2632Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, 109 Xueyuan Road, Wenzhou, Zhejiang Province People’s Republic of China 325027 ,grid.417384.d0000 0004 1764 2632Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, China
| | - Hongxia Mei
- grid.417384.d0000 0004 1764 2632Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, 109 Xueyuan Road, Wenzhou, Zhejiang Province People’s Republic of China 325027 ,grid.417384.d0000 0004 1764 2632Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, China
| |
Collapse
|
5
|
Florido J, Martinez‐Ruiz L, Rodriguez‐Santana C, López‐Rodríguez A, Hidalgo‐Gutiérrez A, Cottet‐Rousselle C, Lamarche F, Schlattner U, Guerra‐Librero A, Aranda‐Martínez P, Acuña‐Castroviejo D, López LC, Escames G. Melatonin drives apoptosis in head and neck cancer by increasing mitochondrial ROS generated via reverse electron transport. J Pineal Res 2022; 73:e12824. [PMID: 35986493 PMCID: PMC9541246 DOI: 10.1111/jpi.12824] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/27/2022] [Accepted: 08/16/2022] [Indexed: 11/27/2022]
Abstract
The oncostatic effects of melatonin correlate with increased reactive oxygen species (ROS) levels, but how melatonin induces this ROS generation is unknown. In the present study, we aimed to elucidate the two seemingly opposing actions of melatonin regarding its relationship with free radicals. We analyzed the effects of melatonin on head and neck squamous cell carcinoma cell lines (Cal-27 and SCC-9), which were treated with 0.5 or 1 mM melatonin. We further examined the potential effects of melatonin to induce ROS and apoptosis in Cal-27 xenograft mice. Here we report that melatonin mediates apoptosis in head and neck cancer by driving mitochondrial reverse electron transport (RET) to induce ROS production. Melatonin-induced changes in tumoral metabolism led to increased mitochondrial activity, which, in turn, induced ROS-dependent mitochondrial uncoupling. Interestingly, mitochondrial complex inhibitors, including rotenone, abolished the ROS elevation indicating that melatonin increased ROS generation via RET. Melatonin also increased membrane potential and CoQ10 H2 /CoQ10 ratio to elevate mitochondrial ROS production, which are essential conditions for RET. We found that genetic manipulation of cancer cells with alternative oxidase, which transfers electrons from QH2 to oxygen, inhibited melatonin-induced ROS generation, and apoptosis. RET restored the melatonin-induced oncostatic effect, highlighting the importance of RET as the site of ROS production. These results illustrate that RET and ROS production are crucial factors in melatonin's effects in cancer cells and establish the dual effect of melatonin in protecting normal cells and inducing apoptosis in cancer cells.
Collapse
Affiliation(s)
- Javier Florido
- Institute of Biotechnology, Biomedical Research Center, Health Sciences Technology ParkUniversity of GranadaGranadaSpain
- Department of Physiology, Faculty of MedicineUniversity of GranadaGranadaSpain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Investigación Biosanitaria (Ibs), GranadaSan Cecilio University HospitalGranadaSpain
| | - Laura Martinez‐Ruiz
- Institute of Biotechnology, Biomedical Research Center, Health Sciences Technology ParkUniversity of GranadaGranadaSpain
- Department of Physiology, Faculty of MedicineUniversity of GranadaGranadaSpain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Investigación Biosanitaria (Ibs), GranadaSan Cecilio University HospitalGranadaSpain
| | - César Rodriguez‐Santana
- Institute of Biotechnology, Biomedical Research Center, Health Sciences Technology ParkUniversity of GranadaGranadaSpain
- Department of Physiology, Faculty of MedicineUniversity of GranadaGranadaSpain
| | - Alba López‐Rodríguez
- Institute of Biotechnology, Biomedical Research Center, Health Sciences Technology ParkUniversity of GranadaGranadaSpain
- Department of Physiology, Faculty of MedicineUniversity of GranadaGranadaSpain
| | - Agustín Hidalgo‐Gutiérrez
- Institute of Biotechnology, Biomedical Research Center, Health Sciences Technology ParkUniversity of GranadaGranadaSpain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Investigación Biosanitaria (Ibs), GranadaSan Cecilio University HospitalGranadaSpain
| | - Cécile Cottet‐Rousselle
- INSERM U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA)University of Grenoble AlpesGrenobleFrance
| | - Frédéric Lamarche
- INSERM U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA)University of Grenoble AlpesGrenobleFrance
| | - Uwe Schlattner
- INSERM U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA)University of Grenoble AlpesGrenobleFrance
| | - Ana Guerra‐Librero
- Institute of Biotechnology, Biomedical Research Center, Health Sciences Technology ParkUniversity of GranadaGranadaSpain
- Department of Physiology, Faculty of MedicineUniversity of GranadaGranadaSpain
| | - Paula Aranda‐Martínez
- Institute of Biotechnology, Biomedical Research Center, Health Sciences Technology ParkUniversity of GranadaGranadaSpain
- Department of Physiology, Faculty of MedicineUniversity of GranadaGranadaSpain
| | - Darío Acuña‐Castroviejo
- Institute of Biotechnology, Biomedical Research Center, Health Sciences Technology ParkUniversity of GranadaGranadaSpain
- Department of Physiology, Faculty of MedicineUniversity of GranadaGranadaSpain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Investigación Biosanitaria (Ibs), GranadaSan Cecilio University HospitalGranadaSpain
| | - Luis C. López
- Institute of Biotechnology, Biomedical Research Center, Health Sciences Technology ParkUniversity of GranadaGranadaSpain
- Department of Physiology, Faculty of MedicineUniversity of GranadaGranadaSpain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Investigación Biosanitaria (Ibs), GranadaSan Cecilio University HospitalGranadaSpain
| | - Germaine Escames
- Institute of Biotechnology, Biomedical Research Center, Health Sciences Technology ParkUniversity of GranadaGranadaSpain
- Department of Physiology, Faculty of MedicineUniversity of GranadaGranadaSpain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Investigación Biosanitaria (Ibs), GranadaSan Cecilio University HospitalGranadaSpain
| |
Collapse
|
6
|
Targhazeh N, Hutt KJ, Winship AL, Reiter R, Yousefi B. Melatonin as an oncostatic agent: Review of the modulation of tumor microenvironment and overcoming multidrug resistance. Biochimie 2022; 202:71-84. [PMID: 36116742 DOI: 10.1016/j.biochi.2022.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/01/2022] [Accepted: 09/12/2022] [Indexed: 11/25/2022]
Abstract
Multi drug resistance (MDR) generally limits the efficacy of chemotherapy in cancer patients and can be categorized into primary or acquired resistance. Melatonin (MLT), a lipophilic hormone released from pineal gland, is a molecule with oncostatic effects. Here, we will briefly review the contribution of different microenvironmental components including fibroblasts, immune and inflammatory cells, stem cells and vascular endothelial cells in tumor initiation, progression and development. Then, the mechanisms by which MLT can potentially affect these elements and regulate drug resistance will be presented. Finally, we will explain how different studies have used novel strategies incorporating MLT to suppress cancer resistance against therapeutics.
Collapse
Affiliation(s)
- Niloufar Targhazeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Karla J Hutt
- Development and Stem Cell Program and Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Amy L Winship
- Development and Stem Cell Program and Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Russel Reiter
- Department of Cellular and Structural Biology, The University of Texas Health Science Center, San Antonio, TX, USA.
| | - Bahman Yousefi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Understanding the Mechanism of Action of Melatonin, Which Induces ROS Production in Cancer Cells. Antioxidants (Basel) 2022; 11:antiox11081621. [PMID: 36009340 PMCID: PMC9404709 DOI: 10.3390/antiox11081621] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 01/01/2023] Open
Abstract
Reactive oxygen species (ROS) constitute a group of highly reactive molecules that have evolved as regulators of important signaling pathways. In this context, tumor cells have an altered redox balance compared to normal cells, which can be targeted as an antitumoral therapy by ROS levels and by decreasing the capacity of the antioxidant system, leading to programmed cell death. Melatonin is of particular importance in the development of innovative cancer treatments due to its oncostatic impact and lack of adverse effects. Despite being widely recognized as a pro-oxidant molecule in tumor cells, the mechanism of action of melatonin remains unclear, which has hindered its use in clinical treatments. The current review aims to describe and clarify the proposed mechanism of action of melatonin inducing ROS production in cancer cells in order to propose future anti-neoplastic clinical applications.
Collapse
|
8
|
Jiang L, Liu C, Zhao B, Ma C, Yin Y, Zhou Q, Xu L, Mao R. Time of Day-Dependent Alteration of Hippocampal Rac1 Activation Regulates Contextual Fear Memory in Rats. Front Mol Neurosci 2022; 15:871679. [PMID: 35782392 PMCID: PMC9245039 DOI: 10.3389/fnmol.2022.871679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/13/2022] [Indexed: 12/03/2022] Open
Abstract
Fear memory in species varies according to the time of the day. Although the underlying molecular mechanisms have been extensively explored, they remain largely unknown. Here, we report that hippocampal Rac1 activity undergoes a time of day-dependent alteration both in nocturnal rats and diurnal tree shrews and that training at the lower hippocampal Rac1 activation period during the night leads to better contextual fear memory in rats. Furthermore, day and night reversion by 24 h darkness/24 h light housing inverses the external clock time of hippocampal Rac1 activation, but the better contextual fear memory still coincides with the lower Rac1 activation in rats during the night. Interestingly, exogenous melatonin treatment promotes hippocampal Rac1 activity and impairs better contextual fear memory acquired at the lower Rac1 activation period during the night, and Rac1-specific inhibitor NSC23766 compromises the effect of melatonin. These results suggest that the time of day-dependent alteration of hippocampal Rac1 activation regulates contextual fear memory in rats by forgetting.
Collapse
Affiliation(s)
- Lizhu Jiang
- CAS Key Laboratory of Animal Models and Human Disease Mechanisms, KIZ-SU Joint Laboratory of Animal Model and Drug Development, Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Department of Clinical Psychology, The Third People’s Hospital of Yunnan Province, Kunming, China
- Department of Neuropsychopathy, Clinical Medical School, Dali University, Dali, China
| | - Chao Liu
- CAS Key Laboratory of Animal Models and Human Disease Mechanisms, KIZ-SU Joint Laboratory of Animal Model and Drug Development, Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Baizhen Zhao
- CAS Key Laboratory of Animal Models and Human Disease Mechanisms, KIZ-SU Joint Laboratory of Animal Model and Drug Development, Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Chen Ma
- CAS Key Laboratory of Animal Models and Human Disease Mechanisms, KIZ-SU Joint Laboratory of Animal Model and Drug Development, Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Yan Yin
- Department of Clinical Psychology, The Third People’s Hospital of Yunnan Province, Kunming, China
| | - Qixin Zhou
- CAS Key Laboratory of Animal Models and Human Disease Mechanisms, KIZ-SU Joint Laboratory of Animal Model and Drug Development, Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Lin Xu
- CAS Key Laboratory of Animal Models and Human Disease Mechanisms, KIZ-SU Joint Laboratory of Animal Model and Drug Development, Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
- CAS Centre for Excellence in Brain Science and Intelligent Technology, Shanghai, China
- *Correspondence: Lin Xu,
| | - RongRong Mao
- Department of Pathology and Pathophysiology, School of Basic Medical Science, Kunming Medical University, Kunming, China
- RongRong Mao,
| |
Collapse
|
9
|
Wang Y, Jian Y, Zhang X, Ni B, Wang M, Pan C. Melatonin protects H9c2 cardiomyoblasts from oxygen-glucose deprivation and reperfusion-induced injury by inhibiting Rac1/JNK/Foxo3a/Bim signaling pathway. Cell Biol Int 2021; 46:415-426. [PMID: 34882903 DOI: 10.1002/cbin.11739] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/17/2021] [Accepted: 12/04/2021] [Indexed: 11/06/2022]
Abstract
Melatonin has been shown to protect against ischemia/reperfusion (I/R)-induced myocardial injury, however, the precise molecular mechanisms have not been fully clarified. The present study was aimed to investigate whether inactivation of Rac1/JNK/Foxo3a/Bim signaling pathway is responsible for the protective effect of melatonin on I/R-induced myocardial injury. Our results showed that Foxo3a downregulation contributed to the protective effect of melatonin on OGD/R-induced injury of H9c2 cardiomyoblasts. Melatonin treatment led to a reduced activity of Rac1, which was responsible for Foxo3a downregulation and decreased cell injury in OGD/R-exposed H9c2 cells. Furthermore, JNK acts as a downstream effector of Rac1 in mediating melatonin-induced inactivation of Foxo3a/Bim signaling pathway and decreased cell injury in OGD/R-exposed H9c2 cells. In conclusion, our results indicate that melatonin protects H9c2 cells against OGD/R-induced injury by inactivating the Rac1/JNK/Foxo3a/Bim signaling pathway. This study provided a novel insight into the protective mechanism of melatonin against I/R-induced myocardial injury.
Collapse
Affiliation(s)
- Yulin Wang
- Department of Emergency Center, The Second Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Ying Jian
- Department of Cardiology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Xiaofu Zhang
- Department of Cardiology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Bin Ni
- Department of Cardiology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Mingwei Wang
- Department of Cardiology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Chunqi Pan
- Department of Cardiology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
10
|
Liu W, Zhang L, Sun S, Tang LS, He SM, Chen AQ, Yao LN, Ren DL. Cordycepin inhibits inflammatory responses through suppression of ERK activation in zebrafish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 124:104178. [PMID: 34157317 DOI: 10.1016/j.dci.2021.104178] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/03/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
As a natural extract, cordycepin has been shown to play important regulatory roles in many life activities. In the study, the effects of cordycepin on inflammatory responses and the underlying mechanisms was explored using a zebrafish model. In the model of LPS-induced inflammation, cordycepin was found to significantly inhibited the expression of pro-inflammatory cytokines such as tnf-α, il-1β, il-6, and il-8. Using in vivo imaging model, cordycepin significantly inhibited fluorescent-labeled neutrophils migrating towards injury sites. Furthermore, results showed that the phosphorylation level of ERK protein dramatically decreased after cordycepin treatment. Meanwhile, the ERK inhibitor, PD0325901, significantly inhibited the expression of pro-inflammatory cytokines in LPS-induced inflammatory model and neutrophils migration in the caudal fin injury model. This study indicated the important roles of cordycepin in inhibiting LPS and injury-induced inflammation and preliminarily explained the role of ERK protein in this process.
Collapse
Affiliation(s)
- Wei Liu
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
| | - Ling Zhang
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
| | - Shuo Sun
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
| | - Long-Sheng Tang
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
| | - Shi-Min He
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
| | - An-Qi Chen
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
| | - Li-Na Yao
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
| | - Da-Long Ren
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
11
|
Lovastatin suppresses bacterial therapy-induced neutrophil recruitment to the tumor by promoting neutrophil apoptosis. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
12
|
Zhang W, Piao L, Liu X. Chlorogenic acid suppresses neutrophil recruitment to tumors by inducing apoptosis and reverse migration. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
13
|
Melatonin Antagonizes Nickel-Induced Aerobic Glycolysis by Blocking ROS-Mediated HIF-1 α/miR210/ISCU Axis Activation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5406284. [PMID: 32566089 PMCID: PMC7275958 DOI: 10.1155/2020/5406284] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/10/2020] [Accepted: 04/29/2020] [Indexed: 11/23/2022]
Abstract
Nickel and its compounds, which are well-documented carcinogens, induce the Warburg effect in normal cells by stabilizing hypoxia-inducible factor 1α (HIF-1α). Melatonin has shown diverse anticancer properties for its reactive oxygen species- (ROS-) scavenging ability. Our aim was to explore how melatonin antagonized a nickel-induced increment in aerobic glycolysis. In the current work, a normal human bronchial epithelium cell line (BEAS-2B) was exposed to a series of nonlethal doses of NiCl2, with or without 1 mM melatonin. Melatonin attenuated nickel-enhanced aerobic glycolysis. The inhibition effects on aerobic glycolysis were attributed to the capability of melatonin to suppress the regulatory axis comprising HIF-1α, microRNA210 (miR210), and iron-sulfur cluster assembly scaffold protein (ISCU1/2). N-Acetylcysteine (NAC) manifested similar effects as melatonin in scavenging ROS, maintaining prolyl-hydroxylase activity, and mitigating HIF-1α transcriptional activity in nickel-exposed cells. Our results indicated that ROS generation contributed to nickel-caused HIF-1α stabilization and downstream signal activation. Melatonin could antagonize HIF-1α-controlled aerobic glycolysis through ROS scavenging.
Collapse
|
14
|
Mirza-Aghazadeh-Attari M, Reiter RJ, Rikhtegar R, Jalili J, Hajalioghli P, Mihanfar A, Majidinia M, Yousefi B. Melatonin: An atypical hormone with major functions in the regulation of angiogenesis. IUBMB Life 2020; 72:1560-1584. [PMID: 32329956 DOI: 10.1002/iub.2287] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/10/2020] [Accepted: 03/26/2020] [Indexed: 02/06/2023]
Abstract
Melatonin (N-acetyl-5-methoxytryptamine), a pleotropic molecule with a wide distribution, has received considerable attention in recent years, mostly because of its various major effects on tissues or cells since it has both receptor-dependent and receptor-independent actions over a wide range of concentrations. These biological and physiological functions of melatonin include regulation of circadian rhythms by modulating the expression of core oscillator genes, scavenging the reactive oxygen species and reactive nitrogen species, modulating the immune system and inflammatory response, and exerting cytoprotective and antiapoptotic effects. Given the multiple critical roles of melatonin, dysregulation of its production or any disruption in signaling through its receptors may have contributed in the development of a wide range of disorders including type 2 diabetes, aging, immune-mediated diseases, hypertension, and cancer. Herein, we focus on the modulatory effects of melatonin on angiogenesis and its implications as a therapeutic strategy in cancer and related diseases.
Collapse
Affiliation(s)
- Mohammad Mirza-Aghazadeh-Attari
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Reza Rikhtegar
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Jalili
- Radiology Department, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Hajalioghli
- Radiology Department, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ainaz Mihanfar
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
15
|
Tabata Y, Yoshino D, Funamoto K, Koens R, Kamm RD, Funamoto K. Migration of vascular endothelial cells in monolayers under hypoxic exposure. Integr Biol (Camb) 2020; 11:26-35. [PMID: 31584068 DOI: 10.1093/intbio/zyz002] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 11/26/2018] [Accepted: 01/02/2019] [Indexed: 11/13/2022]
Abstract
The hypoxic microenvironment existing in vivo is known to significantly affect cell morphology and dynamics, and cell group behaviour. Collective migration of vascular endothelial cells is essential for vasculogenesis and angiogenesis, and for maintenance of monolayer integrity. Although hypoxic stress increases vascular endothelial permeability, the changes in collective migration and intracellular junction morphology of vascular endothelial cells remain poorly understood. This study reveals the migration of confluent vascular endothelial cells and changes in their adherens junction, as reflected by changes in the vascular endothelial (VE)-cadherin distribution, under hypoxic exposure. Vascular endothelial monolayers of human umbilical vein endothelial cells (HUVECs) were formed in microfluidic devices with controllability of oxygen tension. The oxygen tension was set to either normoxia (21% O2) or hypoxia (<3% O2) by supplying gas mixtures into separate gas channels. The migration velocity of HUVECs was measured using particle image velocimetry with a time series of phase-contrast microscopic images of the vascular endothelial monolayers. Hypoxia inducible factor-1α (HIF-1α) and VE-cadherin in HUVECs were observed after exposure to normoxic or hypoxic conditions using immunofluorescence staining and quantitative confocal image analysis. Changes in the migration speed of HUVECs were observed in as little as one hour after exposure to hypoxic condition, showing that the migration speed was increased 1.4-fold under hypoxia compared to that under normoxia. Nuclear translocation of HIF-1α peaked after the hypoxic gas mixture was supplied for 2 h. VE-cadherin expression was also found to be reduced. When ethanol was added to the cell culture medium, cell migration increased. By contrast, by strengthening VE-cadherin junctions with forskolin, cell migration decreased gradually in spite the effect of ethanol to stimulate migration. These results indicate that the increase of cell migration by hypoxic exposure was attributable to loosening of intercellular junction resulting from the decrease of VE-cadherin expression.
Collapse
Affiliation(s)
- Yugo Tabata
- Graduate School of Biomedical Engineering, Tohoku University, 6-6-12 Aramaki-aza Aoba, Aoba-ku, Sendai, Miyagi, Japan
| | - Daisuke Yoshino
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki-aza Aoba, Aoba-ku, Sendai, Miyagi, Japan
| | - Kiyoe Funamoto
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki-aza Aoba, Aoba-ku, Sendai, Miyagi, Japan
| | - Rei Koens
- Graduate School of Biomedical Engineering, Tohoku University, 6-6-12 Aramaki-aza Aoba, Aoba-ku, Sendai, Miyagi, Japan
| | - Roger D Kamm
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, USA
| | - Kenichi Funamoto
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki-aza Aoba, Aoba-ku, Sendai, Miyagi, Japan
| |
Collapse
|
16
|
Liu L, Zhang L, Zhao S, Zhao XY, Min PX, Ma YD, Wang YY, Chen Y, Tang SJ, Zhang YJ, Du J, Gu L. Non-canonical Notch Signaling Regulates Actin Remodeling in Cell Migration by Activating PI3K/AKT/Cdc42 Pathway. Front Pharmacol 2019; 10:370. [PMID: 31057403 PMCID: PMC6477508 DOI: 10.3389/fphar.2019.00370] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/26/2019] [Indexed: 12/31/2022] Open
Abstract
Tumor cell migration is a critical step in cancer metastasis. Over-activated Notch pathway can promote the migration of cancer cells, especially in the breast cancer. However, the underlying mechanism of non-canonical Notch signaling in modulating the migration has not yet been clearly characterized. Here we demonstrated that DAPT, a gamma secretase inhibitor, inhibited protrusion formation and cell motility, and then reduced the migration of triple-negative breast cancer cells, through increasing the activity of Cdc42 by non-canonical Notch pathway. Phosphorylation of AKT on S473 was surprisingly increased when Notch signaling was inhibited by DAPT. Inhibition of PI3K and AKT by LY294002 and MK2206, respectively, or knockdown of AKT expression by siRNA blocked DAPT-induced activation of Cdc42. Moreover, immunofluorescence staining further showed that DAPT treatment reduced the formation of lamellipodia and induced actin cytoskeleton remodeling. Taken together, these results indicated that DAPT inhibited Notch signaling and consequently activated PI3K/AKT/Cdc42 signaling by non-canonical pathway, facilitated the formation of filopodia and inhibited the assembly of lamellipodia, and finally resulted in the decrease of migration activity of breast cancer cells.
Collapse
Affiliation(s)
- Lei Liu
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | - Lin Zhang
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Shuo Zhao
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Xu-Yang Zhao
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Peng-Xiang Min
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Ya-Dong Ma
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Yue-Yuan Wang
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Yan Chen
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Si-Jie Tang
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Yu-Jie Zhang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Jun Du
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Luo Gu
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Physiology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
17
|
González-González A, González A, Rueda N, Alonso-González C, Menéndez-Menéndez J, Gómez-Arozamena J, Martínez-Campa C, Cos S. Melatonin Enhances the Usefulness of Ionizing Radiation: Involving the Regulation of Different Steps of the Angiogenic Process. Front Physiol 2019; 10:879. [PMID: 31354524 PMCID: PMC6637960 DOI: 10.3389/fphys.2019.00879] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/24/2019] [Indexed: 02/05/2023] Open
Abstract
Radiotherapy is a part of cancer treatment. To improve its efficacy has been combined with radiosensitizers such as antiangiogenic agents. Among the mechanisms of the antitumor action of melatonin are antiangiogenic effects. Our goal was to investigate whether melatonin may modulate the sensitivity of endothelial cells (HUVECs) to ionizing radiation. Melatonin (1 mM) enhanced the inhibition induced by radiation on different steps of the angiogenic process, cell proliferation, migration, and tubular network formation. In relation with the activity and expression of enzymes implicated in estrogen synthesis, in co-cultures HUVECs/MCF-7, radiation down-regulated aromatase mRNA expression, aromatase endothelial-specific promoter I.7, sulfatase activity and expression and 17β-HSD1 activity and expression and melatonin enhanced these effects. Radiation and melatonin induced a significant decrease in VEGF, ANG-1, and ANG-2 mRNA expression. In ANG-2 and VEGF mRNA expression melatonin potentiated the inhibitory effect induced by radiation. In addition, melatonin counteracted the stimulatory effect of radiation on FGFR3, TGFα, JAG1, IGF-1, and KDR mRNA expression and reduced ANPEP expression. In relation with extracellular matrix molecules, radiation increased MMP14 mRNA expression and melatonin counteracted the stimulatory effect of radiation on MMP14 mRNA expression and increased TIMP1 expression, an angiogenesis inhibitor. Melatonin also counteracted the stimulatory effect of radiation on CXCL6, CCL2, ERK1, ERK2, and AKT1 mRNA expression and increased the inhibitory effect of radiation on NOS3 expression. In CAM assay, melatonin enhanced the reduction of the vascular area induced by radiation. Melatonin potentiated the inhibitory effect on the activation of p-AKT and p-ERK exerted by radiation. Antiangiogenic effect of melatonin could be mediated through AKT and ERK pathways, proteins involved in vascular endothelial (VE) cell growth, cell proliferation, survival, migration, and angiogenesis. In addition, radiation increased endothelial cell permeability and melatonin counteracted it by regulating the internalization of VE-cadherin. Radiation has some side effects on angiogenesis that may reduce its effectiveness against tumor growth and melatonin is able to neutralize these negative actions of radiation. Additionally, melatonin potentiated radiation-induced antiangiogenic actions on several steps of the angiogenic process and enhanced its antitumor action. Our findings point to melatonin as a useful molecule as adjuvant to radiotherapy in cancer treatment.
Collapse
Affiliation(s)
- Alicia González-González
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Santander, Spain
| | - Alicia González
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Santander, Spain
- *Correspondence: Alicia González,
| | - Noemí Rueda
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Santander, Spain
| | - Carolina Alonso-González
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Santander, Spain
| | - Javier Menéndez-Menéndez
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Santander, Spain
| | - José Gómez-Arozamena
- Department of Medical Physics, School of Medicine, University of Cantabria, Santander, Spain
| | - Carlos Martínez-Campa
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Santander, Spain
- Carlos Martínez-Campa,
| | - Samuel Cos
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Santander, Spain
| |
Collapse
|
18
|
Monte F, Cebe T, Ripperger D, Ighani F, Kojouharov HV, Chen BM, Kim HKW, Aswath PB, Varanasi VG. Ionic silicon improves endothelial cells' survival under toxic oxidative stress by overexpressing angiogenic markers and antioxidant enzymes. J Tissue Eng Regen Med 2018; 12:2203-2220. [PMID: 30062712 PMCID: PMC6508967 DOI: 10.1002/term.2744] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 06/11/2018] [Accepted: 07/17/2018] [Indexed: 11/10/2022]
Abstract
Oxidative stress, induced by harmful levels of reactive oxygen species, is a common occurrence that impairs proper bone defect vascular healing through the impairment of endothelial cell function. Ionic silicon released from silica-based biomaterials, can upregulate hypoxia-inducible factor-1α (HIF-1α). Yet it is unclear whether ionic Si can restore endothelial cell function under oxidative stress conditions. Therefore, we hypothesized that ionic silicon can help improve human umbilical vein endothelial cells' (HUVECs') survival under toxic oxidative stress. In this study, we evaluated the ionic jsilicon effect on HUVECs viability, proliferation, migration, gene expression, and capillary tube formation under normal conditions and under harmful hydrogen peroxide levels. We demonstrated that 0.5-mM Si4+ significantly enhanced angiogenesis in HUVECs under normal condition (p < 0.05). HUVECs exposed to 0.5-mM Si4+ presented a morphological change, even without the bed of Matrigel, and formed significantly more tube-like structures than the control (p < 0.001). In addition, 0.5-mM Si4+ enhanced cell viability in HUVECs under harmful H2 O2 levels. HIF-1α, vascular endothelial growth factor-A, and vascular endothelial growth factor receptor-2 were overexpressed more than twofold in silicon-treated HUVECs, under normal and toxic H2 O2 conditions. Moreover, the HUVECs were treated with 0.5-mM Si4+ overexpressed superoxide dismutase-1 (SOD-1), catalase-1 (Cat-1), and nitric oxide synthase-3 (NOS3) under normal and oxidative stress environment (p < 0.01). A computational model was used for explaining the antioxidant effect of Si4+ in endothelial cells and human periosteum cells by SOD-1 enhancement. In conclusion, we demonstrated that 0.5-mM Si4+ can recover the HUVECs' viability under oxidative stress conditions by reducing cell death and upregulating expression of angiogenic and antioxidant factors.
Collapse
Affiliation(s)
- Felipe Monte
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas
- Center for Excellence in Hip Disorders, Texas Scottish Rite Hospital, Dallas, Texas
| | - Tugba Cebe
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas
| | | | - Fareed Ighani
- Texas A&M University College of Dentistry, Dallas, Texas
| | | | - Benito M. Chen
- Department of Mathematics, University of Texas at Arlington, Arlington, Texas
| | - Harry K. W. Kim
- Center for Excellence in Hip Disorders, Texas Scottish Rite Hospital, Dallas, Texas
- Department of Orthopedic Surgery, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Pranesh B. Aswath
- Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, Texas
| | - Venu G. Varanasi
- Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, Texas
- Department of College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, Texas
| |
Collapse
|
19
|
Zhao S, Wang Y, Zhang X, Zheng L, Zhu B, Yao S, Yang L, Du J. Melatonin Protects Against Hypoxia/Reoxygenation-Induced Dysfunction of Human Umbilical Vein Endothelial Cells Through Inhibiting Reactive Oxygen Species Generation. ACTA CARDIOLOGICA SINICA 2018; 34:424-431. [PMID: 30271093 PMCID: PMC6160513 DOI: 10.6515/acs.201809_34(5).20180708a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 07/08/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Hypoxia/reoxygenation (H/R) in human umbilical vein endothelial cells (HUVECs) induces oxidative stress and eventually leads to vascular injury. OBJECTIVE The aim of this study was to examine the effect of melatonin on HUVECs injured by H/R and explore the underlying mechanisms. MATERIALS AND METHODS A model of HUVECs under hypoxia/reoxygenation was established. Cell migration and adhesive ability was measured by wound healing and adhesion assays. Cell proliferation was measured by EdU assay. Production of reactive oxygen species (ROS) was evaluated by CM-H2DCFDA staining. Actin cytoskeleton rearrangement was examined by immunofluorescence. Western blotting analysis were used to analyze P38 and HSP27 phosphorylation levels. RESULTS H/R inhibited HUVEC proliferation, cell migratory and adhesive capacities, whereas melatonin (1~100 μM) inhibited these effects in a dose-dependent manner. Melatonin alone did not affect HUVEC viability, however, it inhibited the increase in ROS production and cytoskeleton disruption elicited by H/R, and it dose-dependently prevented H/R-induced upregulation of P38 and HSP27 phosphorylation. In addition, the ROS scavenger N-acetyl-L-cysteine markedly inhibited increased phosphorylation levels of P38 and HSP27 under H/R. CONCLUSIONS Melatonin may have a potential clinical effect in trials of H/R-induced vascular injury through its antioxidant property.
Collapse
Affiliation(s)
- Shuo Zhao
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166
| | - Yueyuan Wang
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166
| | | | | | | | | | - Ling Yang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China
| | - Jun Du
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166
| |
Collapse
|
20
|
Xu H, Yuan Y, Wu W, Zhou M, Jiang Q, Niu L, Ji J, Liu N, Zhang L, Wang X. Hypoxia stimulates invasion and migration of human cervical cancer cell lines HeLa/SiHa through the Rab11 trafficking of integrin αvβ3/FAK/PI3K pathway-mediated Rac1 activation. J Biosci 2018; 42:491-499. [PMID: 29358562 DOI: 10.1007/s12038-017-9699-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hypoxia plays a key role in tumour cell survival, invasion, and metastasis. An increasing number of studies have attempted to characterize the tumour response to hypoxia and to identify predictive markers of disease. Here we show that hypoxia increases tumour cell invasion and migration by the modulation of Rab11, an important molecule for vesicular trafficking. In our study, we found that Rab11, together with the activation of Rac1, could stimulate invasion and migration of cervical cancer cell lines HeLa/SiHa in hypoxia. Activation of Rac1 activity by hypoxia seems to be central to carcinoma invasion. We also found that these effects could be related to the integrin αvβ3. In addition, we studied the molecular pathway for this process. Our results showed that in cervical cancer cell lines HeLa/SiHa, Rac1 activation in hypoxia could stimulate invasion and migration, and this process was mediated by integrin αvβ3-mediated FAK and PI3K phosphorylation. Furthermore, hypoxia induced a dramatic increase in αvβ3 integrin surface expression, and this increase is dependent on Rab11. In conclusion, our study might provide a new mechanism for the effect of hypoxia on stimulating cervical carcinoma invasion.
Collapse
Affiliation(s)
- Hao Xu
- Department of Radiotherapy, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Cavalcante PA, Prata MMG, Medeiros PHQS, Alves da Silva AV, Quetz JS, Reyes MAV, Rodrigues TS, Santos AKS, Ribeiro SA, Veras HN, Bona MD, Amaral MSMG, Rodrigues FAP, Lima IFN, Havt A, Lima AAM. Intestinal cell migration damage induced by enteropathogenic Escherichia coli strains. ACTA ACUST UNITED AC 2018; 51:e7423. [PMID: 30066727 PMCID: PMC6065879 DOI: 10.1590/1414-431x20187423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 05/24/2018] [Indexed: 01/27/2023]
Abstract
Epithelial cell migration is an essential response to enteric pathogens such as enteropathogenic Escherichia coli (EPEC). This study aimed to investigate the effects of EPEC infection on intestinal epithelial cell migration in vitro, as well as the involvement of type III secretion system (T3SS) and Rho GTPases. Crypt intestinal epithelial cells (IEC-6) were infected with EPEC strains (E2348/69, ΔescF, and the LDI001 strain isolated from a malnourished Brazilian child) and commensal E. coli HS. Wound migration and cell death assays were performed at different time-points. Transcription and expression of Rho GTPases were evaluated using real-time PCR and western blotting. Overall, EPEC E2348/69 reduced migration and increased apoptosis and necrosis levels compared to EPEC LDI001 and E. coli HS strains. Moreover, EPEC LDI001 impaired cell migration at a higher level than E. coli HS and increased necrosis after 24 hours compared to the control group. The different profiles of virulence genes between the two wild-type EPEC strains, characterized by the absence of espL and nleE genes in the LDI001, might explain the phenotypic results, playing significant roles on cell migration impairment and cell death-related events. Moreover, the type III secretion system is determinant for the inhibition of intestinal epithelial cell migration by EPEC 2348/69, as its deletion prevented the effect. Active Rac1 concentrations were increased in E2348/69 and LDI001-infected cells, while the T3SS-deficient strain did not demonstrate this activation. This study contributes with valuable insight to characterize the mechanisms involved in the impairment of intestinal cell migration induced by EPEC.
Collapse
Affiliation(s)
- P A Cavalcante
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Instituto de Biomedicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - M M G Prata
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Instituto de Biomedicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - P H Q S Medeiros
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Instituto de Biomedicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - A V Alves da Silva
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Instituto de Biomedicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - J S Quetz
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Instituto de Biomedicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - M A V Reyes
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Instituto de Biomedicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - T S Rodrigues
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Instituto de Biomedicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - A K S Santos
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Instituto de Biomedicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - S A Ribeiro
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Instituto de Biomedicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - H N Veras
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Instituto de Biomedicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - M D Bona
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Instituto de Biomedicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - M S M G Amaral
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Instituto de Biomedicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - F A P Rodrigues
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Instituto de Biomedicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - I F N Lima
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Instituto de Biomedicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - A Havt
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Instituto de Biomedicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - A A M Lima
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Instituto de Biomedicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| |
Collapse
|
22
|
Talib WH. Melatonin and Cancer Hallmarks. Molecules 2018; 23:molecules23030518. [PMID: 29495398 PMCID: PMC6017729 DOI: 10.3390/molecules23030518] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 02/09/2018] [Accepted: 02/19/2018] [Indexed: 02/07/2023] Open
Abstract
Melatonin is a natural indoleamine produced by the pineal gland that has many functions, including regulation of the circadian rhythm. Many studies have reported the anticancer effect of melatonin against a myriad of cancer types. Cancer hallmarks include sustained proliferation, evading growth suppressors, metastasis, replicative immortality, angiogenesis, resisting cell death, altered cellular energetics, and immune evasion. Melatonin anticancer activity is mediated by interfering with various cancer hallmarks. This review summarizes the anticancer role of melatonin in each cancer hallmark. The studies discussed in this review should serve as a solid foundation for researchers and physicians to support basic and clinical studies on melatonin as a promising anticancer agent.
Collapse
Affiliation(s)
- Wamidh H Talib
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931-166, Jordan.
| |
Collapse
|
23
|
Goradel NH, Asghari MH, Moloudizargari M, Negahdari B, Haghi-Aminjan H, Abdollahi M. Melatonin as an angiogenesis inhibitor to combat cancer: Mechanistic evidence. Toxicol Appl Pharmacol 2017; 335:56-63. [DOI: 10.1016/j.taap.2017.09.022] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/13/2017] [Accepted: 09/28/2017] [Indexed: 12/15/2022]
|
24
|
Zhang L, Jia YH, Zhao XS, Zhou FH, Pan YY, Wan Q, Cui XB, Sun XG, Chen YY, Zhang Y, Cheng SB. Trichosanatine alleviates oxidized low-density lipoprotein induced endothelial cells injury via inhibiting the LOX-1/p38 MAPK pathway. Am J Transl Res 2016; 8:5455-5464. [PMID: 28078016 PMCID: PMC5209496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 10/02/2016] [Indexed: 06/06/2023]
Abstract
The LOX-1/p38 mitogen-activated protein kinase (MAPK) pathway has been proved to participate in the endothelial dysfunction in atherosclerosis. Trichosanatineis is an active compound isolated from the peel of Trichosanthes kirilowii. This study aims to determine whether trichosanatine prevents the oxidized low-density lipoprotein (ox-LDL)-induced insult through inhibition of the LOX-1/p38 MAPK pathway in HUVECs. HUVECs were treated with 150 mg/ml ox-LDL for 24 h to establish an ox-LDL-induced endothelial injury model. Cell viability, mitochondrial membrane potential (MMP), apoptosis, reactive oxygen species (ROS) level, LOX-1 and p38 MAPK expression level were measured. The results indicated that HUVECs were pretreated with either 100 mM trichosanatine or LOX-1 shRNA prior to exposure to ox-LDL for 24 h. Exposure of HUVECs to 150 mg/ml ox-LDL for 24 h significantly up-regulated the expression levels of LOX-1. The increased expression levels of LOX-1 were markedly attenuated by pretreatment with 100 mM trichosanatine. In addition, the ox-LDL-induced increase in phosphorylated (p) p38 MAPK expression was ameliorated by pretreatment with LOX-1 shRNA. Pretreatment of HUVECs with either trichosanatine or LOX-1 shRNA before exposure to ox-LDL significantly inhibited the ox-LDL-induced injuries, as evidenced by an increase in cell viability, a decrease in apoptotic cells, a ROS generation and a loss of MMP. In conclusion, we have demonstrated for the first time that the LOX-1/p38 MAPK pathway contributes to the ox-LDL-induced injury in HUVECs. Meanwhile, the trichosanatine protects the HUVECs against ox-LDL-induced injury at least in part by inhibiting the activated of LOX-1/p38 MAPK pathway.
Collapse
Affiliation(s)
- Lei Zhang
- School of Traditional Chinese Medicine, Southern Medical University Guangzhou 510515, P. R. China
| | - Yu-Hua Jia
- School of Traditional Chinese Medicine, Southern Medical University Guangzhou 510515, P. R. China
| | - Xiao-Shan Zhao
- School of Traditional Chinese Medicine, Southern Medical University Guangzhou 510515, P. R. China
| | - Feng-Hua Zhou
- School of Traditional Chinese Medicine, Southern Medical University Guangzhou 510515, P. R. China
| | - Yun-Yun Pan
- School of Traditional Chinese Medicine, Southern Medical University Guangzhou 510515, P. R. China
| | - Qiang Wan
- School of Traditional Chinese Medicine, Southern Medical University Guangzhou 510515, P. R. China
| | - Xiao-Bing Cui
- School of Traditional Chinese Medicine, Southern Medical University Guangzhou 510515, P. R. China
| | - Xue-Gang Sun
- School of Traditional Chinese Medicine, Southern Medical University Guangzhou 510515, P. R. China
| | - Yu-Yao Chen
- School of Traditional Chinese Medicine, Southern Medical University Guangzhou 510515, P. R. China
| | - Yu Zhang
- School of Traditional Chinese Medicine, Southern Medical University Guangzhou 510515, P. R. China
| | - Sai-Bo Cheng
- School of Traditional Chinese Medicine, Southern Medical University Guangzhou 510515, P. R. China
| |
Collapse
|
25
|
Son GW, Yang H, Park HR, Lee SE, Jin YH, Park CS, Park YS. Analysis of miRNA expression profiling in melatonin-exposured endothelial cells. Mol Cell Toxicol 2016. [DOI: 10.1007/s13273-016-0010-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Ren DL, Sun AA, Li YJ, Chen M, Ge SC, Hu B. Exogenous melatonin inhibits neutrophil migration through suppression of ERK activation. J Endocrinol 2015; 227:49-60. [PMID: 26303298 DOI: 10.1530/joe-15-0329] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/24/2015] [Indexed: 01/04/2023]
Abstract
Neutrophil migration to inflammatory sites is the fundamental process of innate immunity among organisms against pathogen invasion. As a major sleep adjusting hormone, melatonin has also been proved to be involved in various inflammatory events. This study aimed to evaluate the impact of exogenous melatonin on neutrophil migration to the injury site in live zebrafish and further investigate whether ERK signaling is involved in this process. Using the tail fin transection model, the fluorescently labeled neutrophil was in vivo visualized in transgenic Tg(lyz:EGFP), Tg(lyz:DsRed) zebrafish. We found that exogenous melatonin administration dramatically inhibited the injury-induced neutrophil migration in a dose-dependent and time-dependent manner. The inhibited effect of melatonin on neutrophil migration could be attenuated by melatonin receptor 1, 2, and 3 antagonists. The ERK phosphorylation level was significantly decreased post injury when treated with melatonin. The blocking of ERK activation with inhibitor PD0325901 suppressed the number of migrated neutrophils in response to injury. However, the activation of ERK with the epidermal growth factor could impair the inhibited effect of melatonin on neutrophil migration. We also detected that PD0325901 significantly suppressed the in vivo neutrophils transmigrating over the vessel endothelial cell using the transgenic Tg(flk:EGFP);(lyz:DsRed) line labeled as both vessel and neutrophil. Taking all of these data together, the results indicated that exogenous melatonin had an anti-migratory effect on neutrophils by blocking the ERK phosphorylation signal, and it led to the subsequent adhesion molecule expression. Thus, the crossing of the vessel endothelial cells of neutrophils became difficult.
Collapse
Affiliation(s)
- Da-Long Ren
- Chinese Academy of Sciences Key Laboratory of Brain Function and DiseaseSchool of Life Sciences, University of Science and Technology of China, No. 96 Jinzhai Road, Hefei, Anhui Province 230026, People's Republic of China
| | - Ai-Ai Sun
- Chinese Academy of Sciences Key Laboratory of Brain Function and DiseaseSchool of Life Sciences, University of Science and Technology of China, No. 96 Jinzhai Road, Hefei, Anhui Province 230026, People's Republic of China
| | - Ya-Juan Li
- Chinese Academy of Sciences Key Laboratory of Brain Function and DiseaseSchool of Life Sciences, University of Science and Technology of China, No. 96 Jinzhai Road, Hefei, Anhui Province 230026, People's Republic of China
| | - Min Chen
- Chinese Academy of Sciences Key Laboratory of Brain Function and DiseaseSchool of Life Sciences, University of Science and Technology of China, No. 96 Jinzhai Road, Hefei, Anhui Province 230026, People's Republic of China
| | - Shu-Chao Ge
- Chinese Academy of Sciences Key Laboratory of Brain Function and DiseaseSchool of Life Sciences, University of Science and Technology of China, No. 96 Jinzhai Road, Hefei, Anhui Province 230026, People's Republic of China
| | - Bing Hu
- Chinese Academy of Sciences Key Laboratory of Brain Function and DiseaseSchool of Life Sciences, University of Science and Technology of China, No. 96 Jinzhai Road, Hefei, Anhui Province 230026, People's Republic of China
| |
Collapse
|
27
|
Wang RX, Liu H, Xu L, Zhang H, Zhou RX. Involvement of nuclear receptor RZR/RORγ in melatonin-induced HIF-1α inactivation in SGC-7901 human gastric cancer cells. Oncol Rep 2015; 34:2541-6. [PMID: 26330273 DOI: 10.3892/or.2015.4238] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 08/04/2015] [Indexed: 11/06/2022] Open
Abstract
The melatonin nuclear receptor is an orphan member of the nuclear receptor superfamily RZR/ROR, which consists of three subtypes (α, β and γ), suggesting that immunomodulatory and antitumor effects through the intracellular action of melatonin depend on nuclear signaling. In the present study, the biological mechanisms of melatonin were elucidated in association with the RZR/RORγ pathway in SGC-7901 human gastric cancer cells under hypoxia. Melatonin suppressed the activity of RZR/RORγ and SUMO-specific protease 1 (SENP1) signaling pathway, which is essential for stabilization of hypoxia‑inducible factor-1α (HIF‑1α) during hypoxia. Furthermore, melatonin inhibited the stability of HIF-1α in a time- and conce-ntration-dependent manner in SGC-7901 human gastric cancer cells during hypoxia. Consistently, siRNA-RZR/RORγ effectively blocked the expression of SENP1, HIF-1α and vascular endothelial growth factor (VEGF) production in SGC-7901 cells under hypoxia, suggesting the role of nuclear receptor RZR/RORγ in melatonin-inhibited HIF-1α and VEGF accumulation. Moreover, siRNA RZR/RORγ obviously antagonized to inhibit the action of the gastric cancer cell proliferation by melatonin. Our findings suggest that melatonin suppresses HIF-1α accumulation and VEGF generation via inhibition of melatonin nuclear receptor RZR/RORγ in SGC-7901 cells under hypoxia.
Collapse
Affiliation(s)
- Ri-Xiong Wang
- The Chemotherapy Department of The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, P.R. China
| | - Hui Liu
- Department of Human Anatomy, Histology and Embryology, Fujian Medical University, Fuzhou, Fujian, P.R. China
| | - Li Xu
- Department of Human Anatomy, Histology and Embryology, Fujian Medical University, Fuzhou, Fujian, P.R. China
| | - Hui Zhang
- Department of Human Anatomy, Histology and Embryology, Fujian Medical University, Fuzhou, Fujian, P.R. China
| | - Rui-Xiang Zhou
- Department of Human Anatomy, Histology and Embryology, Fujian Medical University, Fuzhou, Fujian, P.R. China
| |
Collapse
|
28
|
Seneff S, Swanson N, Li C. Aluminum and Glyphosate Can Synergistically Induce Pineal Gland Pathology: Connection to Gut Dysbiosis and Neurological Disease. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/as.2015.61005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|