1
|
Del Arco J, Acosta J, Fernández-Lucas J. Biotechnological applications of purine and pyrimidine deaminases. Biotechnol Adv 2024; 77:108473. [PMID: 39505057 DOI: 10.1016/j.biotechadv.2024.108473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/21/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024]
Abstract
Deaminases, ubiquitous enzymes found in all living organisms from bacteria to humans, serve diverse and crucial functions. Notably, purine and pyrimidine deaminases, while biologically essential for regulating nucleotide pools, exhibit exceptional versatility in biotechnology. This review systematically consolidates current knowledge on deaminases, showcasing their potential uses and relevance in the field of biotechnology. Thus, their transformative impact on pharmaceutical manufacturing is highlighted as catalysts for the synthesis of nucleic acid derivatives. Additionally, the role of deaminases in food bioprocessing and production is also explored, particularly in purine content reduction and caffeine production, showcasing their versatility in this field. The review also delves into most promising biomedical applications including deaminase-based GDEPT and genome and transcriptome editing by deaminase-based systems. All in all, illustrated with practical examples, we underscore the role of purine and pyrimidine deaminases in advancing sustainable and efficient biotechnological practices. Finally, the review highlights future challenges and prospects in deaminase-based biotechnological processes, encompassing both industrial and medical perspectives.
Collapse
Affiliation(s)
- Jon Del Arco
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, E-28670 Villaviciosa de Odón, Madrid, Spain
| | - Javier Acosta
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, E-28670 Villaviciosa de Odón, Madrid, Spain
| | - Jesús Fernández-Lucas
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, E-28670 Villaviciosa de Odón, Madrid, Spain; Grupo de Investigación en Ciencias Naturales y Exactas, GICNEX, Universidad de la Costa, CUC, Calle 58 # 55-66, 080002 Barranquilla, Colombia; Department of Biochemistry and Molecular Biology, Faculty of Biology, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| |
Collapse
|
2
|
Kumar R, Mishra N, Tran T, Kumar M, Vijayaraghavalu S, Gurusamy N. Emerging Strategies in Mesenchymal Stem Cell-Based Cardiovascular Therapeutics. Cells 2024; 13:855. [PMID: 38786076 PMCID: PMC11120430 DOI: 10.3390/cells13100855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Cardiovascular diseases continue to challenge global health, demanding innovative therapeutic solutions. This review delves into the transformative role of mesenchymal stem cells (MSCs) in advancing cardiovascular therapeutics. Beginning with a historical perspective, we trace the development of stem cell research related to cardiovascular diseases, highlighting foundational therapeutic approaches and the evolution of cell-based treatments. Recognizing the inherent challenges of MSC-based cardiovascular therapeutics, which range from understanding the pro-reparative activity of MSCs to tailoring patient-specific treatments, we emphasize the need to refine the pro-regenerative capacity of these cells. Crucially, our focus then shifts to the strategies of the fourth generation of cell-based therapies: leveraging the secretomic prowess of MSCs, particularly the role of extracellular vesicles; integrating biocompatible scaffolds and artificial sheets to amplify MSCs' potential; adopting three-dimensional ex vivo propagation tailored to specific tissue niches; harnessing the promise of genetic modifications for targeted tissue repair; and institutionalizing good manufacturing practice protocols to ensure therapeutic safety and efficacy. We conclude with reflections on these advancements, envisaging a future landscape redefined by MSCs in cardiovascular regeneration. This review offers both a consolidation of our current understanding and a view toward imminent therapeutic horizons.
Collapse
Affiliation(s)
- Rishabh Kumar
- Department of Biochemistry, Faculty of Science, University of Allahabad, Prayagraj 211002, India
| | - Nitin Mishra
- Department of Biochemistry, Faculty of Science, University of Allahabad, Prayagraj 211002, India
| | - Talan Tran
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328-2018, USA
| | - Munish Kumar
- Department of Biochemistry, Faculty of Science, University of Allahabad, Prayagraj 211002, India
| | | | - Narasimman Gurusamy
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328-2018, USA
| |
Collapse
|
3
|
Zhou H, He Y, Xiong W, Jing S, Duan X, Huang Z, Nahal GS, Peng Y, Li M, Zhu Y, Ye Q. MSC based gene delivery methods and strategies improve the therapeutic efficacy of neurological diseases. Bioact Mater 2023; 23:409-437. [PMCID: PMC9713256 DOI: 10.1016/j.bioactmat.2022.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/08/2022] [Accepted: 11/13/2022] [Indexed: 12/05/2022] Open
|
4
|
Potočnik T, Maček Lebar A, Kos Š, Reberšek M, Pirc E, Serša G, Miklavčič D. Effect of Experimental Electrical and Biological Parameters on Gene Transfer by Electroporation: A Systematic Review and Meta-Analysis. Pharmaceutics 2022; 14:pharmaceutics14122700. [PMID: 36559197 PMCID: PMC9786189 DOI: 10.3390/pharmaceutics14122700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
The exact mechanisms of nucleic acid (NA) delivery with gene electrotransfer (GET) are still unknown, which represents a limitation for its broader use. Further, not knowing the effects that different experimental electrical and biological parameters have on GET additionally hinders GET optimization, resulting in the majority of research being performed using a trial-and-error approach. To explore the current state of knowledge, we conducted a systematic literature review of GET papers in in vitro conditions and performed meta-analyses of the reported GET efficiency. For now, there is no universal GET strategy that would be appropriate for all experimental aims. Apart from the availability of the required electroporation device and electrodes, the choice of an optimal GET approach depends on parameters such as the electroporation medium; type and origin of cells; and the size, concentration, promoter, and type of the NA to be transfected. Equally important are appropriate controls and the measurement or evaluation of the output pulses to allow a fair and unbiased evaluation of the experimental results. Since many experimental electrical and biological parameters can affect GET, it is important that all used parameters are adequately reported to enable the comparison of results, as well as potentially faster and more efficient experiment planning and optimization.
Collapse
Affiliation(s)
- Tjaša Potočnik
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia
| | - Alenka Maček Lebar
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia
| | - Špela Kos
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloška cesta 2, 1000 Ljubljana, Slovenia
| | - Matej Reberšek
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia
| | - Eva Pirc
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia
| | - Gregor Serša
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloška cesta 2, 1000 Ljubljana, Slovenia
| | - Damijan Miklavčič
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia
- Correspondence:
| |
Collapse
|
5
|
Otsuka T, Kan HM, Mason TD, Nair LS, Laurencin CT. Overexpression of NDST1 Attenuates Fibrotic Response in Murine Adipose-Derived Stem Cells. Stem Cells Dev 2022; 31:787-798. [PMID: 35920108 PMCID: PMC9836701 DOI: 10.1089/scd.2022.0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 08/01/2022] [Indexed: 01/22/2023] Open
Abstract
Adipose-derived stem cells (ADSCs) hold tremendous potential for treating diseases and repairing damaged tissues. Heparan sulfate (HS) plays various roles in cellular signaling mechanisms. The importance of HS in stem cell function has been reported and well documented. However, there has been little progress in using HS for therapeutic purposes. We focused on one of the sulfotransferases, NDST1, which influences overall HS chain extent and sulfation pattern, with the expectation to enhance stem cell function by increasing the N-sulfation level. We herein performed transfections of a green fluorescent protein-vector control and NDST1-vector into mouse ADSCs to evaluate stem cell functions. Overexpression of NDST1 suppressed the osteogenic differentiation of ADSCs. There was no pronounced effect observed on the stemness, inflammatory gene expression, nor any noticeable effect in adipogenic and chondrogenic differentiation. Under the tumor necrosis factor-alpha stimulation, NDST1 overexpression induced several chemokine productions that attract neutrophils and macrophages. Finally, we identified an antifibrotic response in ADSCs overexpressing NDST1. This study provides a foundation for the evaluation of HS-related effects in ADSCs undergoing ex vivo gene manipulation.
Collapse
Affiliation(s)
- Takayoshi Otsuka
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, Connecticut, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, Connecticut, USA
| | - Ho-Man Kan
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, Connecticut, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, Connecticut, USA
| | - Timothy D. Mason
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, Connecticut, USA
| | - Lakshmi S. Nair
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, Connecticut, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, Connecticut, USA
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, Connecticut, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, USA
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut, USA
| | - Cato T. Laurencin
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, Connecticut, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, Connecticut, USA
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, Connecticut, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, USA
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut, USA
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
6
|
Vicinanza C, Lombardi E, Da Ros F, Marangon M, Durante C, Mazzucato M, Agostini F. Modified mesenchymal stem cells in cancer therapy: A smart weapon requiring upgrades for wider clinical applications. World J Stem Cells 2022; 14:54-75. [PMID: 35126828 PMCID: PMC8788179 DOI: 10.4252/wjsc.v14.i1.54] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/06/2021] [Accepted: 12/23/2021] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem stromal cells (MSC) are characterized by the intriguing capacity to home toward cancer cells after systemic administration. Thus, MSC can be harnessed as targeted delivery vehicles of cytotoxic agents against tumors. In cancer patients, MSC based advanced cellular therapies were shown to be safe but their clinical efficacy was limited. Indeed, the amount of systemically infused MSC actually homing to human cancer masses is insufficient to reduce tumor growth. Moreover, induction of an unequivocal anticancer cytotoxic phenotype in expanded MSC is necessary to achieve significant therapeutic efficacy. Ex vivo cell modifications are, thus, required to improve anti-cancer properties of MSC. MSC based cellular therapy products must be handled in compliance with good manufacturing practice (GMP) guidelines. In the present review we include MSC-improving manipulation approaches that, even though actually tested at preclinical level, could be compatible with GMP guidelines. In particular, we describe possible approaches to improve MSC homing on cancer, including genetic engineering, membrane modification and cytokine priming. Similarly, we discuss appropriate modalities aimed at inducing a marked cytotoxic phenotype in expanded MSC by direct chemotherapeutic drug loading or by genetic methods. In conclusion, we suggest that, to configure MSC as a powerful weapon against cancer, combinations of clinical grade compatible modification protocols that are currently selected, should be introduced in the final product. Highly standardized cancer clinical trials are required to test the efficacy of ameliorated MSC based cell therapies.
Collapse
Affiliation(s)
- Carla Vicinanza
- Stem Cell Unit, Centro di Riferimento Oncologico di Aviano, IRCCS, Aviano 33081, Italy
| | - Elisabetta Lombardi
- Stem Cell Unit, Centro di Riferimento Oncologico di Aviano, IRCCS, Aviano 33081, Italy
| | - Francesco Da Ros
- Stem Cell Unit, Centro di Riferimento Oncologico di Aviano, IRCCS, Aviano 33081, Italy
| | - Miriam Marangon
- Stem Cell Unit, Centro di Riferimento Oncologico di Aviano, IRCCS, Aviano 33081, Italy
| | - Cristina Durante
- Stem Cell Unit, Centro di Riferimento Oncologico di Aviano, IRCCS, Aviano 33081, Italy
| | - Mario Mazzucato
- Stem Cell Unit, Centro di Riferimento Oncologico di Aviano, IRCCS, Aviano 33081, Italy
| | - Francesco Agostini
- Stem Cell Unit, Centro di Riferimento Oncologico di Aviano, IRCCS, Aviano 33081, Italy
| |
Collapse
|
7
|
Agostini F, Vicinanza C, Biolo G, Spessotto P, Da Ros F, Lombardi E, Durante C, Mazzucato M. Nucleofection of Adipose Mesenchymal Stem/Stromal Cells: Improved Transfection Efficiency for GMP Grade Applications. Cells 2021; 10:cells10123412. [PMID: 34943920 PMCID: PMC8700287 DOI: 10.3390/cells10123412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/26/2021] [Accepted: 12/02/2021] [Indexed: 12/19/2022] Open
Abstract
Nucleofection (NF) is a safe, non-viral transfection method, compatible with Good Manufacturing Practice guidelines. Such a technique is useful to improve therapeutic effectiveness of adipose tissue mesenchymal stem cells (ASC) in clinical settings, but improvement of NF efficiency is mandatory. Supernatant rich in growth factors (SRGF) is a clinical-grade medium additive for ASC expansion. We showed a dramatically increased NF efficiency and post-transfection viability in ASC expanded in presence of SRGF (vs. fetal bovine serum). SRGF expanded ASC were characterized by increased vesicle endocytosis but lower phagocytosis properties. SRGF increased n-6/n-3 ratio, reduced membrane lipid raft occurrence, and lowered intracellular actin content in ASC. A statistical correlation between NF efficiency and lipid raft availability on cell membranes was shown, even though a direct relationship could not be demonstrated: attempts to selectively modulate lipid rafts levels were, in fact, limited by technical constraints. In conclusion, we reported for the first time that tuning clinical-grade compatible cell culture conditions can significantly improve ASC transfection efficiency by a non-viral and safe approach. A deep mechanistic characterization is extremely complex, but we can hypothesize that integrated changes in membrane structure and intracellular actin content could contribute to explain SRGF impact on ASC NF efficiency.
Collapse
Affiliation(s)
- Francesco Agostini
- Stem Cell Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via F. Gallini 2, 33081 Aviano, Italy; (C.V.); (F.D.R.); (E.L.); (C.D.); (M.M.)
- Correspondence: ; Tel.: +39-0434-659095
| | - Carla Vicinanza
- Stem Cell Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via F. Gallini 2, 33081 Aviano, Italy; (C.V.); (F.D.R.); (E.L.); (C.D.); (M.M.)
| | - Gianni Biolo
- Unit of Internal Medicine, Clinica Medica, Department of Medical Surgical and Health Sciences, University of Trieste, Strada di Fiume 447, 34100 Trieste, Italy;
| | - Paola Spessotto
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via F. Gallini 2, 33081 Aviano, Italy;
| | - Francesco Da Ros
- Stem Cell Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via F. Gallini 2, 33081 Aviano, Italy; (C.V.); (F.D.R.); (E.L.); (C.D.); (M.M.)
| | - Elisabetta Lombardi
- Stem Cell Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via F. Gallini 2, 33081 Aviano, Italy; (C.V.); (F.D.R.); (E.L.); (C.D.); (M.M.)
| | - Cristina Durante
- Stem Cell Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via F. Gallini 2, 33081 Aviano, Italy; (C.V.); (F.D.R.); (E.L.); (C.D.); (M.M.)
| | - Mario Mazzucato
- Stem Cell Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via F. Gallini 2, 33081 Aviano, Italy; (C.V.); (F.D.R.); (E.L.); (C.D.); (M.M.)
| |
Collapse
|
8
|
Abdul Halim NSS, Yahaya BH, Lian J. Therapeutic Potential of Adipose-Derived Stem Cells in the Treatment of Pulmonary Diseases. Curr Stem Cell Res Ther 2021; 17:103-112. [PMID: 34387168 DOI: 10.2174/1574888x16666210812145202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/07/2021] [Accepted: 05/25/2021] [Indexed: 11/22/2022]
Abstract
Stem cells derived from adipose tissues (ADSCs) have emerged as an ideal candidate for various models of respiratory diseases, including asthma, chronic obstructive pulmonary disease (COPD), and acute respiratory distress syndrome. ADSCs have qualities that may make them better suited for treating inflammatory lung diseases than other MSCs. ADSCs show a lower senescence ratio, higher proliferative capacity and stability in terms of their genetic and morphology during long-term culture over bone marrow-derived mesenchymal stem cells (BMMSCs). With advanced research techniques, the advantageous effects of ADSCs seem limited to their ability to engraft, differentiate, and be related to their secretion of trophic factors. These trophic factors regulate the therapeutic and regenerative outcomes in various lung inflammatory diseases. Taken together, these particular qualities of ADSCs make them significantly relevant for clinical applications. This article discusses a recent advance of ADSCs biology and their translational application emphasizing their anti-inflammatory, immunomodulatory and regenerative properties particularly on lung inflammatory diseases. Besides, the relevant advancements made in the field, the regulatory aspects, and other challenges and obstacles will be highlighted.
Collapse
Affiliation(s)
- Nur Shuhaidatul Sarmiza Abdul Halim
- Lung Stem Cell and Gene Therapy Group, Regenerative Medicine Cluster, Advanced Medical and Dental Institute (IPPT), SAINS@BERTAM, Universiti Sains Malaysia, 13200 Kepala Batas, Penang . Malaysia
| | - Badrul Hisham Yahaya
- Lung Stem Cell and Gene Therapy Group, Regenerative Medicine Cluster, Advanced Medical and Dental Institute (IPPT), SAINS@BERTAM, Universiti Sains Malaysia, 13200 Kepala Batas, Penang . Malaysia
| | - Jie Lian
- Lung Stem Cell and Gene Therapy Group, Regenerative Medicine Cluster, Advanced Medical and Dental Institute (IPPT), SAINS@BERTAM, Universiti Sains Malaysia, 13200 Kepala Batas, Penang . Malaysia
| |
Collapse
|
9
|
Ding Y, Wang C, Sun Z, Wu Y, You W, Mao Z, Wang W. Mesenchymal Stem Cells Engineered by Nonviral Vectors: A Powerful Tool in Cancer Gene Therapy. Pharmaceutics 2021; 13:pharmaceutics13060913. [PMID: 34205513 PMCID: PMC8235299 DOI: 10.3390/pharmaceutics13060913] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/09/2021] [Accepted: 06/16/2021] [Indexed: 12/14/2022] Open
Abstract
Due to their "tumor homing" and "immune privilege" characteristics, the use of mesenchymal stem cells (MSCs) has been proposed as a novel tool against cancer. MSCs are genetically engineered in vitro and then utilized to deliver tumoricidal agents, including prodrugs and bioactive molecules, to tumors. The genetic modification of MSCs can be achieved by various vectors, and in most cases viral vectors are used; however, viruses may be associated with carcinogenesis and immunogenicity, restricting their clinical translational potential. As such, nonviral vectors have emerged as a potential solution to address these limitations and have gradually attracted increasing attention. In this review, we briefly revisit the current knowledge about MSC-based cancer gene therapy. Then, we summarize the advantages and challenges of nonviral vectors for MSC transfection. Finally, we discuss recent advances in the development of new nonviral vectors, which have provided promising strategies to overcome obstacles in the gene modulation of MSCs.
Collapse
Affiliation(s)
- Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (Y.D.); (C.W.); (Z.S.); (Y.W.); (W.Y.)
- Key Laboratory, Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou 310009, China
- Research Center, Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou 310009, China
- Clinical Medicine Innovation Center, Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease, Zhejiang University, Hangzhou 310009, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310009, China
- Cancer Center, Zhejiang University, Hangzhou 310009, China
| | - Chenyang Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (Y.D.); (C.W.); (Z.S.); (Y.W.); (W.Y.)
- Key Laboratory, Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou 310009, China
- Research Center, Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou 310009, China
- Clinical Medicine Innovation Center, Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease, Zhejiang University, Hangzhou 310009, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310009, China
- Cancer Center, Zhejiang University, Hangzhou 310009, China
| | - Zhongquan Sun
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (Y.D.); (C.W.); (Z.S.); (Y.W.); (W.Y.)
- Key Laboratory, Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou 310009, China
- Research Center, Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou 310009, China
- Clinical Medicine Innovation Center, Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease, Zhejiang University, Hangzhou 310009, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310009, China
- Cancer Center, Zhejiang University, Hangzhou 310009, China
| | - Yingsheng Wu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (Y.D.); (C.W.); (Z.S.); (Y.W.); (W.Y.)
- Key Laboratory, Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou 310009, China
- Research Center, Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou 310009, China
- Clinical Medicine Innovation Center, Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease, Zhejiang University, Hangzhou 310009, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310009, China
- Cancer Center, Zhejiang University, Hangzhou 310009, China
| | - Wanlu You
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (Y.D.); (C.W.); (Z.S.); (Y.W.); (W.Y.)
- Key Laboratory, Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou 310009, China
- Research Center, Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou 310009, China
- Clinical Medicine Innovation Center, Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease, Zhejiang University, Hangzhou 310009, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310009, China
- Cancer Center, Zhejiang University, Hangzhou 310009, China
| | - Zhengwei Mao
- Key Laboratory, Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou 310009, China
- MOE Key Laboratory, Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Correspondence: (Z.M.); (W.W.); Tel.: +86-15168215834 (Z.M.); +86-0571-87783820 (W.W.)
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (Y.D.); (C.W.); (Z.S.); (Y.W.); (W.Y.)
- Key Laboratory, Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou 310009, China
- Research Center, Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou 310009, China
- Clinical Medicine Innovation Center, Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease, Zhejiang University, Hangzhou 310009, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310009, China
- Cancer Center, Zhejiang University, Hangzhou 310009, China
- Correspondence: (Z.M.); (W.W.); Tel.: +86-15168215834 (Z.M.); +86-0571-87783820 (W.W.)
| |
Collapse
|
10
|
Serra J, Alves CPA, Cabral JMS, Monteiro GA, da Silva CL, Prazeres DMF. Minicircle-based expression of vascular endothelial growth factor in mesenchymal stromal cells from diverse human tissues. J Gene Med 2021; 23:e3342. [PMID: 33870576 DOI: 10.1002/jgm.3342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/26/2021] [Accepted: 04/10/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Mesenchymal stromal cells (MSC) have been exploited for the treatment of ischemic diseases given their angiogenic potential. Despite bone marrow (BM) being the most studied tissue source, cells with similar intrinsic properties can be isolated from adipose tissue (AT) and umbilical cord matrix (UCM). The present study aims to compare the angiogenic potential of MSC obtained from BM, AT and UCM that were genetically modified with vascular endothelial growth factor (VEGF)-encoding minicircle (MC) vectors. The overexpression of VEGF combined with the intrinsic properties of MSC could represent a promising strategy towards angiogenic therapies. METHODS We established a microporation-based protocol to transfect human MSC using VEGF-encoding MC (MC-VEGF). VEGF production levels were measured by an enzyme-linked immunosorbent assay and a quantitative polymerase chain reaction. The in vitro angiogenic potential of transfected cells was quantified using cell tube formation and migration functional studies. RESULTS MSC isolated from BM, AT or UCM showed similar levels of VEGF secretion after transfection with MC-VEGF. Those values were significantly higher when compared to non-transfected cells, indicating an effective enhancement of VEGF production. Transfected cells displayed higher in vitro angiogenic potential than non-transfected controls, as demonstrated by functional in vitro assays. No significant differences were observed among cells from different sources. CONCLUSIONS Minicircles can be successfully used to transiently overexpress VEGF in human MSC, regardless of the cell tissue source, representing an important advantage in a clinical context (i.e., angiogenic therapy) because a standard protocol might be applied to MSC of different tissue sources, which can be differentially selected according to the application (e.g., autologous versus allogeneic settings).
Collapse
Affiliation(s)
- Joana Serra
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Cláudia P A Alves
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Joaquim M S Cabral
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Gabriel A Monteiro
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Cláudia L da Silva
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Duarte Miguel F Prazeres
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
11
|
Tu GXE, Ho YK, Ng ZX, Teo KJ, Yeo TT, Too HP. A facile and scalable in production non-viral gene engineered mesenchymal stem cells for effective suppression of temozolomide-resistant (TMZR) glioblastoma growth. Stem Cell Res Ther 2020; 11:391. [PMID: 32917269 PMCID: PMC7488524 DOI: 10.1186/s13287-020-01899-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/28/2020] [Accepted: 08/24/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) serve as an attractive vehicle for cell-directed enzyme prodrug therapy (CDEPT) due to their unique tumour-nesting ability. Such approach holds high therapeutic potential for treating solid tumours including glioblastoma multiforme (GBM), a devastating disease with limited effective treatment options. Currently, it is a common practice in research and clinical manufacturing to use viruses to deliver therapeutic genes into MSCs. However, this is limited by the inherent issues of safety, high cost and demanding manufacturing processes. The aim of this study is to identify a facile, scalable in production and highly efficient non-viral method to transiently engineer MSCs for prolonged and exceptionally high expression of a fused transgene: yeast cytosine deaminase::uracil phosphoribosyl-transferase::green fluorescent protein (CD::UPRT::GFP). METHODS MSCs were transfected with linear polyethylenimine using a cpg-free plasmid encoding the transgene in the presence of a combination of fusogenic lipids and β tubulin deacetylase inhibitor (Enhancer). Process scalability was evaluated in various planar vessels and microcarrier-based bioreactor. The transfection efficiency was determined with flow cytometry, and the therapeutic efficacy of CD::UPRT::GFP expressing MSCs was evaluated in cocultures with temozolomide (TMZ)-sensitive or TMZ-resistant human glioblastoma cell lines. In the presence of 5-fluorocytosine (5FC), the 5-fluorouracil-mediated cytotoxicity was determined by performing colometric MTS assay. In vivo antitumor effects were examined by local injection into subcutaneous TMZ-resistant tumors implanted in the athymic nude mice. RESULTS At > 90% transfection efficiency, the phenotype, differentiation potential and tumour tropism of MSCs were unaltered. High reproducibility was observed in all scales of transfection. The therapeutically modified MSCs displayed strong cytotoxicity towards both TMZ-sensitive and TMZ-resistant U251-MG and U87-MG cell lines only in the presence of 5FC. The effectiveness of this approach was further validated with other well-characterized and clinically annotated patient-derived GBM cells. Additionally, a long-term suppression (> 30 days) of the growth of a subcutaneous TMZ-resistant U-251MG tumour was demonstrated. CONCLUSIONS Collectively, this highly efficient non-viral workflow could potentially enable the scalable translation of therapeutically engineered MSC for the treatment of TMZ-resistant GBM and other applications beyond the scope of this study.
Collapse
Affiliation(s)
- Geraldine Xue En Tu
- Department of Biochemistry, National University of Singapore, Singapore, 117596, Singapore
| | - Yoon Khei Ho
- Department of Biochemistry, National University of Singapore, Singapore, 117596, Singapore.
| | - Zhi Xu Ng
- Division of Neurosurgery, Department of General Surgery, Khoo Teck Puat Hospital, Singapore, 768828, Singapore
| | - Ke Jia Teo
- Division of Neurosurgery, Department of General Surgery, National University Hospital, National University Health Systems, Singapore, Singapore
| | - Tseng Tsai Yeo
- Division of Neurosurgery, Department of General Surgery, National University Hospital, National University Health Systems, Singapore, Singapore
| | - Heng-Phon Too
- Department of Biochemistry, National University of Singapore, Singapore, 117596, Singapore
| |
Collapse
|
12
|
A highly efficient non-viral process for programming mesenchymal stem cells for gene directed enzyme prodrug cancer therapy. Sci Rep 2020; 10:14257. [PMID: 32868813 PMCID: PMC7458920 DOI: 10.1038/s41598-020-71224-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/23/2020] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cells (MSCs) driven gene-directed enzyme prodrug therapy has emerged as a potential strategy for cancer treatment. The tumour-nesting properties of MSCs enable these vehicles to target tumours and metastases with effective therapies. A crucial step in engineering MSCs is the delivery of genetic material with low toxicity and high efficiency. Due to the low efficiency of current transfection methods, viral vectors are used widely to modify MSCs in preclinical and clinical studies. We show, for the first time, the high transfection efficiency (> 80%) of human adipose tissue derived-MSCs (AT-MSCs) using a cost-effective and off-the-shelf Polyethylenimine, in the presence of histone deacetylase 6 inhibitor and fusogenic lipids. Notably, the phenotypes of MSCs remained unchanged post-modification. AT-MSCs engineered with a fused transgene, yeast cytosine deaminase::uracil phosphoribosyltransferase (CDy::UPRT) displayed potent cytotoxic effects against breast, glioma, gastric cancer cells in vitro. The efficiency of eliminating gastric cell lines were effective even when using 7-day post-transfected AT-MSCs, indicative of the sustained expression and function of the therapeutic gene. In addition, significant inhibition of temozolomide resistant glioma tumour growth in vivo was observed with a single dose of therapeutic MSC. This study demonstrated an efficient non-viral modification process for MSC-based prodrug therapy.
Collapse
|
13
|
Halim NSS, Ch'ng ES, Kardia E, Ali SA, Radzi R, Yahaya BH. Aerosolised Mesenchymal Stem Cells Expressing Angiopoietin-1 Enhances Airway Repair. Stem Cell Rev Rep 2020; 15:112-125. [PMID: 30178289 DOI: 10.1007/s12015-018-9844-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND The aim of this study was to investigate the effects of MSCs and MSC-expressing ANGPT1 (MSC-pANGPT1) treatment via aerosolisation in alleviating the asthma-related airway inflammation in the rabbit model. METHODS Rabbits were sensitised and challenged with both intraperitoneal injection and inhalation of ovalbumin (Ova). MSCs and MSC-pANGPT1 cells were aerosolised into rabbit lungs using the MicroSprayer® Aerosolizer Model IA-1B 48 h after injury. The post mortem was performed 3 days following cell delivery. Histopathological assessments of the lung tissues and inflammatory response were quantitatively scored following treatments. RESULT(S) Administration of aerosolised MSCs and MSC-pANGPT1 were significantly reduced inflammation of the airways (p < 0.001), as reflected by improved of structural changes such as thickness of the basement membrane, epithelium, mucosa and sub-mucosa regions. The airway inflammation score of both treatment groups revealed a significant reduction of inflammation and granulocyte infiltration at the peribronchiale and perivascular regions (p < 0.05). Administration of aerosolised MSCs alone was resulted in significant reduction in the levels of pro-inflammatory genes (IL-4 and TGF-β) while treatment with aerosolised MSC-pANGPT1 led to further reduction of various pro-inflammatory genes to the base-line values (IL4, TNF, MMP9 and TGF-β). Treatment with both aerosolised MSCs and MSC-pANGPT1 cells was also alleviated the number of airway inflammatory cells in the bronchoalveolar lavage (BAL) fluid and goblet cell hyperplasia. CONCLUSION(S) Our findings suggest that treatment with MSCs alone attenuated airway inflammation and structural changes of the airway. Treatment with MSC-pANGPT1 provided an additional effect in reducing the expression levels of various pro-inflammatory genes. Both of these treatment enhancing airway repair and therefore may provide a basis for the development of an innovative approach for the treatment and prevention of airway inflammatory diseases.
Collapse
Affiliation(s)
- N S S Halim
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, 13200, Bertam, Penang, Malaysia
| | - E S Ch'ng
- Oncological and Radiological Science Cluster, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, 13200, Bertam, Penang, Malaysia
| | - E Kardia
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, 13200, Bertam, Penang, Malaysia
| | - S A Ali
- Oncological and Radiological Science Cluster, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, 13200, Bertam, Penang, Malaysia
| | - R Radzi
- Animal Research Facilities, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, 13200 Bertam, Penang, Malaysia
| | - B H Yahaya
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, 13200, Bertam, Penang, Malaysia.
| |
Collapse
|
14
|
Salmasi Z, Hashemi M, Mahdipour E, Nourani H, Abnous K, Ramezani M. Mesenchymal stem cells engineered by modified polyethylenimine polymer for targeted cancer gene therapy, in vitro and in vivo. Biotechnol Prog 2020; 36:e3025. [PMID: 32410328 DOI: 10.1002/btpr.3025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 12/29/2022]
Abstract
Cell-based delivery system is a promising strategy to protect therapeutic agents from the immune system and provide targeted delivery. Mesenchymal stem cells (MSCs) have recently been introduced as an encouraging vehicle in cell-based gene therapy due to their unique features including tumor-tropic property and migratory ability. However, gene transfer into MSCs is limited due to low efficiency and cytotoxicity of carriers. In this study, we designed a novel delivery system based on polyethylenimine (PEI25 ) to improve these features of carrier and transfect plasmid encoding TRAIL to MSCs. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a death ligand of TNF family with selective effect on cancerous cells. Then, death induction and migration ability of TRAIL-expressing MSCs was studied in melanoma cells. The effect of engineered-MSCs as an antitumor vehicle was also investigated in mice bearing melanoma cells. Our findings indicated that heterocyclic amine derivative of PEI25 showed significant improvement in MSCs viability determined by MTT assay and gene expression using fluorescent microscopy, flow cytometry, and Western blot analysis. We observed that engineered-MSCs could migrate toward and induce cell death in B16F0 cells in vitro. The single administration of TRAIL-expressing MSCs could delay tumor appearance and efficiently reduce tumor weights. Hematoxylin and eosin staining of tumor sections revealed extensive neoplastic cells necrosis. Furthermore, engineered-MSCs could migrate and localize to tumors sites within 5 days. Our results indicated that MSCs engineered by modified-PEI/TRAIL complexes could be considered as a promising cellular vehicle for targeted tumor suppression.
Collapse
Affiliation(s)
- Zahra Salmasi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Hashemi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elahe Mahdipour
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Nourani
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Khalil Abnous
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
15
|
Mitochondria transfer enhances proliferation, migration, and osteogenic differentiation of bone marrow mesenchymal stem cell and promotes bone defect healing. Stem Cell Res Ther 2020; 11:245. [PMID: 32586355 PMCID: PMC7318752 DOI: 10.1186/s13287-020-01704-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/22/2020] [Accepted: 05/05/2020] [Indexed: 01/18/2023] Open
Abstract
Background Bone marrow-derived mesenchymal stem cell (BMSC) transplantation is considered a promising therapeutic approach for bone defect repair. However, during the transplantation procedure, the functions and viability of BMSCs may be impaired due to extended durations of in vitro culture, aging, and disease conditions of patients. Inspired by spontaneous intercellular mitochondria transfer that naturally occurs within injured tissues to rescue cellular or tissue function, we investigated whether artificial mitochondria transfer into pre-transplant BMSCs in vitro could improve cellular function and enhance their therapeutic effects on bone defect repair in situ. Methods Mitochondria were isolated from donor BMSCs and transferred into recipient BMSCs of the same batch and passage. Subsequently, changes in proliferative capacity and cell senescence were evaluated by live cell imaging, Cell Counting Kit-8 assay, cell cycle analysis, Ki67 staining, qPCR and Western blot analysis of c-Myc expression, and β-galactosidase staining. Migration ability was evaluated by the transwell migration assay, wound scratch healing, and cell motility tests. Alkaline phosphatase (ALP) staining, Alizarin Red staining, and combined with qPCR and Western blot analyses of Runx2 and BMP2 were performed to elucidate the effects of mitochondria transfer on the osteogenic potential of BMSCs in vitro. After that, in vivo experiments were performed by transplanting mitochondria-recipient BMSCs into a rat cranial critical-size bone defect model. Micro CT scanning and histological analysis were conducted at 4 and 8 weeks after transplantation to evaluate osteogenesis in situ. Finally, in order to establish the correlation between cellular behavioral changes and aerobic metabolism, OXPHOS (oxidative phosphorylation) and ATP production were assessed and inhibition of aerobic respiration by oligomycin was performed. Results Mitochondria-recipient BMSCs exhibited significantly enhanced proliferation and migration, and increased osteogenesis upon osteogenic induction. The in vivo results showed more new bone formation after transplantation of mitochondria-recipient BMSCs in situ. Increased OXPHOS activity and ATP production were observed, which upon inhibition by oligomycin attenuated the enhancement of proliferation, migration, and osteogenic differentiation induced by mitochondria transfer. Conclusions Mitochondria transfer is a feasible technique to enhance BMSC function in vitro and promote bone defect repair in situ through the upregulation of aerobic metabolism. The results indicated that mitochondria transfer may be a novel promising technique for optimizing stem cell therapeutic function.
Collapse
|
16
|
Kozisek T, Hamann A, Nguyen A, Miller M, Plautz S, Pannier AK. High-throughput screening of clinically approved drugs that prime nonviral gene delivery to human Mesenchymal stem cells. J Biol Eng 2020; 14:16. [PMID: 32467728 PMCID: PMC7238544 DOI: 10.1186/s13036-020-00238-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/04/2020] [Indexed: 01/07/2023] Open
Abstract
Background Human mesenchymal stem cells (hMSCs) are intensely researched for applications in cell therapeutics due to their unique properties, however, intrinsic therapeutic properties of hMSCs could be enhanced by genetic modification. Viral transduction is efficient, but suffers from safety issues. Conversely, nonviral gene delivery, while safer compared to viral, suffers from inefficiency and cytotoxicity, especially in hMSCs. To address the shortcomings of nonviral gene delivery to hMSCs, our lab has previously demonstrated that pharmacological 'priming' of hMSCs with the glucocorticoid dexamethasone can significantly increase transfection in hMSCs by modulating transfection-induced cytotoxicity. This work seeks to establish a library of transfection priming compounds for hMSCs by screening 707 FDA-approved drugs, belonging to diverse drug classes, from the NIH Clinical Collection at four concentrations for their ability to modulate nonviral gene delivery to adipose-derived hMSCs from two human donors. Results Microscope images of cells transfected with a fluorescent transgene were analyzed in order to identify compounds that significantly affected hMSC transfection without significant toxicity. Compound classes that increased transfection across both donors included glucocorticoids, antibiotics, and antihypertensives. Notably, clobetasol propionate, a glucocorticoid, increased transgene production 18-fold over unprimed transfection. Furthermore, compound classes that decreased transfection across both donors included flavonoids, antibiotics, and antihypertensives, with the flavonoid epigallocatechin gallate decreasing transgene production - 41-fold compared to unprimed transfection. Conclusions Our screen of the NCC is the first high-throughput and drug-repurposing approach to identify nonviral gene delivery priming compounds in two donors of hMSCs. Priming compounds and classes identified in this screen suggest that modulation of proliferation, mitochondrial function, and apoptosis is vital for enhancing nonviral gene delivery to hMSCs.
Collapse
Affiliation(s)
- Tyler Kozisek
- 1Department of Biological Systems Engineering, University of Nebraska-Lincoln, 231 L.W. Chase Hall, Lincoln, NE USA
| | - Andrew Hamann
- 1Department of Biological Systems Engineering, University of Nebraska-Lincoln, 231 L.W. Chase Hall, Lincoln, NE USA
| | - Albert Nguyen
- 1Department of Biological Systems Engineering, University of Nebraska-Lincoln, 231 L.W. Chase Hall, Lincoln, NE USA
| | - Michael Miller
- 2Department of Biomedical Engineering, Pennsylvania State University, 122 Chemical and Biomedical Engineering Building, University Park, PA USA
| | - Sarah Plautz
- 1Department of Biological Systems Engineering, University of Nebraska-Lincoln, 231 L.W. Chase Hall, Lincoln, NE USA
| | - Angela K Pannier
- 1Department of Biological Systems Engineering, University of Nebraska-Lincoln, 231 L.W. Chase Hall, Lincoln, NE USA
| |
Collapse
|
17
|
Ajit A, Santhosh Kumar TR, Krishnan LK. Engineered Human Adipose-Derived Stem Cells Inducing Endothelial Lineage and Angiogenic Response. Tissue Eng Part C Methods 2020; 25:148-159. [PMID: 30747045 DOI: 10.1089/ten.tec.2018.0333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
IMPACT STATEMENT With respect to the persistent hunt for a cytocompatible, translational, reproducible, and effective approach in engineering primary human adipose-derived mesenchymal stromal cells (hADMSCs), we demonstrate the application of Neon® Transfection System in adequate transient delivery of angiogenic factors. The study presents functional assessment of this approach in vitro, with two notable outcomes at translational perspective; (1) Bioengineered hADMSCs secretome does induce endothelial lineage commitment of stem cells at both transcriptional and translational levels and (2) Combinatorial delivery of vascular endothelial growth factor A and hypoxia-inducible factor-1α by bioengineered hADMSCs enhance upregulation of endothelial cell proliferation, migration-associated wound closure, and endothelial tube formation with augmented Flk-1 expression, as compared with their independent actions. The methods described in this study paves way for in vivo evaluation on identification of appropriate chronic wound models and subsequently for clinical translation. The technology developed also has application in vascularization of tissue-engineered constructs.
Collapse
Affiliation(s)
- Amita Ajit
- 1 Division of Thrombosis Research, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | - T R Santhosh Kumar
- 2 Integrated Cancer Research, Rajiv Gandhi Center for Biotechnology, Thiruvananthapuram, India
| | - Lissy K Krishnan
- 1 Division of Thrombosis Research, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| |
Collapse
|
18
|
Zakaria N, Yahaya BH. Adipose-Derived Mesenchymal Stem Cells Promote Growth and Migration of Lung Adenocarcinoma Cancer Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1292:83-95. [PMID: 31916234 DOI: 10.1007/5584_2019_464] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Mesenchymal stem cells (MSCs) have been used in cancer therapy as vehicles to deliver therapeutic materials such as drugs, apoptosis inducers and cytokines due to their ability to migrate and home at the tumour site. Furthermore, MSCs have been genetically engineered to produce anticancer molecules such as TRAIL that can induce apoptosis of cancer cells. However, MSCs' presence in the tumour microenvironment has shown to be involved in promoting tumour growth and progression. Therefore, the roles of MSCs either promoting or suppressing tumorigenesis need to be investigated. METHODS Human adipose-derived MSCs (Ad-MSCs) and A549 cells are co-cultured together in indirect co-culture system using Transwell insert. Following co-culture, both cells were analysed in terms of growth rate, migration ability, apoptosis and gene expression for genes involved in migration and stemness characteristics. RESULTS The result shows that Ad-MSCs promoted the growth of A549 cells when indirectly co-cultured for 48 and 72 h. Furthermore, Ad-MSCs significantly enhanced the migration rate of A549 cells. The increased in migration rate was in parallel with the significant increase of MMP9. There are no significant changes observed in the expression of TWIST2, CDH2 and CDH1, genes involved in the epithelial-to-mesenchymal transition (EMT). Ad-MSCs also protect A549 cancer cells from undergoing apoptosis and increase the survival of cancer cells. CONCLUSION Secretion of soluble factors from Ad-MSCs has been shown to promote the growth and metastatic characteristics of A549 cancer cells. Therefore, the use of Ad-MSCs in cancer therapy needs to be carefully evaluated in the long-term aspect.
Collapse
Affiliation(s)
- Norashikin Zakaria
- Regenerative Medicine Cluster, Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia
| | - Badrul Hisham Yahaya
- Regenerative Medicine Cluster, Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia.
| |
Collapse
|
19
|
Herrera LC, Shastri VP. Silencing of GFP expression in human mesenchymal stem cells using quaternary polyplexes of siRNA-PEI with glycosaminoglycans and albumin. Acta Biomater 2019; 99:397-411. [PMID: 31541736 DOI: 10.1016/j.actbio.2019.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/24/2019] [Accepted: 09/08/2019] [Indexed: 12/19/2022]
Abstract
In recent years evidence has been mounting for a role for mesenchymal stem cells (MSCs) in immunomodulation, anti-inflammatory processes, and paracrine signaling via secreted extracellular vesicles. In order to exploit these biological functions, systems to efficiently deliver genetic material into MSCs would therefore be highly desirable. In this study, efficient silencing of GFP expression by combining high N/P ratio siRNA and branched PEI (bPEI) polyplexes (siRNA-bPEI) polyplexes with glycosaminoglycans (GAGs), namely hyaluronic acid (HA), chondroitin sulfate (CS) and heparin sulfate (HS), and human serum albumin (HSA) is reported. These quaternary systems were characterized using surface charge, size and morphology and applied to MSCs, which represent a challenge due to their typically low transfection efficiency. The quaternary polyplexes promoted efficient charge shielding and release of siRNA in the cytoplasm with reduced toxicity. A high silencing efficiency of >90% (i.e., less than 10% remaining GFP expression) was achieved with noticeably reduced cellular toxicity, especially with siRNA-bPEI polyplexes modified with HA and HA + HSA. In general addition of GAGs led to more compact polyplexes. Endocytosis studies point to improved endosomal escape at high N/P ratios as a reason for high transfection efficiency and a role for hyaluronic acid in the uptake mechanism likely via CD44 interactions. Co-localization studies showed the polyplexes are stable in the cytosol over time, which correlates with a proper disassembly and subsequent silencing of GFP. Furthermore, GAG containing polyplexes were frequently co-localized with the nucleus. These findings in sum suggest that PEI/HSA/GAG based quaternary polyplexes are promising as transfection agents for MSCs. STATEMENT OF SIGNIFICANCE: Since mesenchymal stem cells (MSCs) are recruited to the site of tissue repair and play a role in immunomodulation, anti-inflammatory processes, and paracrine signaling, they present an excellent target for genetic engineering. However, delivery of genetic material into MSCs is challenging. In this study, >97% silencing of constitutive green fluorescent protein expression in human MSCs (hMSCs) using high N/P ratio polyplexes of branched-PEI-siRNA incorporating glycosaminoglycan as a charge neutralizer and human serum albumin as co-complexing agent is demonstrated. In addition to possessing good cytocompatibility and excellent cytosolic stability; polyplexes incorporating GAGs also showed altered endocytic uptake, with incorporation of hyaluronic acid promoting caveolae-mediated entry. Our system highlights the importance of physiologically derived macromolecules in delivery of genetic material into hMSCs.
Collapse
Affiliation(s)
- Laura C Herrera
- Institute for Macromolecular Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - V Prasad Shastri
- Institute for Macromolecular Chemistry, University of Freiburg, 79104 Freiburg, Germany; BIOSS-Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
20
|
Hujaya SD, Manninen A, Kling K, Wagner JB, Vainio SJ, Liimatainen H. Self-assembled nanofibrils from RGD-functionalized cellulose nanocrystals to improve the performance of PEI/DNA polyplexes. J Colloid Interface Sci 2019; 553:71-82. [DOI: 10.1016/j.jcis.2019.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/31/2019] [Accepted: 06/02/2019] [Indexed: 02/01/2023]
|
21
|
Gerace D, Martiniello-Wilks R, Habib R, Simpson AM. Luciferase-based reporting of suicide gene activity in murine mesenchymal stem cells. PLoS One 2019; 14:e0220013. [PMID: 31318955 PMCID: PMC6638968 DOI: 10.1371/journal.pone.0220013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/05/2019] [Indexed: 12/24/2022] Open
Abstract
Due to their ease of isolation, gene modification and tumor-homing properties, mesenchymal stem cells (MSCs) are an attractive cellular vehicle for the delivery of toxic suicide genes to a variety of cancers in pre-clinical models. In addition, the incorporation of suicide genes in stem cell-derived cell replacement therapies improves their safety profile by permitting graft destruction in the event of unexpected tumorigeneses or unwanted differentiation. Due to the functional requirement of ATP for the Firefly luciferase gene Luc2 to produce light, luciferase-based reporting of cytotoxicity can be engineered into potential cell therapies. Consequently, we nucleofected mammalian expression plasmids containing both the Luc2 and the yeast fusion cytosine deaminase uracil phosphoribosyltransferase (CDUPRT) genes for expression in murine MSCs to assess luciferase as a reporter of suicide gene cytotoxicity, and MSC as vehicles of suicide gene therapy. In vitro bioluminescence imaging (BLI) showed that following the addition of the non-toxic prodrug fluorocytosine (5-FC), CDUPRT-expressing MSCs displayed enhanced cytotoxicity in comparison to Luc2 reporter MSC controls. This study demonstrates the utility of luciferase as a reporter of CDUPRT-mediated cytotoxicity in murine MSC using BLI.
Collapse
Affiliation(s)
- Dario Gerace
- The School of Life Sciences and the Centre for Health Technologies, University of Technology Sydney, Sydney, Australia
| | - Rosetta Martiniello-Wilks
- The School of Life Sciences and the Centre for Health Technologies, University of Technology Sydney, Sydney, Australia
- Translational Cancer Research Group, University of Technology Sydney, Sydney, Australia
| | - Rosaline Habib
- The School of Life Sciences and the Centre for Health Technologies, University of Technology Sydney, Sydney, Australia
| | - Ann Margaret Simpson
- The School of Life Sciences and the Centre for Health Technologies, University of Technology Sydney, Sydney, Australia
- * E-mail:
| |
Collapse
|
22
|
Halim NSSA, Aizat WM, Yahaya BH. The effect of mesenchymal stem cell-secreted factors on airway epithelial repair. Regen Med 2019; 14:15-31. [DOI: 10.2217/rme-2018-0020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Aim: This study was aimed to investigate the effect of mesenchymal stem cell (MSC)-secreted factors on airway repair. Materials & methods: An indirect in vitro coculture model of injured airway epithelium explant with MSCs was developed. LC–MS/MS analysis was performed to determine factors secreted by MSCs and their involvement in epithelium repair was evaluated by histopathological assessment. Results: The identification of 54 of MSC proteins of which 44 of them were secretory/extracellular proteins. 43 of the secreted proteins were found to be involved in accelerating airway epithelium repair by stimulating the migratory, proliferative and differentiation abilities of the endogenous repair mechanisms. MSC-secreted proteins also initiated epithelial–mesenchymal transition process during early repair. Conclusion: MSC-secreted factors accelerated airway epithelial repair by stimulating the endogenous reparative and regenerative ability of lung cells.
Collapse
Affiliation(s)
- Nur SSA Halim
- Regenerative Medicine Cluster, Advanced Medical & Dental Institute (IPPT), Universiti Sains Malaysia, 13200 Bertam, Penang, Malaysia
| | - Wan M Aizat
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Badrul H Yahaya
- Regenerative Medicine Cluster, Advanced Medical & Dental Institute (IPPT), Universiti Sains Malaysia, 13200 Bertam, Penang, Malaysia
| |
Collapse
|
23
|
Serra J, Alves CPA, Brito L, Monteiro GA, Cabral JMS, Prazeres DMF, da Silva CL. Engineering of Human Mesenchymal Stem/Stromal Cells with Vascular Endothelial Growth Factor-Encoding Minicircles for Angiogenic Ex Vivo Gene Therapy. Hum Gene Ther 2018; 30:316-329. [PMID: 30200778 DOI: 10.1089/hum.2018.154] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Peripheral artery disease (PAD) is a debilitating and prevalent condition characterized by blockage of the arteries, leading to limb amputation in more severe cases. Mesenchymal stem/stromal cells (MSC) are known to have intrinsic regenerative properties that can be potentiated by the introduction of pro-angiogenic genes such as the vascular endothelial growth factor (VEGF). Herein, the use of human bone marrow MSC transiently transfected with minicircles encoding for VEGF is proposed as an ex vivo gene therapy strategy to enhance angiogenesis in PAD patients. The VEGF gene was cloned in minicircle and conventional plasmid vectors and used to transfect bone marrow-derived MSC ex vivo. VEGF expression was evaluated both by quantitative polymerase chain reaction and enzyme-linked immunosorbent assay. The number of VEGF transcripts following MSC transfection with minicircles increased 130-fold relative to the expression in non-transfected MSC, whereas for the plasmid (pVAX1)-based transfection, the increase was 50-fold. Compared to the VEGF basal levels secreted by MSC (11.1 ± 3.4 pg/1,000 cells/day), significantly higher values were detected by enzyme-linked immunosorbent assay after both minicircle and pVAX1 transfection (644.8 ± 82.5 and 508.3 ± 164.0 pg/1,000 cells/day, respectively). The VEGF overexpression improved the angiogenic potential of MSC in vitro, as confirmed by endothelial cell tube formation and cell migration assays, without affecting the expansion potential ex vivo, as well as multilineage differentiation capacity or immunophenotype of MSC. Although preclinical in vivo studies are required, these results suggest that minicircle-mediated VEGF gene delivery, combined with the unique properties of human MSC, could represent a promising ex vivo gene therapy approach for an improved angiogenesis in the context of PAD.
Collapse
Affiliation(s)
- Joana Serra
- 1 Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Universidade de Lisboa, Lisboa, Portugal
| | - Cláudia P A Alves
- 1 Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Universidade de Lisboa, Lisboa, Portugal
| | - Liliana Brito
- 1 Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Universidade de Lisboa, Lisboa, Portugal
| | - Gabriel A Monteiro
- 1 Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Universidade de Lisboa, Lisboa, Portugal.,2 The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Joaquim M S Cabral
- 1 Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Universidade de Lisboa, Lisboa, Portugal.,2 The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Duarte Miguel F Prazeres
- 1 Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Universidade de Lisboa, Lisboa, Portugal
| | - Cláudia L da Silva
- 1 Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Universidade de Lisboa, Lisboa, Portugal.,2 The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
24
|
Graceffa V, Vinatier C, Guicheux J, Evans CH, Stoddart M, Alini M, Zeugolis DI. State of art and limitations in genetic engineering to induce stable chondrogenic phenotype. Biotechnol Adv 2018; 36:1855-1869. [PMID: 30012541 DOI: 10.1016/j.biotechadv.2018.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 05/16/2018] [Accepted: 07/12/2018] [Indexed: 12/18/2022]
|
25
|
Controlled Non-Viral Gene Delivery in Cartilage and Bone Repair: Current Strategies and Future Directions. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800038] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
26
|
Fakiruddin KS, Ghazalli N, Lim MN, Zakaria Z, Abdullah S. Mesenchymal Stem Cell Expressing TRAIL as Targeted Therapy against Sensitised Tumour. Int J Mol Sci 2018; 19:ijms19082188. [PMID: 30060445 PMCID: PMC6121609 DOI: 10.3390/ijms19082188] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 06/30/2018] [Accepted: 07/02/2018] [Indexed: 02/06/2023] Open
Abstract
Tapping into the ability of engineered mesenchymal stem cells (MSCs) to mobilise into the tumour has expanded the scope of cancer treatment. Engineered MSCs expressing tumour necrosis factor (TNF)-related apoptosis inducing ligand (MSC-TRAIL) could serve as a platform for an efficient and targeted form of therapy. However, the presence of cancer stem cells (CSCs) that are resistant to TRAIL and apoptosis may represent a challenge for effective treatment. Nonetheless, with the discovery of small molecular inhibitors that could target CSCs and tumour signalling pathways, a higher efficacy of MSC-TRAIL mediated tumour inhibition can be achieved. This might pave the way for a more effective form of combined therapy, which leads to a better treatment outcome. In this review, we first discuss the tumour-homing capacity of MSCs, its effect in tumour tropism, the different approach behind genetically-engineered MSCs, and the efficacy and safety of each agent delivered by these MSCs. Then, we focus on how sensitisation of CSCs and tumours using small molecular inhibitors can increase the effect of these cells to either TRAIL or MSC-TRAIL mediated inhibition. In the conclusion, we address a few questions and safety concerns regarding the utilization of engineered MSCs for future treatment in patients.
Collapse
Affiliation(s)
- Kamal Shaik Fakiruddin
- Stem Cell Laboratory, Haematology Unit, Cancer Research Centre, Institute for Medical Research, Kuala Lumpur 50588, Malaysia.
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Nadiah Ghazalli
- Medical Genetics Laboratory, Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Moon Nian Lim
- Stem Cell Laboratory, Haematology Unit, Cancer Research Centre, Institute for Medical Research, Kuala Lumpur 50588, Malaysia.
| | - Zubaidah Zakaria
- Stem Cell Laboratory, Haematology Unit, Cancer Research Centre, Institute for Medical Research, Kuala Lumpur 50588, Malaysia.
| | - Syahril Abdullah
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
- Medical Genetics Laboratory, Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| |
Collapse
|
27
|
Bougioukli S, Sugiyama O, Pannell W, Ortega B, Tan MH, Tang AH, Yoho R, Oakes DA, Lieberman JR. Gene Therapy for Bone Repair Using Human Cells: Superior Osteogenic Potential of Bone Morphogenetic Protein 2-Transduced Mesenchymal Stem Cells Derived from Adipose Tissue Compared to Bone Marrow. Hum Gene Ther 2018; 29:507-519. [PMID: 29212377 DOI: 10.1089/hum.2017.097] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Ex vivo regional gene therapy strategies using animal mesenchymal stem cells genetically modified to overexpress osteoinductive growth factors have been successfully used in a variety of animal models to induce both heterotopic and orthotopic bone formation. However, in order to adapt regional gene therapy for clinical applications, it is essential to assess the osteogenic capacity of transduced human cells and choose the cell type that demonstrates the best clinical potential. Bone-marrow stem cells (BMSC) and adipose-derived stem cells (ASC) were selected in this study for in vitro evaluation, before and after transduction with a lentiviral two-step transcriptional amplification system (TSTA) overexpressing bone morphogenetic protein 2 (BMP-2; LV-TSTA-BMP-2) or green fluorescent protein (GFP; LV-TSTA-GFP). Cell growth, transduction efficiency, BMP-2 production, and osteogenic capacity were assessed. The study demonstrated that BMSC were characterized by a slower cell growth compared to ASC. Fluorescence-activated cell sorting analysis of GFP-transduced cells confirmed successful transduction with the vector and revealed an overall higher but not statistically significant transduction efficiency in ASC versus BMSC (90.2 ± 4.06% vs. 80.4 ± 8.51%, respectively; p = 0.146). Enzyme-linked immunosorbent assay confirmed abundant BMP-2 production by both cell types transduced with LV-TSTA-BMP-2, with BMP-2 production being significantly higher in ASC versus BMSC (239.5 ± 116.55 ng vs. 70.86 ± 24.7 ng; p = 0.001). Quantitative analysis of extracellular deposition of calcium (Alizarin red) and alkaline phosphatase activity showed that BMP-2-transduced cells had a higher osteogenic differentiation capacity compared to non-transduced cells. When comparing the two cell types, ASC/LV-TSTA-BMP-2 demonstrated a significantly higher mineralization potential compared to BMSC/LV-TSTA-BMP-2 7 days post transduction (p = 0.014). In conclusion, this study demonstrates that transduction with LV-TSTA-BMP-2 can significantly enhance the osteogenic potential of both human BMSC and ASC. BMP-2-treated ASC exhibited higher BMP-2 production and greater osteogenic differentiation capacity compared to BMP-2-treated BMSC. These results, along with the fact that liposuction is an easy procedure with lower donor-site morbidity compared to BM aspiration, indicate that adipose tissue might be a preferable source of MSCs to develop a regional gene therapy approach to treat difficult bone-repair scenarios.
Collapse
Affiliation(s)
- Sofia Bougioukli
- 1 Department of Orthopedic Surgery, Keck School of Medicine, University of Southern California , Los Angeles, California
| | - Osamu Sugiyama
- 1 Department of Orthopedic Surgery, Keck School of Medicine, University of Southern California , Los Angeles, California
| | - William Pannell
- 1 Department of Orthopedic Surgery, Keck School of Medicine, University of Southern California , Los Angeles, California
| | - Brandon Ortega
- 1 Department of Orthopedic Surgery, Keck School of Medicine, University of Southern California , Los Angeles, California
| | - Matthew H Tan
- 1 Department of Orthopedic Surgery, Keck School of Medicine, University of Southern California , Los Angeles, California
| | - Amy H Tang
- 1 Department of Orthopedic Surgery, Keck School of Medicine, University of Southern California , Los Angeles, California
| | - Robert Yoho
- 2 Cosmetic Surgery Practice , Pasadena, California
| | - Daniel A Oakes
- 1 Department of Orthopedic Surgery, Keck School of Medicine, University of Southern California , Los Angeles, California
| | - Jay R Lieberman
- 1 Department of Orthopedic Surgery, Keck School of Medicine, University of Southern California , Los Angeles, California
| |
Collapse
|
28
|
Halder UC. Bone marrow stem cells to destroy circulating HIV: a hypothetical therapeutic strategy. ACTA ACUST UNITED AC 2018; 25:3. [PMID: 29445623 PMCID: PMC5800069 DOI: 10.1186/s40709-018-0075-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 01/27/2018] [Indexed: 12/19/2022]
Abstract
Human immunodeficiency virus (HIV) still poses enigmatic threats to human life. This virus has mastered in bypassing anti retroviral therapy leading to patients’ death. Circulating viruses are phenomenal for the disease outcome. This hypothesis proposes a therapeutic strategy utilizing receptor-integrated hematopoietic, erythroid and red blood cells. Here, HIV specific receptors trap circulating viruses that enter erythrocyte cytoplasm and form inactive integration complex. This model depicts easy, effective removal of circulating HIV without any adverse effect.
Collapse
Affiliation(s)
- Umesh Chandra Halder
- Department of Zoology, Raniganj Girls' College, Searsole, Rajbari, Raniganj, Paschim Barddhaman, West Bengal 713358 India
| |
Collapse
|
29
|
Lolli A, Penolazzi L, Narcisi R, van Osch GJVM, Piva R. Emerging potential of gene silencing approaches targeting anti-chondrogenic factors for cell-based cartilage repair. Cell Mol Life Sci 2017; 74:3451-3465. [PMID: 28434038 PMCID: PMC11107620 DOI: 10.1007/s00018-017-2531-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/14/2017] [Accepted: 04/19/2017] [Indexed: 12/18/2022]
Abstract
The field of cartilage repair has exponentially been growing over the past decade. Here, we discuss the possibility to achieve satisfactory regeneration of articular cartilage by means of human mesenchymal stem cells (hMSCs) depleted of anti-chondrogenic factors and implanted in the site of injury. Different types of molecules including transcription factors, transcriptional co-regulators, secreted proteins, and microRNAs have recently been identified as negative modulators of chondroprogenitor differentiation and chondrocyte function. We review the current knowledge about these molecules as potential targets for gene knockdown strategies using RNA interference (RNAi) tools that allow the specific suppression of gene function. The critical issues regarding the optimization of the gene silencing approach as well as the delivery strategies are discussed. We anticipate that further development of these techniques will lead to the generation of implantable hMSCs with enhanced potential to regenerate articular cartilage damaged by injury, disease, or aging.
Collapse
Affiliation(s)
- Andrea Lolli
- Department of Orthopaedics, Erasmus MC, University Medical Center, 3015 CN, Rotterdam, The Netherlands.
| | - Letizia Penolazzi
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Roberto Narcisi
- Department of Orthopaedics, Erasmus MC, University Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Gerjo J V M van Osch
- Department of Orthopaedics, Erasmus MC, University Medical Center, 3015 CN, Rotterdam, The Netherlands
- Department of Otorhinolaryngology, Erasmus MC, University Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Roberta Piva
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
30
|
Wang W, Li W, Wang J, Hu Q, Balk M, Bieback K, Stamm C, Jung F, Tang G, Lendlein A, Ma N. Folate receptor mediated genetic modification of human mesenchymal stem cells via folic acid-polyethylenimine-grafted poly(N-3-hydroxypropyl)aspartamide. Clin Hemorheol Microcirc 2017; 67:279-295. [PMID: 28869460 DOI: 10.3233/ch-179209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Mesenchymal stem cells (MSCs) are targeted as vehicles for cell mediated gene therapy. Here we report on a macromolecular carrier, which was designed aiming at successful targeted gene delivery into MSCs through the mediation of folate receptor and reduced cytotoxicity compared to established cationic polymer vector - polyethylenimine with a weight average molecular weight (Mw) of 25,000 Dalton (PEI25K). The carrier PHPA-PEI1800-FA was synthesized in a two-step procedure. PHPA-PEI1800 was prepared by grafting polyethylenimine with a Mw of 1800 Dalton (PEI1800) onto the α,β-poly(N-3-hydroxypropyl)-D,L-aspartamide (PHPA) backbone. PHPA-PEI1800-FA was obtained by chemically conjugating folic acid onto PHPA-PEI1800. The grafting degree of PEI1800 was 3.9±0.2% in relation to the CH groups of PHPA and the molar ratio of folic acid conjugated to PEI1800 (χFA) was 1.8±0.1 as calculated by NMR spectroscopy. The copolymers were biodegradable and exhibited lower cytotoxicity than PEI25K. Compared to PHPA-PEI1800, PHPA-PEI1800-FA led to a significantly higher transfection efficiency in human MSCs, which could be attributed to the mediation of folate receptor during the transfection process as confirmed by folic acid competition assay. Both marker gene (GFP) and therapeutic gene (VEGF) were delivered into human MSCs from multi-donors using PHPA-PEI1800-FA. The percentage of GFP+ MSCs showed an average value of 2.85±1.60% but a large variation for different samples. The VEGF expression level of the PHPA-PEI1800-FA transfected cells was significantly higher than that of either untransfected or naked DNA transfected cells. Conclusively, PHPA-PEI1800-FA is a suitable vector to deliver genes into human MSCs through the interaction with folate receptor.
Collapse
Affiliation(s)
- Weiwei Wang
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Department of Cardiac Surgery, University of Rostock, Rostock, Germany
| | - Wenzhong Li
- Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Department of Cardiac Surgery, University of Rostock, Rostock, Germany
| | - Jinlei Wang
- Institute of Chemical Biology and Pharmaceutical Chemistry, Zhejiang University, Hangzhou, P. R. China
| | - Qinglian Hu
- Institute of Chemical Biology and Pharmaceutical Chemistry, Zhejiang University, Hangzhou, P. R. China
| | - Maria Balk
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Karen Bieback
- Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, German Red Cross Blood Service of Baden-Württemberg-Hessen, Heidelberg University, Mannheim, Germany
| | - Christof Stamm
- Charité - Universitätsmedizin Berlin, Deutsches Herzzentrum Berlin, Berlin-Brandenburg Center for Regenerative Therapies, Germany
| | - Friedrich Jung
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Guping Tang
- Institute of Chemical Biology and Pharmaceutical Chemistry, Zhejiang University, Hangzhou, P. R. China
| | - Andreas Lendlein
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Free University of Berlin, Berlin, Germany
| | - Nan Ma
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Free University of Berlin, Berlin, Germany
| |
Collapse
|
31
|
Ho Y, Zhou L, Tam KC, Too H. Enhanced non-viral gene delivery by coordinated endosomal release and inhibition of β-tubulin deactylase. Nucleic Acids Res 2017; 45:e38. [PMID: 27899629 PMCID: PMC5389648 DOI: 10.1093/nar/gkw1143] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/04/2016] [Accepted: 11/04/2016] [Indexed: 12/20/2022] Open
Abstract
Efficient non-viral gene delivery is highly desirable but often unattainable with some cell-types. We report here that non-viral DNA polyplexes can efficiently transfect differentiated neuronal and stem cells. Polyplex transfection centrifugation protocols was enhanced by including a simultaneous treatment with a DOPE/CHEMS lipid suspension and a microtubule inhibitor, Tubastatin A. Lipoplex transfection protocols were not improved by this treatment. This mechanism of action was unravelled by systematically identifying and rationally mitigating barriers limiting high transfection efficiency, allowing unexpected improvements in the transfection of mesenchymal stem cells (MSC), primary neuron and several hard-to-transfect cell types beyond what are currently achievable using cationic polymers. The optimized formulation and method achieved high transfection efficiency with no adverse effects on cell viability, cell proliferation or differentiation. High efficiency modification of MSC for cytokine overexpression, efficient generation of dopaminergic neuron using neural stem cells and enhanced genome editing with CRISPR-Cas9 were demonstrated. In summary, this study described a cost-effective method for efficient, rapid and scalable workflow for ex vivo gene delivery using a myriad of nucleic acids including plasmid DNA, mRNA, siRNA and shRNA.
Collapse
Affiliation(s)
- Yoon Khei Ho
- Bioprocessing Technology Institute, Agency for Science, Technology, and Research (A*STAR), 138668 Singapore
| | - Li Han Zhou
- MiRXES, 10 Biopolis Road, Chromos 03-01, 138670 Singapore
| | - Kam C. Tam
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Heng Phon Too
- Bioprocessing Technology Institute, Agency for Science, Technology, and Research (A*STAR), 138668 Singapore
- Department of Biochemistry, National University of Singapore, 119260 Singapore
| |
Collapse
|
32
|
Ultrasound-Mediated Mesenchymal Stem Cells Transfection as a Targeted Cancer Therapy Platform. Sci Rep 2017; 7:42046. [PMID: 28169315 PMCID: PMC5294424 DOI: 10.1038/srep42046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 01/05/2017] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) hold tremendous potential as a targeted cell-based delivery platform for inflammatory and cancer therapy. Genetic manipulation of MSCs, however, is challenging, and therefore, most studies using MSCs as therapeutic cell carriers have utilized viral vectors to transduce the cells. Here, we demonstrate, for the first time, an alternative approach for the efficient transfection of MSCs; therapeutic ultrasound (TUS). Using TUS with low intensities and moderate frequencies, MSCs were transfected with a pDNA encoding for PEX, a protein that inhibits tumor angiogenesis, and studied as a cell vehicle for in vivo tumor therapy. TUS application did not alter the MSCs' stemness or their homing capabilities, and the transfected MSCs transcribed biologically active PEX. Additionally, in a mouse model, 70% inhibition of prostate tumor growth was achieved following a single I.V. administration of MSCs that were TUS-transfected with pPEX. Further, the repeated I.V. administration of TUS-pPEX transfected-MSCs enhanced tumor inhibition up to 84%. Altogether, these results provide a proof of concept that TUS-transfected MSCs can be effectively used as a cell-based delivery approach for the prospective treatment of cancer.
Collapse
|
33
|
Valizadeh A, Ahmadzadeh A, Saki G, Khodadadi A, Teimoori A. Role of Tumor Necrosis Factor-Producing Mesenchymal Stem Cells on Apoptosis of Chronic B-lymphocytic Tumor Cells Resistant to Fludarabine-based Chemotherapy. Asian Pac J Cancer Prev 2016; 16:8533-9. [PMID: 26745113 DOI: 10.7314/apjcp.2015.16.18.8533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND B-cell chronic lymphocytic leukemia B (B-CLL), the most common type of leukemia, may be caused by apoptosis deficiency in the body. Adipose tissue-derived mesenchymal stem cells (AD-MSCs) as providers of pro-apoptotic molecules such as tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), can be considered as an effective anti-cancer therapy candidate. Therefore, in this study we assessed the role of tumor necrosis factor-producing mesenchymal stem cells oin apoptosis of B-CLL cells resistant to fludarabine- based chemotherapy. MATERIALS AND METHODS In this study, after isolation and culture of AD-MSCs, a lentiviral LeGO-iG2-TRAIL-GFP vector containing a gene producing the ligand pro-apoptotic with plasmid PsPAX2 and PMDG2 virus were transfected into cell-lines to generate T293HEK. Then, T293HEK cell supernatant containing the virus produced after 48 and 72 hours was collected, and these viruses were transduced to reprogram AD-MSCs. Apoptosis rates were separately studied in four groups: group 1, AD-MSCs-TRAIL; group 2, AD-MSCs-GFP; group 3, AD-MSCs; and group 4, CLL. RESULTS Observed apoptosis rates were: group 1, 42 ± 1.04%; group 2, 21 ± 0.57%; group 3, 19± 2.6%; and group 4, % 0.01 ± 0.01. The highest rate of apoptosis thus occurred ingroup 1 (transduced TRAIL encoding vector). In this group, the average medium-soluble TRAIL was 72.7pg/m and flow cytometry analysis showed a pro-apoptosis rate of 63 ± 1.6%, which was again higher than in other groups. CONCLUSIONS In this study we have shown that tumor necrosis factor (TNF) secreted by AD-MSCs may play an effective role in inducing B-CLL cell apoptosis.
Collapse
Affiliation(s)
- Armita Valizadeh
- Physiology Research Center, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR Iran E-mail :
| | | | | | | | | |
Collapse
|
34
|
Krassikova LS, Karshieva SS, Cheglakov IB, Belyavsky AV. Combined treatment, based on lysomustine administration with mesenchymal stem cells expressing cytosine deaminase therapy, leads to pronounced murine Lewis lung carcinoma growth inhibition. J Gene Med 2016; 18:220-33. [DOI: 10.1002/jgm.2894] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 07/18/2016] [Accepted: 07/20/2016] [Indexed: 12/22/2022] Open
Affiliation(s)
- Lyudmila S. Krassikova
- Pushchino State Institute of Natural Sciences; Pushchino Russia
- Engelhardt Institute of Molecular Biology RAS; Moscow Russia
| | - Saida S. Karshieva
- Engelhardt Institute of Molecular Biology RAS; Moscow Russia
- N. N. Blokhin Cancer Research Center; Russia
| | - Ivan B. Cheglakov
- Engelhardt Institute of Molecular Biology RAS; Moscow Russia
- N. N. Blokhin Cancer Research Center; Russia
| | | |
Collapse
|
35
|
Substrate-mediated reprogramming of human fibroblasts into neural crest stem-like cells and their applications in neural repair. Biomaterials 2016; 102:148-61. [DOI: 10.1016/j.biomaterials.2016.06.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 06/07/2016] [Indexed: 11/22/2022]
|
36
|
Delivery of HIV-1 Nef Protein in Mammalian Cells Using Cell Penetrating Peptides as a Candidate Therapeutic Vaccine. Int J Pept Res Ther 2016. [DOI: 10.1007/s10989-016-9547-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Mun JY, Shin KK, Kwon O, Lim YT, Oh DB. Minicircle microporation-based non-viral gene delivery improved the targeting of mesenchymal stem cells to an injury site. Biomaterials 2016; 101:310-20. [PMID: 27315214 DOI: 10.1016/j.biomaterials.2016.05.057] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 05/26/2016] [Accepted: 05/31/2016] [Indexed: 12/14/2022]
Abstract
Genetic engineering approaches to improve the therapeutic potential of mesenchymal stem cells (MSCs) have been made by viral and non-viral gene delivery methods. Viral methods have severe limitations in clinical application because of potential oncogenic, pathogenic, and immunogenic risks, while non-viral methods have suffered from low transfection efficiency and transient weak expression as MSCs are hard-to-transfect cells. In this study, minicircle, which is a minimal expression vector free of bacterial sequences, was employed for MSC transfection as a non-viral gene delivery method. The conventional cationic liposome method was not effective for MSC transfection as it resulted in very low transfection efficiency (less than 5%). Microporation, a new electroporation method, greatly improved the transfection efficiency of minicircles by up to 66% in MSCs without any significant loss of cell viability. Furthermore, minicircle microporation generated much stronger and prolonged transgene expression compared with plasmid microporation. When MSCs microporated with minicircle harboring firefly luciferase gene were subcutaneously injected to mice, the bioluminescence continued for more than a week, whereas the bioluminescence of the MSCs induced by plasmid microporation rapidly decreased and disappeared in mice within three days. By minicircle microporation as a non-viral gene delivery, MSCs engineered to overexpress CXCR4 showed greatly increased homing ability toward an injury site as confirmed through in vivo bioluminescence imaging in mice. In summary, the engineering of MSCs through minicircle microporation is expected to enhance the therapeutic potential of MSCs in clinical applications.
Collapse
Affiliation(s)
- Ji-Young Mun
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Keun Koo Shin
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Ohsuk Kwon
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, Republic of Korea; Biosystems and Bioengineering Program, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Yong Taik Lim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Republic of Korea.
| | - Doo-Byoung Oh
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, Republic of Korea; Biosystems and Bioengineering Program, University of Science and Technology (UST), Daejeon, Republic of Korea.
| |
Collapse
|
38
|
Tang Q, Lu M, Chen D, Liu P. Combination of PEI-Mn0.5Zn0.5Fe2O4 nanoparticles and pHsp 70-HSV-TK/GCV with magnet-induced heating for treatment of hepatoma. Int J Nanomedicine 2015; 10:7129-43. [PMID: 26604760 PMCID: PMC4655962 DOI: 10.2147/ijn.s92179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background To explore a new combination of thermal treatment and gene therapy for hepatoma, a heat-inducible herpes simplex virus thymidine kinase/ganciclovir (HSV-TK/GCV) gene therapy system was developed in which thermal energy generated by Mn0.5Zn0.5Fe2O4 nanoparticles (MZF-NPs) under an alternating magnetic field was used to activate gene expression. Methods First, a recombinant eukaryotic plasmid, pHsp 70-HSV-TK, was constructed as a target gene for therapy. This recombinant plasmid was used to transfect SMMC-7721 hepatoma cells and the gene expression was evaluated. Magnet-induced heating was then applied to cells to assess the antihepatoma effects of the polyethylenimine (PEI)-MZF-NPs/pHsp 70-HSV-TK/GCV complex, in vitro and in vivo. Results The results showed that cells were successfully transfected with pHsp 70-HSV-TK and that expression levels of HSV-TK remained stable. Both in vitro and in vivo results indicated that the combination of gene therapy and heat treatment resulted in better therapeutic effects than heating-alone group. The rates of apoptosis and necrosis in the combined treatment group were 49.0% and 7.21%, respectively. The rate of inhibition of cell proliferation in the combined treatment group was significantly higher (87.5%) than that in the heating-alone group (65.8%; P<0.01). The tumor volume and mass inhibition rates of the combined treatment group were 91.3% and 87.91%, respectively, and were significantly higher than the corresponding rates of the heating-alone group (70.41% and 57.14%; P<0.01). The expression levels of Stat3 and Bcl-xL messenger RNA and p-Stat3 and Bcl-xL protein in the combined treatment group were significantly lower than those in the other groups (P<0.01). The expression levels of Bax messenger RNA and protein in the recombinant plasmid group were significantly higher than those in the other groups (P<0.01). Conclusion It can therefore be concluded that the combined application of heat treatment and gene therapy has a synergistic and complementary effect and that PEI-MZF-NPs can simultaneously act both as a nonviral gene vector and a magnet-induced source of heat, thereby representing a viable approach for the treatment of cancer.
Collapse
Affiliation(s)
- Qiusha Tang
- School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Mudan Lu
- Genetic Laboratory, Wuxi Hospital for Maternal and Child Health Care, the Affiliated Hospital of Nanjing Medical University, Wuxi, People's Republic of China
| | - Daozhen Chen
- Genetic Laboratory, Wuxi Hospital for Maternal and Child Health Care, the Affiliated Hospital of Nanjing Medical University, Wuxi, People's Republic of China
| | - Peidang Liu
- School of Medicine, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
39
|
Nowakowski A, Walczak P, Janowski M, Lukomska B. Genetic Engineering of Mesenchymal Stem Cells for Regenerative Medicine. Stem Cells Dev 2015; 24:2219-42. [PMID: 26140302 DOI: 10.1089/scd.2015.0062] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs), which can be obtained from various organs and easily propagated in vitro, are one of the most extensively used types of stem cells and have been shown to be efficacious in a broad set of diseases. The unique and highly desirable properties of MSCs include high migratory capacities toward injured areas, immunomodulatory features, and the natural ability to differentiate into connective tissue phenotypes. These phenotypes include bone and cartilage, and these properties predispose MSCs to be therapeutically useful. In addition, MSCs elicit their therapeutic effects by paracrine actions, in which the metabolism of target tissues is modulated. Genetic engineering methods can greatly amplify these properties and broaden the therapeutic capabilities of MSCs, including transdifferentiation toward diverse cell lineages. However, cell engineering can also affect safety and increase the cost of therapy based on MSCs; thus, the advantages and disadvantages of these procedures should be discussed. In this review, the latest applications of genetic engineering methods for MSCs with regenerative medicine purposes are presented.
Collapse
Affiliation(s)
- Adam Nowakowski
- 1 NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences , Warsaw, Poland
| | - Piotr Walczak
- 2 Division of Magnetic Resonance Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine , Baltimore, Maryland.,3 Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine , Baltimore, Maryland.,4 Department of Radiology, Faculty of Medical Sciences, University of Warmia and Mazury , Olsztyn, Poland
| | - Miroslaw Janowski
- 1 NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences , Warsaw, Poland .,2 Division of Magnetic Resonance Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine , Baltimore, Maryland.,3 Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Barbara Lukomska
- 1 NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences , Warsaw, Poland
| |
Collapse
|
40
|
Salmasi Z, Shier WT, Hashemi M, Mahdipour E, Parhiz H, Abnous K, Ramezani M. Heterocyclic amine-modified polyethylenimine as gene carriers for transfection of mammalian cells. Eur J Pharm Biopharm 2015. [PMID: 26209125 DOI: 10.1016/j.ejpb.2015.07.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Branched polyethylenimine (PEI) is extensively used as a polycationic non-viral vector for gene delivery. Polyplexes formed with PEI are believed to be released from endocytotic vesicles by the osmotic burst mechanism in the rate-limiting step in transfection. Increasing the buffering capacity of PEI derivatives in the endosomal pH range of 4.5-7.5 should enhance transfection efficiency. In this study, PEI was derivatized by covalently attaching heterocyclic amine moieties (piperazine, pyridine and imidazole rings with pKa values from 5.23 to 6.04) through amide bonds. PEI derivatives with 50% of the primary amines on PEI exhibited increased buffering capacity, increased transfection activity and decreased cytotoxicity in murine neuroblastoma (Neuro-2a) cells. The relative effectiveness in enhancing transfection efficiency was piperazine>pyridine>histidine, but each type of amine was the most effective under a particular set of conditions. Modified vectors could significantly improve transfection efficiency in murine mesenchymal stem cells. PEI25 derivatized at 50% with histidine administered as polyplexes in the tail veins of mice resulted in remarkably enhanced luciferase gene expression in the expected organ distribution and much lower toxicity than underivatized PEI25.
Collapse
Affiliation(s)
- Zahra Salmasi
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, P.O. Box 91775-1365, Iran
| | - Wayne Thomas Shier
- Department of Medicinal Chemistry, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
| | - Maryam Hashemi
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, P.O. Box 91775-1365, Iran
| | - Elahe Mahdipour
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, P.O. Box 917794-8564, Iran
| | - Hamideh Parhiz
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, P.O. Box 91775-1365, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, P.O. Box 91775-1365, Iran.
| | - Mohammad Ramezani
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, P.O. Box 91775-1365, Iran.
| |
Collapse
|