1
|
He S, Segura Abarrategi J, Bediaga H, Arrasate S, González-Díaz H. On the additive artificial intelligence-based discovery of nanoparticle neurodegenerative disease drug delivery systems. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:535-555. [PMID: 38774585 PMCID: PMC11106676 DOI: 10.3762/bjnano.15.47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/23/2024] [Indexed: 05/24/2024]
Abstract
Neurodegenerative diseases are characterized by slowly progressing neuronal cell death. Conventional drug treatment strategies often fail because of poor solubility, low bioavailability, and the inability of the drugs to effectively cross the blood-brain barrier. Therefore, the development of new neurodegenerative disease drugs (NDDs) requires immediate attention. Nanoparticle (NP) systems are of increasing interest for transporting NDDs to the central nervous system. However, discovering effective nanoparticle neuronal disease drug delivery systems (N2D3Ss) is challenging because of the vast number of combinations of NP and NDD compounds, as well as the various assays involved. Artificial intelligence/machine learning (AI/ML) algorithms have the potential to accelerate this process by predicting the most promising NDD and NP candidates for assaying. Nevertheless, the relatively limited amount of reported data on N2D3S activity compared to assayed NDDs makes AI/ML analysis challenging. In this work, the IFPTML technique, which combines information fusion (IF), perturbation theory (PT), and machine learning (ML), was employed to address this challenge. Initially, we conducted the fusion into a unified dataset comprising 4403 NDD assays from ChEMBL and 260 NP cytotoxicity assays from journal articles. Through a resampling process, three new working datasets were generated, each containing 500,000 cases. We utilized linear discriminant analysis (LDA) along with artificial neural network (ANN) algorithms, such as multilayer perceptron (MLP) and deep learning networks (DLN), to construct linear and non-linear IFPTML models. The IFPTML-LDA models exhibited sensitivity (Sn) and specificity (Sp) values in the range of 70% to 73% (>375,000 training cases) and 70% to 80% (>125,000 validation cases), respectively. In contrast, the IFPTML-MLP and IFPTML-DLN achieved Sn and Sp values in the range of 85% to 86% for both training and validation series. Additionally, IFPTML-ANN models showed an area under the receiver operating curve (AUROC) of approximately 0.93 to 0.95. These results indicate that the IFPTML models could serve as valuable tools in the design of drug delivery systems for neurosciences.
Collapse
Affiliation(s)
- Shan He
- Department of Organic and Inorganic Chemistry, University of Basque Country UPV/EHU, 48940 Leioa, Spain
- IKERDATA S.L., ZITEK, UPV/EHU, Rectorate Building, nº6, 48940 Leioa, Greater Bilbao, Basque Country, Spain
| | - Julen Segura Abarrategi
- Department of Organic and Inorganic Chemistry, University of Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Harbil Bediaga
- IKERDATA S.L., ZITEK, UPV/EHU, Rectorate Building, nº6, 48940 Leioa, Greater Bilbao, Basque Country, Spain
- Painting Department, Fine Arts Faculty, University of the Basque Country UPV/EHU, 48940, Leioa, Biscay, Basque Country, Spain
| | - Sonia Arrasate
- Department of Organic and Inorganic Chemistry, University of Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Humberto González-Díaz
- Department of Organic and Inorganic Chemistry, University of Basque Country UPV/EHU, 48940 Leioa, Spain
- Instituto Biofisika (UPV/EHU-CSIC), 48940 Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Biscay, Spain
| |
Collapse
|
2
|
Diéguez-Santana K, Casañola-Martin GM, Torres R, Rasulev B, Green JR, González-Díaz H. Machine Learning Study of Metabolic Networks vs ChEMBL Data of Antibacterial Compounds. Mol Pharm 2022; 19:2151-2163. [PMID: 35671399 PMCID: PMC9986951 DOI: 10.1021/acs.molpharmaceut.2c00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Antibacterial drugs (AD) change the metabolic status of bacteria, contributing to bacterial death. However, antibiotic resistance and the emergence of multidrug-resistant bacteria increase interest in understanding metabolic network (MN) mutations and the interaction of AD vs MN. In this study, we employed the IFPTML = Information Fusion (IF) + Perturbation Theory (PT) + Machine Learning (ML) algorithm on a huge dataset from the ChEMBL database, which contains >155,000 AD assays vs >40 MNs of multiple bacteria species. We built a linear discriminant analysis (LDA) and 17 ML models centered on the linear index and based on atoms to predict antibacterial compounds. The IFPTML-LDA model presented the following results for the training subset: specificity (Sp) = 76% out of 70,000 cases, sensitivity (Sn) = 70%, and Accuracy (Acc) = 73%. The same model also presented the following results for the validation subsets: Sp = 76%, Sn = 70%, and Acc = 73.1%. Among the IFPTML nonlinear models, the k nearest neighbors (KNN) showed the best results with Sn = 99.2%, Sp = 95.5%, Acc = 97.4%, and Area Under Receiver Operating Characteristic (AUROC) = 0.998 in training sets. In the validation series, the Random Forest had the best results: Sn = 93.96% and Sp = 87.02% (AUROC = 0.945). The IFPTML linear and nonlinear models regarding the ADs vs MNs have good statistical parameters, and they could contribute toward finding new metabolic mutations in antibiotic resistance and reducing time/costs in antibacterial drug research.
Collapse
Affiliation(s)
- Karel Diéguez-Santana
- Department of Organic and Inorganic Chemistry, University of Basque Country UPV/EHU, 48940 Leioa, Spain.,Universidad Regional Amazónica IKIAM, Tena, Napo 150150, Ecuador
| | - Gerardo M Casañola-Martin
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58102, United States.,Department of Systems and Computer Engineering, Carleton University, K1S5B6 Ottawa, Ontario, Canada
| | - Roldan Torres
- Universidad Regional Amazónica IKIAM, Tena, Napo 150150, Ecuador
| | - Bakhtiyor Rasulev
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58102, United States
| | - James R Green
- Department of Systems and Computer Engineering, Carleton University, K1S5B6 Ottawa, Ontario, Canada
| | - Humbert González-Díaz
- Department of Organic and Inorganic Chemistry, University of Basque Country UPV/EHU, 48940 Leioa, Spain.,BIOFISIKA, Basque Center for Biophysics CSIC-UPVEH, 48940 Leioa, Spain.,IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Biscay, Spain
| |
Collapse
|
3
|
PTML modeling for peptide discovery: in silico design of non-hemolytic peptides with antihypertensive activity. Mol Divers 2021; 26:2523-2534. [PMID: 34802116 DOI: 10.1007/s11030-021-10350-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/05/2021] [Indexed: 01/19/2023]
Abstract
Hypertension is a medical condition that affects millions of people worldwide. Despite the high efficacy of the current antihypertensive drugs, they are associated with serious side effects. Peptides constitute attractive options for chemical therapy against hypertension, and computational models can accelerate the design of antihypertensive peptides. Yet, to the best of our knowledge, all the in silico models predict only the antihypertensive activity of peptides while neglecting their inherent toxic potential to red blood cells. In this work, we report the first sequence-based model that combines perturbation theory and machine learning through multilayer perceptron networks (SB-PTML-MLP) to enable the simultaneous screening of antihypertensive activity and hemotoxicity of peptides. We have interpreted the molecular descriptors present in the model from a physicochemical and structural point of view. By strictly following such interpretations as guidelines, we performed two tasks. First, we selected amino acids with favorable contributions to both the increase of the antihypertensive activity and the diminution of hemotoxicity. Then, we assembled those suitable amino acids, virtually designing peptides that were predicted by the SB-PTML-MLP model as antihypertensive agents exhibiting low hemotoxicity. The potentiality of the SB-PTML-MLP model as a tool for designing potent and safe antihypertensive peptides was confirmed by predictions performed by online computational tools reported in the scientific literature. The methodology presented here can be extended to other pharmacological applications of peptides.
Collapse
|
4
|
Kleandrova VV, Speck-Planche A. The QSAR Paradigm in Fragment-Based Drug Discovery: From the Virtual Generation of Target Inhibitors to Multi-Scale Modeling. Mini Rev Med Chem 2021; 20:1357-1374. [PMID: 32013845 DOI: 10.2174/1389557520666200204123156] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/21/2019] [Accepted: 10/28/2019] [Indexed: 12/24/2022]
Abstract
Fragment-Based Drug Design (FBDD) has established itself as a promising approach in modern drug discovery, accelerating and improving lead optimization, while playing a crucial role in diminishing the high attrition rates at all stages in the drug development process. On the other hand, FBDD has benefited from the application of computational methodologies, where the models derived from the Quantitative Structure-Activity Relationships (QSAR) have become consolidated tools. This mini-review focuses on the evolution and main applications of the QSAR paradigm in the context of FBDD in the last five years. This report places particular emphasis on the QSAR models derived from fragment-based topological approaches to extract physicochemical and/or structural information, allowing to design potentially novel mono- or multi-target inhibitors from relatively large and heterogeneous databases. Here, we also discuss the need to apply multi-scale modeling, to exemplify how different datasets based on target inhibition can be simultaneously integrated and predicted together with other relevant endpoints such as the biological activity against non-biomolecular targets, as well as in vitro and in vivo toxicity and pharmacokinetic properties. In this context, seminal papers are briefly analyzed. As huge amounts of data continue to accumulate in the domains of the chemical, biological and biomedical sciences, it has become clear that drug discovery must be viewed as a multi-scale optimization process. An ideal multi-scale approach should integrate diverse chemical and biological data and also serve as a knowledge generator, enabling the design of potentially optimal chemicals that may become therapeutic agents.
Collapse
Affiliation(s)
- Valeria V Kleandrova
- Laboratory of Fundamental and Applied Research of Quality and Technology of Food Production, Moscow State University of Food Production, Volokolamskoe Shosse 11, 125080, Moscow, Russian Federation
| | - Alejandro Speck-Planche
- Department of Chemistry, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Trubetskaya Str., 8, b. 2, 119992, Moscow, Russian Federation
| |
Collapse
|
5
|
Applications of artificial intelligence to drug design and discovery in the big data era: a comprehensive review. Mol Divers 2021; 25:1643-1664. [PMID: 34110579 DOI: 10.1007/s11030-021-10237-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/26/2021] [Indexed: 10/21/2022]
Abstract
Artificial intelligence (AI) renders cutting-edge applications in diverse sectors of society. Due to substantial progress in high-performance computing, the development of superior algorithms, and the accumulation of huge biological and chemical data, computer-assisted drug design technology is playing a key role in drug discovery with its advantages of high efficiency, fast speed, and low cost. Over recent years, due to continuous progress in machine learning (ML) algorithms, AI has been extensively employed in various drug discovery stages. Very recently, drug design and discovery have entered the big data era. ML algorithms have progressively developed into a deep learning technique with potent generalization capability and more effectual big data handling, which further promotes the integration of AI technology and computer-assisted drug discovery technology, hence accelerating the design and discovery of the newest drugs. This review mainly summarizes the application progression of AI technology in the drug discovery process, and explores and compares its advantages over conventional methods. The challenges and limitations of AI in drug design and discovery have also been discussed.
Collapse
|
6
|
Kleandrova VV, Scotti L, Bezerra Mendonça Junior FJ, Muratov E, Scotti MT, Speck-Planche A. QSAR Modeling for Multi-Target Drug Discovery: Designing Simultaneous Inhibitors of Proteins in Diverse Pathogenic Parasites. Front Chem 2021; 9:634663. [PMID: 33777898 PMCID: PMC7987820 DOI: 10.3389/fchem.2021.634663] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 01/22/2021] [Indexed: 11/21/2022] Open
Abstract
Parasitic diseases remain as unresolved health issues worldwide. While for some parasites the treatments involve drug combinations with serious side effects, for others, chemical therapies are inefficient due to the emergence of drug resistance. This urges the search for novel antiparasitic agents able to act through multiple mechanisms of action. Here, we report the first multi-target model based on quantitative structure-activity relationships and a multilayer perceptron neural network (mt-QSAR-MLP) to virtually design and predict versatile inhibitors of proteins involved in the survival and/or infectivity of different pathogenic parasites. The mt-QSAR-MLP model exhibited high accuracy (>80%) in both training and test sets for the classification/prediction of protein inhibitors. Several fragments were directly extracted from the physicochemical and structural interpretations of the molecular descriptors in the mt-QSAR-MLP model. Such interpretations enabled the generation of four molecules that were predicted as multi-target inhibitors against at least three of the five parasitic proteins reported here with two of the molecules being predicted to inhibit all the proteins. Docking calculations converged with the mt-QSAR-MLP model regarding the multi-target profile of the designed molecules. The designed molecules exhibited drug-like properties, complying with Lipinski’s rule of five, as well as Ghose’s filter and Veber’s guidelines.
Collapse
Affiliation(s)
- Valeria V Kleandrova
- Laboratory of Fundamental and Applied Research of Quality and Technology of Food Production, Moscow State University of Food Production, Moscow, Russian Federation
| | - Luciana Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa, Brazil
| | | | - Eugene Muratov
- Laboratory for Molecular Modeling, The UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Marcus T Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa, Brazil
| | - Alejandro Speck-Planche
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa, Brazil
| |
Collapse
|
7
|
Kleandrova VV, Scotti MT, Scotti L, Nayarisseri A, Speck-Planche A. Cell-based multi-target QSAR model for design of virtual versatile inhibitors of liver cancer cell lines. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2020; 31:815-836. [PMID: 32967475 DOI: 10.1080/1062936x.2020.1818617] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/31/2020] [Indexed: 06/11/2023]
Abstract
Liver cancers are one of the leading fatal diseases among malignant neoplasms. Current chemotherapeutic treatments used to fight these illnesses have become less efficient in terms of both efficacy and safety. Therefore, there is a great need of search for new anti-liver cancer agents and this can be accelerated by using computer-aided drug discovery approaches. In this work, we report the development of the first cell-based multi-target model based on quantitative structure-activity relationships (CBMT-QSAR) for the design and prediction of chemicals as anticancer agents against 17 liver cancer cell lines. While having a good quality and predictive power (accuracy higher than 80%) in the training and test sets, respectively, the CBMT-QSAR model was employed as a tool to directly extract suitable fragments from the physicochemical and structural interpretations of the molecular descriptors. Some of these desirable fragments were assembled, leading to the virtual design of eight molecules with drug-like properties, with six of them being predicted as versatile anticancer agents against the 17 liver cancer cell lines reported here.
Collapse
Affiliation(s)
- V V Kleandrova
- Laboratory of Fundamental and Applied Research of Quality and Technology of Food Production, Moscow State University of Food Production , Moscow, Russian Federation
| | - M T Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba , João Pessoa, Brazil
| | - L Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba , João Pessoa, Brazil
| | - A Nayarisseri
- In Silico Research Laboratory, Eminent Biosciences , Indore, Madhya Pradesh, India
| | - A Speck-Planche
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba , João Pessoa, Brazil
| |
Collapse
|
8
|
Diez-Alarcia R, Yáñez-Pérez V, Muneta-Arrate I, Arrasate S, Lete E, Meana JJ, González-Díaz H. Big Data Challenges Targeting Proteins in GPCR Signaling Pathways; Combining PTML-ChEMBL Models and [ 35S]GTPγS Binding Assays. ACS Chem Neurosci 2019; 10:4476-4491. [PMID: 31618004 DOI: 10.1021/acschemneuro.9b00302] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
G-protein-coupled receptors (GPCRs), also known as 7-transmembrane receptors, are the single largest class of drug targets. Consequently, a large amount of preclinical assays having GPCRs as molecular targets has been released to public sources like the Chemical European Molecular Biology Laboratory (ChEMBL) database. These data are also very complex covering changes in drug chemical structure and assay conditions like c0 = activity parameter (Ki, IC50, etc.), c1 = target protein, c2 = cell line, c3 = assay organism, etc., making difficult the analysis of these databases that are placed in the borders of a Big Data challenge. One of the aims of this work is to develop a computational model able to predict new GPCRs targeting drugs taking into consideration multiple conditions of assay. Another objective is to perform new predictive and experimental studies of selective 5-HTA2 receptor agonist, antagonist, or inverse agonist in human comparing the results with those from the literature. In this work, we combined Perturbation Theory (PT) and Machine Learning (ML) to seek a general PTML model for this data set. We analyzed 343 738 unique compounds with 812 072 end points (assay outcomes), with 185 different experimental parameters, 592 protein targets, 51 cell lines, and/or 55 organisms (species). The best PTML linear model found has three input variables only and predicted 56 202/58 653 positive outcomes (sensitivity = 95.8%) and 470 230/550 401 control cases (specificity = 85.4%) in training series. The model also predicted correctly 18 732/19 549 (95.8%) of positive outcomes and 156 739/183 469 (85.4%) of cases in external validation series. To illustrate its practical use, we used the model to predict the outcomes of six different 5-HT2A receptor drugs, namely, TCB-2, DOI, DOB, altanserin, pimavanserin, and nelotanserin, in a very large number of different pharmacological assays. 5-HT2A receptors are altered in schizophrenia and represent drug target for antipsychotic therapeutic activity. The model correctly predicted 93.83% (76 of 86) experimental results for these compounds reported in ChEMBL. Moreover, [35S]GTPγS binding assays were performed experimentally with the same six drugs with the aim of determining their potency and efficacy in the modulation of G-proteins in human brain tissue. The antagonist ketanserin was included as inactive drug with demonstrated affinity for 5-HT2A/C receptors. Our results demonstrate that some of these drugs, previously described as serotonin 5-HT2A receptor agonists, antagonists, or inverse agonists, are not so specific and show different intrinsic activity to that previously reported. Overall, this work opens a new gate for the prediction of GPCRs targeting compounds.
Collapse
Affiliation(s)
- Rebeca Diez-Alarcia
- Centro de Investigación Biomédica en Red en Salud Mental, 48940 Leioa, Spain
| | | | | | | | | | - J. Javier Meana
- Centro de Investigación Biomédica en Red en Salud Mental, 48940 Leioa, Spain
| | - Humbert González-Díaz
- Biophysics Institute, CSIC-UPV/EHU, University of the Basque Country UPV/EHU, Leioa, 48940, Spain
- IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| |
Collapse
|
9
|
Vásquez-Domínguez E, Armijos-Jaramillo VD, Tejera E, González-Díaz H. Multioutput Perturbation-Theory Machine Learning (PTML) Model of ChEMBL Data for Antiretroviral Compounds. Mol Pharm 2019; 16:4200-4212. [PMID: 31426639 DOI: 10.1021/acs.molpharmaceut.9b00538] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Retroviral infections, such as HIV, are, until now, diseases with no cure. Medicine and pharmaceutical chemistry need and consider it a huge goal to define target proteins of new antiretroviral compounds. ChEMBL manages Big Data features with a complex data set, which is hard to organize. This makes information difficult to analyze due to a big number of characteristics described in order to predict new drug candidates for retroviral infections. For this reason, we propose to develop a new predictive model combining perturbation theory (PT) bases and machine learning (ML) modeling to create a new tool that can take advantage of all the available information. The PTML model proposed in this work for the ChEMBL data set preclinical experimental assays for antiretroviral compounds consists of a linear equation with four variables. The PT operators used are founded on multicondition moving averages, combining different features and simplifying the difficulty to manage all data. More than 140 000 preclinical assays for 56 105 compounds with different characteristics or experimental conditions have been carried out and can be found in ChEMBL database, covering combinations with 359 biological activity parameters (c0), 55 protein accessions (c1), 83 cell lines (c2), 64 organisms of assay (c3), and 773 subtypes or strains. We have included 150 148 preclinical experimental assays for HIV virus, 1188 for HTLV virus, 84 for simian immunodeficiency virus, 370 for murine leukemia virus, 119 for Rous sarcoma virus, 1581 for MMTV, etc. We also included 5277 assays for hepatitis B virus. The developed PTML model reached considerable values in sensibility (73.05% for training and 73.10% for validation), specificity (86.61% for training and 87.17% for validation), and accuracy (75.84% for training and 75.98% for validation). We also compared alternative PTML models with different PT operators such as covariance, moments, and exponential terms. Finally, we made a comparison between literature ML models with our PTML model and also artificial neural network (ANN) nonlinear models. We conclude that this PTML model is the first one to consider multiple characteristics of preclinical experimental antiretroviral assays combined, generating a simple, useful, and adaptable instrument, which could reduce time and costs in antiretroviral drugs research.
Collapse
Affiliation(s)
- Emilia Vásquez-Domínguez
- Department of Organic Chemistry II , University of Basque Country UPV/EHU , 48940 Leioa , Spain.,Faculty of Engineering and Applied Sciences-Biotechnology , Universidad de Las Américas (UDLA) , 170125 Quito , Ecuador
| | - Vinicio Danilo Armijos-Jaramillo
- Faculty of Engineering and Applied Sciences-Biotechnology , Universidad de Las Américas (UDLA) , 170125 Quito , Ecuador.,Bio-chemioinformatics group , Universidad de Las Américas (UDLA) , 170125 Quito , Ecuador
| | - Eduardo Tejera
- Faculty of Engineering and Applied Sciences-Biotechnology , Universidad de Las Américas (UDLA) , 170125 Quito , Ecuador.,Bio-chemioinformatics group , Universidad de Las Américas (UDLA) , 170125 Quito , Ecuador
| | - Humbert González-Díaz
- Department of Organic Chemistry II , University of Basque Country UPV/EHU , 48940 Leioa , Spain.,IKERBASQUE, Basque Foundation for Science , 48011 Bilbao , Spain
| |
Collapse
|
10
|
Li W, Jia Y, Du J, Fu X. State estimation for nonlinearly coupled complex networks with application to multi-target tracking. Neurocomputing 2018. [DOI: 10.1016/j.neucom.2017.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Liu J, Ming B, Gong GH, Wang D, Bao GL, Yu LJ. Current research on anti-breast cancer synthetic compounds. RSC Adv 2018. [DOI: 10.1039/c7ra12912b] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Breast cancer (BC) is the most common cancer for females and its incidence tends to increase year by year.
Collapse
Affiliation(s)
- Jia Liu
- Medicinal Chemistry and Pharmacology Institute
- Inner Mongolia University for Nationalities
- Tongliao
- People's Republic of China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System
| | - Bian Ming
- Medicinal Chemistry and Pharmacology Institute
- Inner Mongolia University for Nationalities
- Tongliao
- People's Republic of China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System
| | - Guo-Hua Gong
- First Clinical Medical of Inner Mongolia University for Nationalities
- Tongliao
- People's Republic of China
| | - Di Wang
- Medicinal Chemistry and Pharmacology Institute
- Inner Mongolia University for Nationalities
- Tongliao
- People's Republic of China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System
| | - Gui-Lan Bao
- Medicinal Chemistry and Pharmacology Institute
- Inner Mongolia University for Nationalities
- Tongliao
- People's Republic of China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System
| | - Li-Jun Yu
- Medicinal Chemistry and Pharmacology Institute
- Inner Mongolia University for Nationalities
- Tongliao
- People's Republic of China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System
| |
Collapse
|
12
|
Pereira ASP, Bester MJ, Apostolides Z. Exploring the anti-proliferative activity of Pelargonium sidoides DC with in silico target identification and network pharmacology. Mol Divers 2017; 21:809-820. [PMID: 28924942 DOI: 10.1007/s11030-017-9769-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 07/19/2017] [Indexed: 01/10/2023]
Abstract
Pelargonium sidoides DC (Geraniaceae) is a medicinal plant indigenous to Southern Africa that has been widely evaluated for its use in the treatment of upper respiratory tract infections. In recent studies, the anti-proliferative potential of P. sidoides was shown, and several phenolic compounds were identified as the bioactive compounds. Little, however, is known regarding their anti-proliferative protein targets. In this study, the anti-proliferative mechanisms of P. sidoides through in silico target identification and network pharmacology methodologies were evaluated. The protein targets of the 12 phenolic compounds were identified using the target identification server PharmMapper and the server for predicting Drug Repositioning and Adverse Reactions via the Chemical-Protein Interactome (DRAR-CPI). Protein-protein and protein-pathway interaction networks were subsequently constructed with Cytoscape 3.4.0 to evaluate potential mechanisms of action. A total of 142 potential human target proteins were identified with the in silico target identification servers, and 90 of these were found to be related to cancer. The protein interaction network was constructed from 86 proteins involved in 209 interactions with each other, and two protein clusters were observed. A pathway enrichment analysis identified over 80 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enriched with the protein targets and included several pathways specifically related to cancer as well as various signaling pathways that have been found to be dysregulated in cancer. These results indicate that the anti-proliferative activity of P. sidoides may be multifactorial and arises from the collective regulation of several interconnected cell signaling pathways.
Collapse
Affiliation(s)
- A S P Pereira
- Department of Biochemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Hillcrest, Pretoria, 0083, South Africa
| | - M J Bester
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Hillcrest, Pretoria, 0083, South Africa
| | - Z Apostolides
- Department of Biochemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Hillcrest, Pretoria, 0083, South Africa.
| |
Collapse
|
13
|
Speck-Planche A, Cordeiro MNDS. De novo computational design of compounds virtually displaying potent antibacterial activity and desirable in vitro ADMET profiles. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1936-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Wen M, Zhang Z, Niu S, Sha H, Yang R, Yun Y, Lu H. Deep-Learning-Based Drug–Target Interaction Prediction. J Proteome Res 2017; 16:1401-1409. [DOI: 10.1021/acs.jproteome.6b00618] [Citation(s) in RCA: 279] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ming Wen
- College
of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Zhimin Zhang
- College
of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Shaoyu Niu
- College
of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Haozhi Sha
- College
of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Ruihan Yang
- College
of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Yonghuan Yun
- Institute
of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China
| | - Hongmei Lu
- College
of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| |
Collapse
|
15
|
Saldívar-González FI, Naveja JJ, Palomino-Hernández O, Medina-Franco JL. Getting SMARt in drug discovery: chemoinformatics approaches for mining structure–multiple activity relationships. RSC Adv 2017. [DOI: 10.1039/c6ra26230a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In light of the high relevance of polypharmacology, multi-target screening is a major trend in drug discovery.
Collapse
Affiliation(s)
- Fernanda I. Saldívar-González
- Facultad de Química
- Departamento de Farmacia
- Universidad Nacional Autónoma de México
- Avenida Universidad 3000
- Mexico City 04510
| | - J. Jesús Naveja
- Facultad de Química
- Departamento de Farmacia
- Universidad Nacional Autónoma de México
- Avenida Universidad 3000
- Mexico City 04510
| | - Oscar Palomino-Hernández
- Facultad de Química
- Departamento de Farmacia
- Universidad Nacional Autónoma de México
- Avenida Universidad 3000
- Mexico City 04510
| | - José L. Medina-Franco
- Facultad de Química
- Departamento de Farmacia
- Universidad Nacional Autónoma de México
- Avenida Universidad 3000
- Mexico City 04510
| |
Collapse
|
16
|
Romero-Durán FJ, Alonso N, Yañez M, Caamaño O, García-Mera X, González-Díaz H. Brain-inspired cheminformatics of drug-target brain interactome, synthesis, and assay of TVP1022 derivatives. Neuropharmacology 2016; 103:270-8. [DOI: 10.1016/j.neuropharm.2015.12.019] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 11/22/2015] [Accepted: 12/18/2015] [Indexed: 01/22/2023]
|
17
|
Shar PA, Tao W, Gao S, Huang C, Li B, Zhang W, Shahen M, Zheng C, Bai Y, Wang Y. Pred-binding: large-scale protein-ligand binding affinity prediction. J Enzyme Inhib Med Chem 2016; 31:1443-50. [PMID: 26888050 DOI: 10.3109/14756366.2016.1144594] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Drug target interactions (DTIs) are crucial in pharmacology and drug discovery. Presently, experimental determination of compound-protein interactions remains challenging because of funding investment and difficulties of purifying proteins. In this study, we proposed two in silico models based on support vector machine (SVM) and random forest (RF), using 1589 molecular descriptors and 1080 protein descriptors in 9948 ligand-protein pairs to predict DTIs that were quantified by Ki values. The cross-validation coefficient of determination of 0.6079 for SVM and 0.6267 for RF were obtained, respectively. In addition, the two-dimensional (2D) autocorrelation, topological charge indices and three-dimensional (3D)-MoRSE descriptors of compounds, the autocorrelation descriptors and the amphiphilic pseudo-amino acid composition of protein are found most important for Ki predictions. These models provide a new opportunity for the prediction of ligand-receptor interactions that will facilitate the target discovery and toxicity evaluation in drug development.
Collapse
Affiliation(s)
- Piar Ali Shar
- a Bioinformatics Center, College of Life Sciences, Northwest A & F University , Yangling , Shaanxi , China
| | - Weiyang Tao
- a Bioinformatics Center, College of Life Sciences, Northwest A & F University , Yangling , Shaanxi , China
| | - Shuo Gao
- a Bioinformatics Center, College of Life Sciences, Northwest A & F University , Yangling , Shaanxi , China
| | - Chao Huang
- a Bioinformatics Center, College of Life Sciences, Northwest A & F University , Yangling , Shaanxi , China
| | - Bohui Li
- a Bioinformatics Center, College of Life Sciences, Northwest A & F University , Yangling , Shaanxi , China
| | - Wenjuan Zhang
- a Bioinformatics Center, College of Life Sciences, Northwest A & F University , Yangling , Shaanxi , China
| | - Mohamed Shahen
- a Bioinformatics Center, College of Life Sciences, Northwest A & F University , Yangling , Shaanxi , China
| | - Chunli Zheng
- a Bioinformatics Center, College of Life Sciences, Northwest A & F University , Yangling , Shaanxi , China
| | - Yaofei Bai
- a Bioinformatics Center, College of Life Sciences, Northwest A & F University , Yangling , Shaanxi , China
| | - Yonghua Wang
- a Bioinformatics Center, College of Life Sciences, Northwest A & F University , Yangling , Shaanxi , China
| |
Collapse
|
18
|
Halder A, Goodarzi M. Recent Advances in Multi-Task QSAR Modeling for Drug Design. PHARMACEUTICAL SCIENCES 2015. [DOI: 10.15171/ps.2015.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
19
|
Drug-symptom networking: Linking drug-likeness screening to drug discovery. Pharmacol Res 2015; 103:105-13. [PMID: 26615785 DOI: 10.1016/j.phrs.2015.11.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 10/26/2015] [Accepted: 11/11/2015] [Indexed: 01/19/2023]
Abstract
Understanding the relationships between drugs and symptoms has broad medical consequences, yet a comprehensive description of the drug-symptom associations is currently lacking. Here, 1441 FDA-approved drugs were collected, and PCA was used to extract 122 descriptors which explained 91% of the variance. Then, a k-means++ method was employed to partition the drug dataset into 3 clusters, and 3 corresponding SVDD models (drug-likeness screening models) were constructed with an overall accuracy of up to 95.6%. Furthermore, 6878 herbal molecules from the TcmSP™ database were screened by the above 3 SVDD model to obtain 5309 candidate drug molecules with highly accept classification of 77.19%. To assess the accuracy of the SVDD models, 8559 herbal molecule-symptom co-occurrences were mined from Pubmed abstracts, involving 697 herbal molecules and 314 symptoms. Most of the 697 herbal molecules could be found in the accepted SVDD data (5309 molecules), showing the potential of the SVDD for the screening of drug candidates. Moreover, a herbal molecule-herbal molecule network and a herbal molecule-symptom were constructed. Overall, the results provided a new drug-likeness screening approach independent to abnormal training data, and the comprehensive collection of herbal molecule-symptom associations formed a new data resource for systematic characterization of the symptom-oriented medicines.
Collapse
|
20
|
Speck-Planche A, Cordeiro MNDS. Multitasking models for quantitative structure–biological effect relationships: current status and future perspectives to speed up drug discovery. Expert Opin Drug Discov 2015; 10:245-56. [DOI: 10.1517/17460441.2015.1006195] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
21
|
Zhong WZ, Zhou SF. Molecular science for drug development and biomedicine. Int J Mol Sci 2014; 15:20072-8. [PMID: 25375190 PMCID: PMC4264156 DOI: 10.3390/ijms151120072] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 10/24/2014] [Indexed: 01/21/2023] Open
Affiliation(s)
- Wei-Zhu Zhong
- Gordon Life Science Institute, Belmont, MA 02478, USA.
| | - Shu-Feng Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33620, USA.
| |
Collapse
|