1
|
Bizzoca A, Jirillo E, Flace P, Gennarini G. Overall Role of Contactins Expression in Neurodevelopmental Events and Contribution to Neurological Disorders. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2023; 22:1176-1193. [PMID: 36515028 DOI: 10.2174/1871527322666221212160048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/21/2022] [Accepted: 10/28/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Neurodegenerative disorders may depend upon a misregulation of the pathways which sustain neurodevelopmental control. In this context, this review article focuses on Friedreich ataxia (FA), a neurodegenerative disorder resulting from mutations within the gene encoding the Frataxin protein, which is involved in the control of mitochondrial function and oxidative metabolism. OBJECTIVE The specific aim of the present study concerns the FA molecular and cellular substrates, for which available transgenic mice models are proposed, including mutants undergoing misexpression of adhesive/morphoregulatory proteins, in particular belonging to the Contactin subset of the immunoglobulin supergene family. METHODS In both mutant and control mice, neurogenesis was explored by morphological/morphometric analysis through the expression of cell type-specific markers, including b-tubulin, the Contactin-1 axonal adhesive glycoprotein, as well as the Glial Fibrillary Acidic Protein (GFAP). RESULTS Specific consequences were found to arise from the chosen misexpression approach, consisting of a neuronal developmental delay associated with glial upregulation. Protective effects against the arising phenotype resulted from antioxidants (essentially epigallocatechin gallate (EGCG)) administration, which was demonstrated through the profiles of neuronal (b-tubulin and Contactin 1) as well as glial (GFAP) markers, in turn indicating the concomitant activation of neurodegeneration and neuro repair processes. The latter also implied activation of the Notch-1 signaling. CONCLUSION Overall, this study supports the significance of changes in morphoregulatory proteins expression in the FA pathogenesis and of antioxidant administration in counteracting it, which, in turn, allows to devise potential therapeutic approaches.
Collapse
Affiliation(s)
- Antonella Bizzoca
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, Medical School, University of Bari, Piazza Giulio Cesare, 11. Bari I-70124, Italy
| | - Emilio Jirillo
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, Medical School, University of Bari, Piazza Giulio Cesare, 11. Bari I-70124, Italy
| | - Paolo Flace
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, Medical School, University of Bari, Piazza Giulio Cesare, 11. Bari I-70124, Italy
| | - Gianfranco Gennarini
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, Medical School, University of Bari, Piazza Giulio Cesare, 11. Bari I-70124, Italy
| |
Collapse
|
2
|
Angelopoulou E, Paudel YN, Piperi C. Role of Liver Growth Factor (LGF) in Parkinson's Disease: Molecular Insights and Therapeutic Opportunities. Mol Neurobiol 2021; 58:3031-3042. [PMID: 33608826 DOI: 10.1007/s12035-021-02326-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 02/09/2021] [Indexed: 11/26/2022]
Abstract
Parkinson's disease is the most common neurodegenerative movement disorder with unclear etiology and only symptomatic treatment to date. Toward the development of novel disease-modifying agents, neurotrophic factors represent a reasonable and promising therapeutic approach. However, despite the robust preclinical evidence, clinical trials using glial-derived neurotrophic factor (GDNF) and neurturin have been unsuccessful. In this direction, the therapeutic potential of other trophic factors in PD and the elucidation of the underlying molecular mechanisms are of paramount importance. The liver growth factor (LGF) is an albumin-bilirubin complex acting as a hepatic mitogen, which also exerts regenerative effects on several extrahepatic tissues including the brain. Accumulating evidence suggests that intracerebral and peripheral administration of LGF can enhance the outgrowth of nigrostriatal dopaminergic axonal terminals; promote the survival, migration, and differentiation of neuronal stem cells; and partially protect against dopaminergic neuronal loss in the substantia nigra of PD animal models. In most studies, these effects are accompanied by improved motor behavior of the animals. Potential underlying mechanisms involve transient microglial activation, TNF-α upregulation, and activation of the extracellular signal-regulated kinases 1/2 (ERK1/2) and of the transcription factor cyclic AMP response-element binding protein (CREB), along with anti-inflammatory and antioxidant pathways. Herein, we summarize recent preclinical evidence on the potential role of LGF in PD pathogenesis, aiming to shed more light on the underlying molecular mechanisms and reveal novel therapeutic opportunities for this debilitating disease.
Collapse
Affiliation(s)
- Efthalia Angelopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Yam Nath Paudel
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
3
|
Gonzalo-Gobernado R, Perucho J, Vallejo-Muñoz M, Casarejos MJ, Reimers D, Jiménez-Escrig A, Gómez A, Ulzurrun de Asanza GM, Bazán E. Liver Growth Factor "LGF" as a Therapeutic Agent for Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21239201. [PMID: 33276671 PMCID: PMC7730107 DOI: 10.3390/ijms21239201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/27/2020] [Accepted: 11/29/2020] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive degenerative disorder and the most common cause of dementia in aging populations. Although the pathological hallmarks of AD are well defined, currently no effective therapy exists. Liver growth factor (LGF) is a hepatic albumin-bilirubin complex with activity as a tissue regenerating factor in several neurodegenerative disorders such as Parkinson's disease and Friedreich's ataxia. Our aim here was to analyze the potential therapeutic effect of LGF on the APPswe mouse model of AD. Twenty-month-old mice received intraperitoneal (i.p.) injections of 1.6 µg LGF or saline, twice a week during three weeks. Mice were sacrificed one week later, and the hippocampus and dorsal cortex were prepared for immunohistochemical and biochemical studies. LGF treatment reduced amyloid-β (Aβ) content, phospho-Tau/Tau ratio and the number of Aβ plaques with diameter larger than 25 µm. LGF administration also modulated protein ubiquitination and HSP70 protein levels, reduced glial reactivity and inflammation, and the expression of the pro-apoptotic protein Bax. Because the administration of this factor also restored cognitive damage in APPswe mice, we propose LGF as a novel therapeutic tool that may be useful for the treatment of AD.
Collapse
Affiliation(s)
- Rafael Gonzalo-Gobernado
- Servicio de Neurobiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (R.G.-G.); (J.P.); (M.V.-M.); (M.J.C.); (D.R.); (A.J.E.); (A.G.); (G.M.U.d.A.)
- National Centre for Biotechnology (CNB), CSIC, 28049 Madrid, Spain
| | - Juan Perucho
- Servicio de Neurobiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (R.G.-G.); (J.P.); (M.V.-M.); (M.J.C.); (D.R.); (A.J.E.); (A.G.); (G.M.U.d.A.)
| | - Manuela Vallejo-Muñoz
- Servicio de Neurobiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (R.G.-G.); (J.P.); (M.V.-M.); (M.J.C.); (D.R.); (A.J.E.); (A.G.); (G.M.U.d.A.)
| | - Maria José Casarejos
- Servicio de Neurobiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (R.G.-G.); (J.P.); (M.V.-M.); (M.J.C.); (D.R.); (A.J.E.); (A.G.); (G.M.U.d.A.)
| | - Diana Reimers
- Servicio de Neurobiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (R.G.-G.); (J.P.); (M.V.-M.); (M.J.C.); (D.R.); (A.J.E.); (A.G.); (G.M.U.d.A.)
| | - Adriano Jiménez-Escrig
- Servicio de Neurobiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (R.G.-G.); (J.P.); (M.V.-M.); (M.J.C.); (D.R.); (A.J.E.); (A.G.); (G.M.U.d.A.)
- Servicio de Neurología, Hospital Ramón y Cajal, 28034 Madrid, Spain
| | - Ana Gómez
- Servicio de Neurobiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (R.G.-G.); (J.P.); (M.V.-M.); (M.J.C.); (D.R.); (A.J.E.); (A.G.); (G.M.U.d.A.)
| | - Gonzalo M. Ulzurrun de Asanza
- Servicio de Neurobiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (R.G.-G.); (J.P.); (M.V.-M.); (M.J.C.); (D.R.); (A.J.E.); (A.G.); (G.M.U.d.A.)
| | - Eulalia Bazán
- Servicio de Neurobiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (R.G.-G.); (J.P.); (M.V.-M.); (M.J.C.); (D.R.); (A.J.E.); (A.G.); (G.M.U.d.A.)
- Correspondence: ; Tel.: +34-913-368-168
| |
Collapse
|
4
|
Calatrava-Ferreras L, Gonzalo-Gobernado R, Reimers D, Herranz AS, Casarejos MJ, Jiménez-Escrig A, Regadera J, Velasco-Martín J, Vallejo-Muñoz M, Díaz-Gil JJ, Bazán E. Liver Growth Factor (LGF) Upregulates Frataxin Protein Expression and Reduces Oxidative Stress in Friedreich's Ataxia Transgenic Mice. Int J Mol Sci 2016; 17:E2066. [PMID: 27941692 PMCID: PMC5187866 DOI: 10.3390/ijms17122066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/28/2016] [Accepted: 12/06/2016] [Indexed: 01/03/2023] Open
Abstract
Friedreich's ataxia (FA) is a severe disorder with autosomal recessive inheritance that is caused by the abnormal expansion of GAA repeat in intron 1 of FRDA gen. This alteration leads to a partial silencing of frataxin transcription, causing a multisystem disorder disease that includes neurological and non-neurological damage. Recent studies have proven the effectiveness of neurotrophic factors in a number of neurodegenerative diseases. Therefore, we intend to determine if liver growth factor (LGF), which has a demonstrated antioxidant and neuroprotective capability, could be a useful therapy for FA. To investigate the potential therapeutic activity of LGF we used transgenic mice of the FXNtm1MknTg (FXN)YG8Pook strain. In these mice, intraperitoneal administration of LGF (1.6 μg/mouse) exerted a neuroprotective effect on neurons of the lumbar spinal cord and improved cardiac hypertrophy. Both events could be the consequence of the increment in frataxin expression induced by LGF in spinal cord (1.34-fold) and heart (1.2-fold). LGF also upregulated by 2.6-fold mitochondrial chain complex IV expression in spinal cord, while in skeletal muscle it reduced the relation oxidized glutathione/reduced glutathione. Since LGF partially restores motor coordination, we propose LGF as a novel factor that may be useful in the treatment of FA.
Collapse
Affiliation(s)
- Lucía Calatrava-Ferreras
- Service of Neurobiology, Ramón y Cajal Institute for Health Research (IRYCIS), 28034 Madrid, Spain.
| | - Rafael Gonzalo-Gobernado
- Service of Neurobiology, Ramón y Cajal Institute for Health Research (IRYCIS), 28034 Madrid, Spain.
| | - Diana Reimers
- Service of Neurobiology, Ramón y Cajal Institute for Health Research (IRYCIS), 28034 Madrid, Spain.
| | - Antonio S Herranz
- Service of Neurobiology, Ramón y Cajal Institute for Health Research (IRYCIS), 28034 Madrid, Spain.
| | - María J Casarejos
- Service of Neurobiology, Ramón y Cajal Institute for Health Research (IRYCIS), 28034 Madrid, Spain.
| | | | - Javier Regadera
- Departamento de Anatomía, Histología y Neurociencia Facultad de Medicina Universidad Autónoma de Madrid, 28400 Madrid, Spain.
| | - Juan Velasco-Martín
- Departamento de Anatomía, Histología y Neurociencia Facultad de Medicina Universidad Autónoma de Madrid, 28400 Madrid, Spain.
| | - Manuela Vallejo-Muñoz
- Service of Neurobiology, Ramón y Cajal Institute for Health Research (IRYCIS), 28034 Madrid, Spain.
| | - Juan José Díaz-Gil
- Service of Neurobiology, Ramón y Cajal Institute for Health Research (IRYCIS), 28034 Madrid, Spain.
| | - Eulalia Bazán
- Service of Neurobiology, Ramón y Cajal Institute for Health Research (IRYCIS), 28034 Madrid, Spain.
| |
Collapse
|
5
|
Gonzalo-Gobernado R, Calatrava-Ferreras L, Perucho J, Reimers D, Casarejos MJ, Herranz AS, Jiménez-Escrig A, Díaz-Gil JJ, Bazán E. Liver growth factor as a tissue regenerating factor in neurodegenerative diseases. RECENT PATENTS ON CNS DRUG DISCOVERY 2014; 9:173-80. [PMID: 25537484 PMCID: PMC4485410 DOI: 10.2174/1574889809666141224123303] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 12/17/2014] [Accepted: 12/19/2014] [Indexed: 12/30/2022]
Abstract
Liver growth factor (LGF) is a hepatic mitogen purified by our group in 1986. In the following years we demonstrated its activity both in "in vivo" and "in vitro" systems, stimulating hepatocytes mitogenesis as well as liver regeneration in several models of liver injury. Furthermore, we established its chemical composition (albumin-bilirubin complex) and its mitogenic actions in liver. From 2000 onwards we used LGF as a tissue regenerating factor in several models of extrahepatic diseases. The use of Liver growth factor as a neural tissue regenerator has been recently protected (Patent No US 2014/8,642,551 B2). LGF administration stimulates neurogenesis and neuron survival, promotes migration of newly generated neurons, and induces the outgrowth of striatal dopaminergic terminals in 6-hidroxydopamine-lesioned rats. Furthermore, LGF treatment raises striatal dopamine levels and protects dopaminergic neurons in hemiparkinsonian animals. LGF also stimulates survival of grafted foetal neural stem cells in the damaged striatum, reduces rotational behaviour and improves motor coordination. Interestingly, LGF also exerts a neuroprotective role both in an experimental model of cerebellar ataxia and in a model of Friedrich´s ataxia. Microglia seem to be the cellular target of LGF in the CNS. Moreover, the activity of the factor could be mediated by the stimulation of MAPK´s signalling pathway and by regulating critical proteins for cell survival, such as Bcl-2 and phospho-CREB. Since the factor shows neuroprotective and neurorestorative effects we propose LGF as a patented novel therapeutic tool that may be useful for the treatment of Parkinson´s disease and cerebellar ataxias. Currently, our studies have been extended to other neurological disorders such as Alzheimer's disease (Patent No: US 2014/0113859 A1).
Collapse
Affiliation(s)
- Rafael Gonzalo-Gobernado
- Servicio de Neurobiología-Investigación, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS). Madrid, 28034, Spain
| | - Lucia Calatrava-Ferreras
- Servicio de Neurobiología-Investigación, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS). Madrid, 28034, Spain
| | - Juan Perucho
- Servicio de Neurobiología-Investigación, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS). Madrid, 28034, Spain
| | - Diana Reimers
- Servicio de Neurobiología-Investigación, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS). Madrid, 28034, Spain
| | - María J. Casarejos
- Servicio de Neurobiología-Investigación, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS). Madrid, 28034, Spain
| | - Antonio S. Herranz
- Servicio de Neurobiología-Investigación, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS). Madrid, 28034, Spain
| | | | - Juan J. Díaz-Gil
- Servicio de Neurobiología-Investigación, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS). Madrid, 28034, Spain
| | - Eulalia Bazán
- Servicio de Neurobiología-Investigación, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS). Madrid, 28034, Spain
| |
Collapse
|